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The filamentous bacteriophage M13 can be used to display foreign peptides and 

proteins, allowing the construction of theurapeutic, vaccine development, diagnostic 

and technological tools of broad utility. The current technique used to purify 

bacteriophage M13 by using conventional method but the long processing time and 

large unit requirement makes this method not economical. The present work focused on 

the importance of performing an expanded bed anion exchange adsorption experiments 

for purification of bacteriophage M13 and to identify the fluidization properties of 

Streamline DEAE. UpFront FastLine
TM

20 (ID = 20 mm) column from UpFront 

Chromatography was used as a contactor and Streamline
TM

 DEAE ( = 1.2 g/cm
3
) from 

GE Healthcare Lifesciences was used as the anion exchanger. 50 mM of Tris buffer at 

pH 7.5 was used as the equilibration buffer while 2.0 M of  NaCl in 50 mM of Tris 

buffer was used as the elution buffer. 
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The influence of the operational parameters of UpFront Fastline
TM

 20 was studied and 

demonstrated that 13.03 mL/min flow rate, bed height H0 = 17.5 cm are optimum 

conditions for protein released. The dynamic binding capacity of Streamline DEAE for 

the bacteriophage (M13) was found to be 63 mL adsorbent  at  velocity of 250 cm h
-1

. 

Due to higher density, higher flow rates (200 to 350 cmhr
-1

) and biomass concentrations 

(5% to 20% ww/v) could be applied on expanded bed adsorption.  The developed  

breakthrough curve was measured at different bed height and different biomass 

concentrations. The accuracy of the model predictions was improved by employing 

information on the axial variations in the bed voidage, liquid phase axial dispersion and 

dynamic binding capacity for the experiment. Breakthrough curves for bacteriophage 

M13 were compared and the process was more efficient at a bed expansion degree of 

2.0 (bed voidage of 0.7).  The performance of two methods were evaluated and 

analyzed. Purification of the M13 bacteriophage by precipitation, centrifugation and 

microfiltration yielded a low recovery percentage (36.07%) but with high purity while 

purification of the M13 bacteriophage by expanded bed anion exchange adsorption 

yielded a high recovery percentage (82.86%) but with low purity. Additionally, the total 

processing time of the expanded bed adsorption process has been shortened by 8 times 

compared to that of the conventional method. 
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Bakteriofaj (M13) boleh digunakan untuk mempamerkan protin dan peptide asing bagi 

memudahkan pembangunan bagi  terapi, pembinaan vaksin, mengenali penyakit dan 

alatan teknologi bagi keperluan global. Teknik yang biasa digunakan untuk penjernihan 

bakteriofaj (M13)ialah dengan menggunakan kaedah tradisional tetapi kaedah ini 

kurang berhemat kerana mengambil masa yang lama dan keperluan unit yang besar. 

Kerja yang dilakukan adalah tertumpu pada kepentingan penggunaan penjerapan lapisan 

terkembang untuk penjernihan bagi bakteriofaj (M13) dan untuk mengenal pasti sifat 

bendalir bagi penjerap garis arus DEAE. UpFront Fastline
TM

 20 (diameter  20 mm) dari 

UpFront Chromatography telah digunakan sebagai penghubung dan penggunaan 
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penjerap garis arus DEAE ( = 12 gl
-1

) dari GE Healthcare Lifesciences sebagai 

penukar anion. Penimbal keseimbangan pada pH 7.5 yang digunakan ialah 50mM Tris 

penimbal. Sementara 2.0 M NaCl di dalam 50 mM Tris penimbal  pada pH 2.2 

digunakan sebagai penimbal elutan. Parameter operasi yang mempengaruhi proses 

penjerapan dengan penggunaan UpFront Fastline telah dikaji dan menunjukkan kadar 

pengaliran ialah 13.03 mL/min pada ketinggian turus 17.5 cm merupakan parameter 

operasi yang optimum bagi pelepasan protin. Kapasiti pengikatan dinamik bagi penjerap 

garis arus DEAE untuk bakteriofaj (M13) telah dikenalpasti pada 63 mL penjerap 

dengan kadar pengaliran 250 cm/h. Oleh sebab itu kadar pengaliran (200 hinga 300 

cm/h) dan bio-jisim (5% sehingga 20%) dapat disesuaikan dalam turus lapisan 

mengembang. Pembinaan lengkung bulus telah dikaji pada perbezaan ketinggian turus 

