

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS, CHARACTERIZATION AND ELUCIDATION OF THE STRUCTURE-ACTIVITY RELATIONSHIP OF HETEROATOM DONOR LIGANDS AND THEIR COMPLEXES DERIVED FROM SUBSTITUTED DITHIOCARBAZATE DERIVATIVES

FIONA HOW NI FOONG

FS 2008 11

SYNTHESIS, CHARACTERIZATION AND ELUCIDATION OF THE STRUCTURE-ACTIVITY RELATIONSHIP OF HETEROATOM DONOR LIGANDS AND THEIR COMPLEXES DERIVED FROM SUBSTITUTED DITHIOCARBAZATE DERIVATIVES

FIONA HOW NI FOONG

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2008

SYNTHESIS, CHARACTERIZATION AND ELUCIDATION OF THE STRUCTURE–ACTIVITY RELATIONSHIP OF HETEROATOM DONOR LIGANDS AND THEIR COMPLEXES DERIVED FROM SUBSTITUTED DITHIOCARBAZATE DERIVATIVES

By

FIONA HOW NI FOONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2008

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

SYNTHESIS, CHARACTERIZATION AND ELUCIDATION OF THE STRUCTURE–ACTIVITY RELATIONSHIP OF HETEROATOM DONOR LIGANDS AND THEIR COMPLEXES DERIVED FROM SUBSTITUTED DITHIOCARBAZATE DERIVATIVES

By

FIONA HOW NI FOONG

September 2008

Chairman: Professor Karen A. Crouse, PhD

Faculty: Science

Four new substituted dithiocarbazate ligands [S-napthalen-2-ylmethyldithiocarbazate (SNMDTC), S-quinolin-2-ylmethyl-dithiocarbazate (SQ2MDTC), Sbenzyl-N-benzyldithiocarbazate (SBNBDTC) and S-methyl-N-benzyldithiocarbazate (SMNBDTC)], eight series of isomeric Schiff bases derived from different types of S-substituted dithiocarbazate and their metal complexes were successfully synthesized and characterized. Eighteen structures were determined using single crystal X-ray diffraction analysis. These newly synthesized compounds were systematically designed to form structurally heterogeneous compounds for QSAR study.

Schiff bases were derived from condensation of isomeric aldehydes and ketones, 3and 4-methylacetophenone and 2-, 3- and 4-acetylpyridine with different substituted dithiocarbazate compounds. Upon complexation, all Schiff bases formed bis-

chelated (NS donor) complexes except for the uninegative tridentate, *S*-napthalen-2yl methyl- β -*N*-(2-acetylpyridine)dithiocarbazate (SNM2AP) that coordinated with metal ions *via* the azomethine nitrogen atom, the pyridyl nitrogen atom and the thiolo sulfur (NNS donor)

Some of these newly synthesized compounds exhibited significant activities towards selective strains of pathogens and marked cytotoxicity when assayed against breast cancer estrogen receptor positive, MCF-7 and breast cancer estrogen receptor negative, MDA-MB-231 cell lines. The biological activities of the isomeric Schiff bases and their complexes were investigated. Most of the complexes exhibited higher activity compared to their parent ligands upon complexation with metal ions.

The cytotoxicity data for all the compounds were used to construct QSAR model in an attempt to elucidate the relationship between structure and bioactivity. Satisfactory QSAR models were developed focusing on a few of the informative descriptors based on a wide set of relatively heterogeneous compounds as evidenced with value $r^2 > 0.6$ and $r^2_{CV} > 0.5$.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SINTESIS, PENCIRIAN DAN ILUSIDASI PERHUBUNGAN STRUKTURAL–AKTIVITI TERHADAP LIGAN HETEROATOM DAN KOMPLEKNYA DARIPADA TERBITAN DITIOKARBAZAT

Oleh

FIONA HOW NI FOONG

September 2008

Pengerusi: Professor Karen A. Crouse, PhD

Fakulti: Sains

Empat dithiokarbazat ligan yang baru [S-naftalen-2-ylmetilditiokarbazat (SNMDTC), S-kuinolin-2-ylmetil-ditiokarbazat (SQ2MDTC), S-benzil-N-benzilditiokarbazat (SBNBDTC) and S-metil-N-benzilditiokarbazat (SMNBDTC)], lapan siri bes Schiff yang berisomer berasal daripada berbagai S-gantian dithiokarbazat dengan kompleks logam telah berjaya disintesis dan dicirikan. Lapan belas struktur telah ditentukan dengan menggunakan pembelauan sinar-X. Sebatian baru telah direka secara sistematik sebelum disintesiskan bagi tujuan menghasilkan sebilangan sebatian yang berstruktur hetero-jenis untuk diaplikasikan dalam pengajian QSAR.