dan perbezaan kepekatan bio-jisim. Lengkung bulus bagi bakteriofaj (M13) telah 

dibandingkan dan didapati pada tahap peningkatan turus 2.0 (lompangan lapisan 0.7) 

adalah lebih berkesan berbanding dengan tahap peningkatan yang lain. Pencapaian bagi 

dua kaedah telah dianalisis dan dikembangkan. Penjernihan bagi bakteriofaj (M13) 

dengan menggunakan kaedah mendakan, pengemparan dan  penurasan mikro 

mempunyai tahap peratusan pemulihan yang rendah (36.07%) tetapi dengan faktor 

penulenan yang tinggi manakala bagi kaedah penjerapan lapisan terkembang pula, kadar 

peratusan pemulihan yang tinggi (82.86%) tetapi dengan faktor penulenan yang rendah. 

Jumlah masa pemprosesan bagi kaedah penjerapan lapisan terkembang  adalah lapan 

kali lebih cepat berbanding dengan kaedah tradisional. 
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LB Agar  Luria-Bertani Agar 

LB Broth  Luria-Bertani Broth 

Mg.Cl2.6H2O  Magnesium dichloride hexahydrate 

NaCl   Sodium Chloride 

Na2CO3  Sodium Carbonate 

NaOH   Sodium Hydroxide 

PEG   Polyethylene glycol 

pfu   plaque forming unit 

SDS-PAGE  Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
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 xxi 

v/v   Volume per volume 

w/v   Wet weight per volume 

X-Gal   5-bromo-4-chloro-3-indocyl--D-galactopyranoside 
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CHAPTER 1 

 

INTRODUCTION 

 

Production of proteins by genetically engineered microorganisms, yeast and animal cells 

have become a very important technique for the preparation of  bio-process and bio-

chemical engineering profession. The protein is necessary to obtain a pure, defined 

substance of guaranteed purity and potency before it can be used as pharmaceutical. The 

feedstocks from which proteins are prepared are generally complex, containing solid and 

dissolved biomass of various sizes and molecular masses. Therefore, the purification 

process cannot be completed with a single step but it is usually completed by a 

combination of several unit operations that account for the different separation 

necessities.  

 

M13 is a filamentous bacteriophage composed of a circular single stranded DNA 

(ssDNA) which is 6407 nucleotides long encapsulated in approximately 2700 copies of 

the major coat protein P8 and copped with 5 copies of two different minor coat proteins 

(P9, P6, P3) on the ends. M13 plasmids are used for many recombinant DNA processes 

and the virus has also been studied for its uses in nanotechnology.  
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The filamentous bacteriophage M13 can be used to display foreign peptides and 

proteins, allowing for the construction of theurapeutic, diagnostic and technological 

tools of broad utility. The relationship between bacteriophages and their bacterial hosts 

is very important in the context of the food fermentation industry. Other uses of 

bacteriophage include spray application in horticulture for protecting plants and 

vegetable produce from decay and the spread of bacterial disease and as biocide for 

environmental surface and as a preventative treatment for catheters and medical devices 

prior to use in clinical settings.  

 

Downstream processing is challenging because the products must be concentrated from 

a very dilute condition in the feedstock and purified from other protein impurities having 

very similar properties. The feedstock is generally very complex in nature and contains 

various sizes of dissolved solid, biomass and cell debris. In the conventional way, a final 

product of guaranteed purity and potency can only be achieved with a combination of 

several unit operations (Anspach et al., 1999). prior to the concentration and 

fermentation broth or cell homogenates by centrifugation or filtration. In the large scale 

process of protein recovery, these clarification methods often show limitations in 

practice (Lee, 1989). 

 

The traditional primary purification of the target molecule has been addressed by 

adsorption chromatography using a conventional packed bed of adsorbent. Before 

further purified by traditional packed bed chromatography, centrifugation and 

microfiltration has its drawbacks.  
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The flux of liquid per unit membrane area is often dramatically decreased, even though 

microfiltration could provide a particle free solution. During the filtration process, 

fouling of the microfiltration membrane is another critical problem that significantly 

adds to the operational cost (Johansson et al., 1996). Accordingly, direct adsorption 

from crude feedstocks potentially offers significant reduction of process time and costs 

compared to traditional processes (Chase and Drager, 1992; Chase, 1994). Therefore, it 

is obvious that elimination of the clarification step will significantly simplify and 

improve the purification process.  

 

The development of molecular biology techniques has enabled researchers to produce 

large quantities of biologically important molecules from bacteria, plants and animals. 

Although this ability has revolutionized the production and delivery of pharmaceutical 

and therapeutic products but one problem has remained. To accomplish the particulates 

removal, centrifugation and microfiltration are accepted as method in the biotechnology 

industry, but the long processing time and large unit requirement makes this method not 

economical. 

  

Expanded bed adsorption (EBA) is one of the suitable methods for the protein separation 

from the cultivation broth (Kaezmarski  et al., 2004). Expanded bed procedures are 

becoming increasingly popular in bioseparation as a way of avoiding the need for 

clarification techniques such as centrifugation and filtration (Chang et al., 1995). The 

performance of protein adsorption in expanded bed is obviously nonuniform and 

complex along the column since EBA is a special chromatography technique with 

perfect classification of adsorbent particles in the column (Junxian  et al., 2005). 
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The formation of a perfectly classified fluidized bed of adsorbent particles in the 

particular feedstock is the key of successful expanded bed adsorption processes, from 

which the target molecule is to be isolated (Reichert  et  al., 2001). The efficiency of the 

adsorption can be represented by an adsorbate breakthrough curve (BTC), or more 

specifically by the amount of adsorbate loaded onto the column until a defined 

breakthrough concentration in the column effluent is reached (Bruce and Chase, 2002; 

Pai et al., 2000; Hansen and Mollerup, 1998). Further more, the EBA technique is not 

only limited at laboratory process scale, it is available for scale-up and potentially offer 

industrial scale process. One step unit operation of capture target molecules from crude 

feedstock may reduce products degradation and avoid bio-product handling problem. 

Expanded bed adsorption has also proved to be a versatile tool that can be applied on all 

commonly used source materials (Clemmitt and Chase, 2000a) 

 

Successful processing by expanded bed adsorption at large scale for E. coli homogenate 

has been reported (Clemmitt and Chase, 2000; Tan et al., 2005), yeast cell homogenates 

(Smith et al., 2002; Chow et al., 2005; Ling et al., 2005; Vergnault et al., 2007), orotic 

acid from whey (Baumeister et al., 2003), whole mammalian cell culture broth (Batt et 

al., 1995), milk and animal tissue extracts (Noppe, 1996), plant materials (Bertrand et 

al., 1998). 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 5 

The present work is focused on the development of a simplified and rapid technique for 

the purification of bacteriophage M13. Ion exchange chromatography has been applied 

in this study. Ion exchange is a versatile technique of separation in which it has been 

utilized in the separation of ionic materials from each other and also in the separation of 

completely nonionic mixtures. Ion exchange is a low energy process ideally suited for 

treating water soluble, ionic molecules. UpFront FastLine
TM

 20 was used as a contactor 

to recover protein from bacteriophage M13. The performance of an anion exchanger, 

Streamline DEAE, ( =1.2 gmL
-1

) as adsorbent was studied. 
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Objectives 

 

The objectives of this study are: 

 

1. To identify the fluidization properties of Streamline DEAE (1.2 gmL
-1

) 

and degree of expansion of Streamline DEAE (1.2 gmL
-1

)  in Fastline
TM

 

20 column. 

 

2. To optimize a process capable of directly extracting protein at high purity 

and yield from an unclarified feedstock using  expanded bed adsorption. 

 

3. To investigate and compare the efficiency of ion-exchange chromatography 

on the capture of bacteriophage M13 by utilizing expanded bed adsorption 

technique in Fastline
TM

 20 column to the conventional method. 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 107 

 

 

 

 

 

 

 

REFERENCES 

 

 

Allan, L., Elias Z., Marie H., and Morten O. (1998) Simplified and more robust EBA 

processes by elution in expanded bed mode. Bioseparation 8: 93-97 

 

Amersham Handbook, (1997) Expanded Bed Adsoprtion. Amersham Pharmacia 

Biotechnology 

 

Ameskamp, N., Priesner, C., Lehmann, J., and Lutkemeyer, D., (1999) Pilot scale 

recovery of monoclonal antibodies by expanded bed ion exchange adsorption. 

Bioseparation 8: 169-188 

 

Anspach, F. B., Curbelo, D. L., Hartmann, R., Garje, G., Deckwer, W. D., (1999) 

Expanded Bed Chromatography in Primary Protein Purification. Journal of 

Chromatography A 865: 129-144 

 

Arvidsson, P., F.M. Plieva, V.I. Lozinsky, B. Mattiasson. (2003) Direct chromatography 

capture of enzyme from crude homogenate using immobilized metal affinity 

chromatography on a continuous supermacporous adsorpbent.  Jounal of 

Chromatography A 986: 275-290 

 

Batt B.C., Yabannavar V.M., and Singh V. (1995) Expanded bed adsorption process for 

protein recovery from whole mammalian cell culture broth. Bioseparations 5: 41-52 

 

Baumeister, A., Stephanie, V., and Fischer, L. (2003) Concentration and purification of 

orotic acid directly from whey with an expanded bed adsorption system. Journal of 

Chromatography A 1006:261-265 

 

Benhar, I. (2001) Biotechnological applications of phage and cell display. 

Biotechnology Advances, 19 : 1-33. 

 

Bermejo, R., Ruiz, E., and Acien, F. G. (2007) Recovery of B-phycoerythrin using 

expanded bed adsorption chromatography: Scale-up of the process. Enzyme and 

Microbial Technology 40: 927-933 

 

Bertrand, O., Cochet S., and Cartron J. P., (1998) Expanded bed chromatography for 

one step purification of mannose binding lectin from tulip bulbs using mannose 

immobilized on DEAE Streamline. Journal of Chromatography 822:19-28 

 



© C
OPYRIG

HT U
PM

 108 

Bo Ersson, Lars, R., and Jan-Christer, J. (1998) Introduction to Protein Purification. pp 

3-40. In Jan-Christer. J and Lars R. (2
nd

), Protein Purification: Principles, High 

Resolution Methods and Applications. John Wiley & Sons, New York. 

 

Bradford, M. M., (1976). A rapid and sensitive method for the quantitation of 

microgram quantities of protein utilizing the principle of protein-dye binding. Pp 248-

254, Academic Press Inc. 

 

Bruce, L. J., and Chase, H. A. (2002) The combined use of in-bed monitoring and an 

adsorption model to anticipate breakthrough during expanded bed adsorption. Chemical 

Engineering Science 57: 3085-3093 

 

Bruce, L. J. and Chase, H. A. (2001) Hydrodynamics and adsorption behaviour within 

an expanded bed adsorption column studied using in-bed sampling. Chemical 

Engineering 56: 3149-3162 

 

Cabanne, C., Noubhani, A. M., Hocquellet, A., and Santarelli, X. (2004) Evaluation of 

three expanded bed adsorption anion exchange matrices with the aid of recombinant 

enhanced green fluorescent protein overexpressed in Escherichia coli. Journal of 

Chromatography B 808: 91-97  

 

Cabanne, C., Noubhani, A. M., Hocquellet, A.,  Santarelli, X., Dieryck, W., and Dole, F. 

(2005) Purification and on-column refolding of EGFP overexpressed as inclusion 

bodies in Escherichia coli with expanded bed anion exchange chromatography. Journal 

of Chromatography B 818: 23-27  

 

Chang, Y. K., and Chase, H. A., (1995) Development of Operating Conditions for 

Protein Purification Using Expanded Bed Techniques: The Effect of the Degree of Bed 

Expansion on Adsorption Performance. Biotechnology & Bioengineering 49: 512-526 

 

Chang, Y. K., and Chase, H. A. (1996) Ion Exchange Purification of G6PDH From 

Unclarified Yeast Cell Homogenates Using Expanded Bed Adsorption. Biotechnology & 

Bioengineering 49: 204-216 

 

Charoenrat, T.,  Mariena, K. C., Mehmedlija, J., Enfors, S., and Andres, V. (2006) 

Recovery of recombinant -glucosidase by expanded bed adsorption from Pichia 

pastoris high cell density culture broth. Journal of Biotechnology 122: 86-98 

 

Chase, H. A., and Clemmitt, R. H. (2000) Facilitated Downstream Processing of a 

Histidine-Tagged Protein from Unclarified E.coli Homogenates Using Immobilized 

Metal Affinity Expanded Bed Adsorption. Biotechnology & Bioengineering, 67 : 206-

216. 

 

Chase, H. A., and  Dreager, M. N., (1992) Affinity purification of proteins using 

expanded beds. Journal of Chromatography A 597: 129-145 

 



© C
OPYRIG

HT U
PM

 109 

Chow, Y. M., Tey, B.T., Mohammad, N. I., Arbakariya, A., and Ling, T.C., (2005) The 

distruption of Saccharomyces cerevisiae cells and release of glucose 6-phosphate 

dehydrogenase (G6PDH) in a horizontal dyno bead mill operated in continuous 

recycling mode. Biotechnology and Bioprocess Engineering 10: 284-288 

 

Clemmitt, R. H., and Chase, H. A., (2000) Immobilised metal affinity chromatography of 

-galactosidase from unclarified Escherichia coli homogenates using expanded bed 

adsorption. Journal of Chromatography A 874: 27-43 

 

 

Denizli, A., Kokturk, G., Yavuz, H., and Piskin, E., (1999) Albumin adsorption from 

aqueous solutions and human plasma in a packed bed column in Cibacron Blue F3GA-

Zn attacked poly (EGBMA-HEMA) microbeads. Reactive and Functional Polymers, 40: 

195-203 

 

Diane, E., Harold, W., Walz, (1992). Basic Techniques for Cell Culturing, in Practical 

Cell Culture Techniques (Alan A. Boulton, G. Baker and W. Walz). The Humana Press 

Inc. New Jersey, pp. 1-17 

 

Evert, K., John, B. and Lars, R., (1998). Ion Exchange Chromatography pp 145-203. In 

Jan-Christer. J and Lars R. (2
nd

), Protein Purification: Principles, High Resolution 

Methods and Applications. John Wiley & Sons, New York. 

Fernandez-Lahore, H. M., Geilenkirchen, S., Boldt, K., Nagel, A., Kula, M. R., and 

Thommes, J. (2000) The influence of cell adsorbent interaction on protein adsorption in 

expanded bed. Journal of Chromatography A. 873: 195-208 

 

Finette, G. M. S., Mao, Q., and Hearn, M. T. W. (1997) Studies on the expansion 

characteristics of fluidized beds with silica-based adsorbents used in protein 

purification. Journal of Chromatography A 743: 57-73 

 

Finette, G. M. S., Mao, Q., and Hearn, M. T. W. (1997) Comparative studies on the 

isothermal characteristics of proteins adsorbed under batch equilibrium conditions to 

ion-exchange, immobilized metal ion affinity and dye affinity matrices with different 

ionic strength and temperature conditions, Journal of Chromatography A, 763: 71-90  

 

Frej, A.K.B., Johansson, H. J., Johansson, S. and Leijon, P. (1997). Expanded bed 

adsorption at production scale: scale up verification, process example and sanitization 

of column and adsorbent. Bioprocess Engineering 16:922-929 

 

Freshney, R. I. (1987) Culture of Animal Cells in A Manual Basic Technique, 2
nd

 ed. 

Liss, New York 

 

Fuh, G., Sidhu S.S. (2000) Efficient phage display of polypeptides fused to the carboxy-

terminus of the M13 gene-3 minor coat protein. Federation of European Biochemical 

Societies: 231-234 

 



© C
OPYRIG

HT U
PM

 110 

Geankoplis, C. J. (1993) Transport Processes and Unit Operations. 3
rd

 Ed. Prentice Hall 

Inc. London. Pg 697-715 

 

Glucksman, M. J., Bhattacharjee, S. and Makowski, L (1992). Three dimensional 

structure of a cloning vector X-ray diffraction studies of filamentous bacteriophage M13 

at 7 resolution. Journal Mol. Biol. 226:455-470 

 

Ganzalez, Y., N. Ibarra, H. Gomez, M. Gonzalez (2003). Expanded bed adsorption 

processing of mammalian cell culture fluid: comparison with packed bed affinity 

chromatography. Journal of Chromatography B 784: 183-187 

 

Griffith, C. M., Morris, J., Robichaud, M., Annen, M. J., McCormick, A.V. and 

Flickinger M. C. (1997) Fluidization characteristics of and protein adsorption on 

fluoride modified porous zirconium oxide particles. Journal of Chromatography A 776: 

179-195 

 

Guzeltunc, E., Ulgen, K. O. (2001). Recovery of actinorhodin from fermentation broth. 

Journal of Chromatography A 91:67-76 

 

Hamilton, G. E., Luechau, F., Burton, S. C., and Lyddiatt, A. (2000) Development of a 

mixed mode adsorption process for the direct product sequestration of an extracellular 

protease from microbial batch cultures. Journal of Biotechnology 79: 103-115 

 

Hanson, E., and Mollerup, J. (1998) Application of the two-film theory to the 

determination of mass transfer coefficients for bovine serum albumin on anion-exchange 

columns. Journal of Chromatography A 827: 259-267 

 

Hjorth, R. (1997) Expanded Bed Adsoprtion in industrial bioprocessing. Recent 

Development. Biotechnol Bioeng., Vol 15 

 

Ho, K. L., Yusoff, K., Soon, H. F., and Tan, W. S. (2003) Selection and high affinity 

ligands to Hepatitis core antigen from a phage-displayed cyclic library. Journal of  Med. 

Virol. 67: 1-6 

 

Ho, K. L (2002) Selection of high affinity peptides against hepatitis B core antigen from 

a phage displayed cyclic peptide library. Master of Science thesis. Universiti Putra 

Malaysia. 

 

Horst, B., Zhanren Z. and Lyddiatt A. (1999) Direct process integration of cell 

disruption and fluidized bed adsorption for the recovery of intracellular proteins. 

Journal of Chemical Technology and Biotechnology 74: 208-212. 

 

http://en.Wikipolodia 

 

Ingham, K.C. (1984). Protein precipitation with polyethylene glycol: methods in 

enzymology 104: 351-356 

 



© C
OPYRIG

HT U
PM

 111 

Jaap, H., Waterborg, and Harry, R., Matthews, (1994) The Lowry Method for Protein 

Quantitation ,in  Basic Protein And Peptide Protocols ( John M. Walker) pp: 1-4 

 

Jan-Christer, J. and Lars, R. (1998) Protein Purification – Principles, High Resolution 

Methods and Applications. A John Wiley & Sons, Ins., Pub. Pp 4-38 

 

Jan-Christer, J. and Jan-Ake, J. (1998) Introduction to Chromatography in Protein 

Purification. Wiley-VCH, Inc. pp 43-77 

 

John D. (1975) Bacteriophage. John Wiley & Sons, Inc., New York. Pp 1-5 

 

Johansson, H. J., Jagersten, C., and Shiloach, J. (1996) Large scale recovery and 

purification of periplasmic recombinant protein from E. coli using expanded bed 

adsorption chromatography followed by new ion exchange media. Journal of 

Biotechnology 48: 9-14 

 

Jurgen, J. H., Peter, J. B., Lin, D.Q., Inger, M., and Maria, R. K. (2005) The influence of 

homogenization conditions on biomass-adsorbent interactions during ion-exchange 

expanded bed adsorption. Biotechnology and Bioengineering 94: 543-553 

 

Junxian, Y., Lin, D. Q., Shan, J. Y., (2005) Predictive modelling of protein adsorption 

along the bed height by taking into account the axial nonuniform liquid and particle 

classification in expanded bed. Journal of Chromatography A 1095: 16-26 

 

Kaezmarski, K., and Bellot, J. C., (2004) Influence of particle diameter distribution on 

protein recovery in the expanded bed adsorption process. Journal of Chromatography A, 

1069: 91-97 

 

Krijgsman, J., and Jenkins, R. O. (1992) Product Recovery in Bioprocess Technology. 

Butterworth-Heinemann Ltd. Pp 164-207  

 

Krishna, S.V.S.R., Lars, C.K., Michael, W.W., Reichl, U., Andreas, S.M., and 

Pushpavanam, S. (2007) Hydrodynamic Characteristics and Expansion Behaviour of 

beds containing Single and Binary Mixtures of Particles. Ind. Eng. Chem. Res. 46: 

4686-4694 

 

Lee, S.M. (1989) The primary stages of protein recovery. Journal of Biotechnology 

11:103-118 

 

Li, Q., Su, H., Li, J., and Tan, T. (2006) Application of surface molecular imprinting 

adsorbent in expanded bed for the adsorption of Ni
+
 and adsorption model. Journal of 

Environmental Management. 

 

Lin, D. Q., Zhi, J. M., and Shan, J. Y. (2006) Expansion and hydrodynamic properties of 

cellulose-stainless steel powder composite matrix for expanded bed adsorption. Journal 

of Chromatography A 1107: 265-27 

 



© C
OPYRIG

HT U
PM

 112 

Ling, T. C., and Lyddiatt, A. (2005)  Process intensification of fluidized bed dye-ligand 

adsorption of G3PDH from unclarified disrupted yeast: A case study of the performance 

of a high-density steel-agarose pellicular adsorbent. Protein Expression and Purification 

42: 160-165 

 

Ling, T. C., and Lyddiatt, A. (2005) Integration of mechanical cell distruption and 

fluidized bed recovery of G3PDH from unclarified distrupted yeast: A comparative study 

of the performance of unshielded and polymer shielded dye-ligand chromatography 

systems. Journal of Biotechnology 119: 436-448 

 

Loong, C. K. (2004) Purification of bacteriophage M13 by expanded bed anion 

exchange adsorption. Bachelor thesis, Universiti Putra Malaysia. 

 

Makowski L., (1994) Phage display: Structure, assembly and engineering of filamentous 

bacteriophage M13. Current Opinion in Structure Biology 4: 225-230 

 

Marvin, D. A., Hale, R. D. and Nave, C. (1994). Molecular models and structural 

comparisons of native and mutant class I filamentous bacteriophage. Journal Mol. Biol. 

235:260-286.  

 

Marvin, D.A., Welsh, L.C., Symmons, M. F., Scott, W. R. P., and Straus, S. K. (2006) 

Molecular Structure of fd (f1, M13) Filamentous Bacteriophage refined with respect to 

X-ray fibre diffraction and solid-state NMR data supports specific models of phage 

assembly at the bacterial membrane. Journal Mol. Biol. 355: 294-309  

 

Nayak, D. P., Ponratham, S., Rajan, C.R. (2001). Macroporous copolymer matrix IV. 

Expanded bed adsorption application. Journal of Chromatography A 922:63-76 

 

Nicholas, J. Kruger., (1994) The Bradford Method for Protein Quantitation , in Basic 

Protein And Peptide Protocols ( John M. Walker) pp:9-16 

 

Noppe, Hanssens, W., De Cuyper, M. (1996) Simple two-step procedure for the 

preparation of highly active pure equine milk lysozyme. Journal of Chromatography 719: 

327-331 

 

Pai, A., Gondkar, S., and Lali, A. (2000) Enhanced performance of expanded bed 

chromatography on rigid superporous adsorbent matrix. Journal of Chromatography A 

867: 113-130 

 

Ping Li, Guohua, X., and Alirio, E. R. (2004) A 3-zone model for protein adsorption 

kinetics in expanded beds. Chemical Engineering Science 59: 3837-3847 

 

Rasched, I., and Oberer, E. (1986). Ff coliphages: Structure and functional 

relationships. Microbiol. Rev. 50:401-427 

 

 



© C
OPYRIG

HT U
PM

 113 

 

Reichert, U., Esther, K., Heike, S., Maria, R. K. and Thommes, J. (2001) Isolation of 

recombinant formate dehydrogenase by pseudo-affinity expanded bed adsorption. 

Journal of biochemical and biophysical mehods 49: 533-552 

 

Richardson, J. F. and Zaki, W. N. (1954) Sedimentation of suspension of uniform 

spheres under conditions of viscous flow. Chemical Engineering Science 3: 65-73 

 

Sidhu, S. S. (2001) Engineering M13 for phage display. Biomolecular Engineering 18: 

57-63 

 

Sidhu, S. S., (2000) Phage display in pharmaceutical biotechnology. Current Opinion in 

Biotechnology 11: 610-616 

 

Smith, G. P. (1985) Filamentous fusion phage: expression vectors that display cloned 

antigens on the virion surface. Science 228: 1-33   

 

Smith, G. P., and Scott, J. K., (1993). Libraries of peptides and proteins displayed on 

filamentous phage. Method Enzymol 217:228-257 

 

Smith, M.,P., Bulmer, M. A., Hjorth R., and Titchener-Hooker, N. J. (2002) 

Hydrophobic interaction ligand selection and scale-up of an expanded bed separation of 

an intracellular enzyme from Saccharomyces cerevisiae. Journal of Chromatography A 

968: 121-128 

 

Sofer, G., L. Hagel. (1997). Handbook of processing chromatography – Aguide to 

optimization, scale-up and validation. Pg 298-300. New York:Academic Press 

 

Stopar, D., Ruud, B. S., Cor, J. A. M., Marcus, A. H. (2003). Protein-lipid interactions 

of bacteriophage M13 major coat protein . Biochimic et Biophysica Acta, 1611 : 5-15 

 

Stopar, D., Ruud, B. S., Cor J. A. M., Marcus, A. H. (2002) Structural characterization 

of bacteriophage M13 solubilization by amphiphiles. Biochimica et Biophysica Acta 

1954: 54-63 

 

Susano, J. K., Francisco, M. F. and Maria, I. R. (2005) Ion exchange expanded bed 

chromatography for the purification of an extracelular inulinase from Kluyveromyces 

marxianus. Process Biochemistry 40: 581-586 

 

Tan, Y. P., Ling, T. C., Tan, W. S., Khatijah, Y., and Tey, B. T. (2006) Recovery of 

histidine-tagged nucleocapsid protein of Newcastle disease virus using immobilized 

metal affinity chromatography. Process Biochemistry 41: 874-881 

 

Tan, Y. P. Ling, T. C., Tan, W. S.,  Khatijah, Y., and Tey, B. T. (2006) Purification of 

recombinant nucleocapsid protein of Newcastle disease virus from unclarified feedstock 

using expanded bed adsorption chromatography. Protein Expression and Purification 

46: 114-121. 



© C
OPYRIG

HT U
PM

 114 

 

Tan, Y. P. Ling, T. C., Tan, W. S., Khatijah, Y., and Tey, B. T. (2005) Comparative of 

three purification methods for the nucleocapsid protein of Newcastle disease virus from 

Escherichia coli homogenates. The Journal of Microbiology 43: 295-300 

 

Thelen, T. V.,and Ramirez, W. F. (1997) Bed height dynamics of expanded beds. 

Chemical Engineering Science 52: 3333-3344 

 

Theodossiou, I., David, H. E., Owen, R. T., and Timothy,  J. H. (2002) Fluidisation and 

dispersion behaviour of small high density pellicular expanded bed adsorbents. Journal 

of Chromatography A 964: 77-89 

 

Thommes, J., M. Halfar, S. Lenz, M.R. Kula (1995) Purification of monoclonal 

antibodies from whole hybridoma fermentation broth by fluidized bed adsorption.  

Biotechnology and Bioengineering 45: 205-211 

 

Tortora, G. J., Funke, B. R., and Case, C. L. (1998) Microbiology: An Introduction. 

6
th
Ed. Benjamin/ Cummings Pub. Co., California  pp 154-164 

 

Torgny, L. (1998) Electrophoresis in Gels in Protein Purification 2
nd

 Edition. Wiley-

VCH, Inc. pp 463- 490. 

 

Van Wezenbeek, P. M. G. F., Hulsebos, T. J. M and Schoenmakers, J. G. G. (1980). 

Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: Comparison 

with phage fd. Gene. 11:129-148 

 

Vergnault, H., Willemot, R. M., Bonin, M. M., (2007) Non-electrostatic between 

cultured Saccharomyces cerevisiae yeast cells and adsorbent beads in expanded bed 

adsorption: Influence of cell wall properties. Process Biochemistry 42: 244-251 

 

Willoughby, N. A., Hjorth, R., Titchener-Hooker, N. J. (2000) Experimental 

measurement of particle size and voidage in an expanded bed adsorption system. 

Biotechnology and Bioengineering 69: 649-652 

 

Willoughby,  N. A., Kirschner, T., Smith, M. P., Hjorth, R., Titchener-Hooker, N. J. 

(1999) Immobilised metal ion affinity chromatography purification of alcohol 

dehydrogenase from baker’s yeast using an expanded bed adsorption system. Journal of 

Chromatography 840: 195-204 

 

Wilson, D. R., and Finlay, B. B. (1998). Phage display:application, innovations and 

issues in phage and host biology. Canadian J. Microbiol. 44: 313-329. 

 

Xia, H. F., Lin, D. Q., and Yao, S. J. (2007) Evaluation of new high-density ion 

exchange adsorbents for expanded bed adsorption chromatography. Journal of 

Chromatography A: 1-9  

 



© C
OPYRIG

HT U
PM

 115 

Yu-Kaung, C., Shin-Ying, C., Jyun-Liang, L.,  and Jung-Chin, T. (2006) 

Characterization of BSA adsorption on mixed mode adsorbent I. Equilibrium study in 

well-agitated contactor. Biochemical Engineering Journal, 1-10 

 

Yun Bai, and Charles, E. G. (2003) Capture of a Recombinant Protein from Unclarified 

Canola Extract Using Streamline Expanded Bed Anion Exchange. Biotechnology & 

Bioengineering, 81:  855-864  

 

Yun, J., Yao, S. J., Lin, D. Q., Lu, M. H., and Zhao, W. T. (2004) Modeling axial 

distribution of adsorbent particle size and local voidage in expanded bed.  Chemical 

Engineering Science 59: 449-457 

 

Yomamoto, S., Nakanishi, K., Matsuno, R., Kamikubo, T. (1983). Ion-exchange 

chromatography of proteins-Prediction of elution curves and operating conditions. 

Theoretical considerations. Biotechnology & Bioengineering, 25: 1465-1483 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	EXPANDED BED ANION EXCHANGE ADSORPTION FOR THE PURIFICATION OFBACTERIOPHAGE M13
	ABSTRACT
	TABLE OF CONTENT
	CHAPTERS
	REFERENCES