Bes Schiff yang berasal daripada proses kondensasi dengan aldehid dan keton yang berisomer seperti, 3- dan 4-metilasetofenon dan 2-, 3- and 4-asetilpiridin dengan berbagai jenis sebatian gantian ditiokarbazat. Apabila pengkompleksan berlaku, semua bes Schiff membentuk bis-kelat (penderma NS) kompleks kecuali uninegatif

tridentat *S*-naftalin-2ylmetil-β-*N*-(2-asetilpiridin)ditiokarbazat (SNM2AP) yang membentuk koordinasi dengan ion logam melalui azometin nitrogen atom, piridin nitrogen atom dan tiolo sulfur (penderma NNS).

Sesetengah sebatian baru yang disintesiskan mempamerkan aktiviti yang signifikan terhadap patogen tertentu dan sitotoksik terhadap dua jenis sel barah payudara, sel barah payudara reseptor positif estrogen, MCF-7 dan sel barah payudara reseptor positif estrogen, MDA-MB-231. Aktiviti biologi untuk bes Schiff dan kompleksnya dinilai untuk menyiasat aktiviti paten. Kebanyakan kompleks telah dinilai lebih aktif berbanding dengan ligan asalnya selepas pengkomplekan dengan ion logam.

Kesemua data sitotoksik sebatian telah dikumpulkan untuk membina model QSAR dengan harapan untuk mengilusidasi perhubungan di antara sturktur dan bioaktiviti. QSAR model yang memuaskan telah dibina yang memfokuskan beberapa diskriptor yang berinformasi berdasarkan kepada set yang mengandungi struktur hetero-jenis secara meluas berdasarkan nilai $r^2>0.6$ dan $r^2_{CV}>0.5$.

ACKNOWLEDGEMENTS

I would like to express appreciation and forward my gratitude to,

- My supervisor, Professor Dr. Karen A. Crouse for her advice and support. Thank you for convincing me to go Oxford. It was truly an eye opening experience.
- My co-supervisors, Dr. Mohamed Ibrahim Mohammed Tahir, Assoc. Prof.
 Dr. Rozita Rosli and Assoc. Prof. Dr. Sharifuddin M. Zain for their patience guidance, and encouragement and throughout the duration of my studies.
- The Ministry of Science, Technology and Innovation of Malaysia (MOSTI) for sponsorship through National Science Fellowship (NSF) and a three months attachment in University of Oxford.
- Prof. Bohari M. Yamin, Universiti Kebangsaan Malaysia for his time and his useful comments in analyzing some crystal structures.
- Dr. David Watkin, University of Oxford for his unlimited help and supervision. Thank you for giving me the best time I have ever had in Oxford.
- Nurmawati Syakroni (Kak Nurma), Faculty of Medicine and Health Science, UPM for her guidance and help in cytotoxic assay. She had indeed trained me well.
- Zainura Mat Hussain (Kak Zainura), Molecular and Cell Biology Laboratory, Institute of Bioscience, UPM for assessing all the antimicrobial assays.
- Thahira Begum and Mohd. Abdul Fatah for assessing cytotoxic assays for my compounds while I was away for attachment.

- Khoo Teng Jin, who collected crystal data and solved some crystal structures during his attachment programme in 2005.
- Mr. Mohd. Johadi Iskandar Che Jamil, Mdm. Choo Chai Syam, Mdm. Rosnani Ismail, Mr. Ismail Yasin, officers from the Department of Chemistry, UPM who have helped me so much in analyzing samples and running the instruments.
- My labmates, who often had lunch and dinner with me. They really made me feel comfortable in lab. I will never forget the 'fun' we had in the lab.
- My dearest family members for their love and support. I hope I have made you all proud of me.

Lastly, I would like to forward my thank you to anyone, who has helped me directly or indirectly in my studies.

APPROVAL

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Karen Anne Crouse, PhD Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohamed Ibrahim Mohamed Tahir, D. Phil.

Lecture Faculty of Science Universiti Putra Malaysia (Member)

Rozita Rosli, PhD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

Sharifuddin M. Zain, PhD

Associate Professor Faculty of Science Universiti Malaya (Member)

I certify that an Examination Committee has met on 25th September 2008 to conduct the final examination of Fiona How Ni Foong on her Doctor of Philosophy thesis entitled "Synthesis, Characterization and Elucidation of the Structure-Activity Relationship of Heteroatom Donor Ligands and Their Complexes Derived from Substituted Dithiocarbazate Derivatives" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of philosophy.

Members of the Examination Committee were as follows:

Mohd. Aspollah Hj Sukari, PhD Professor Faculty of Science Universiti Putra Malaysia

(Chairman)

Mawardi Rahmani, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Sidik Silong, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Ibrahim Baba, PhD

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, Ph.D.

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 23 October 2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Karen Anne Crouse, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohamed Ibrahim Mohamed Tahir, D. Phil.

Lecturer Faculty of Science Universiti Putra Malaysia (Member)

Rozita Rosli, PhD

Associate Professor Faculty of Medicine and Health Science Universiti Putra Malaysia (Member)

Sharifuddin M. Zain, PhD

Associate Professor Faculty of Science Universiti Malaya (Member)

> **AINI IDERIS, Ph.D.** Professor and Dean

School of Graduate Studies, Universiti Putra Malysia

Date: 13 November 2008

DECLARATION

I declare that the thesis is my original work except for the quotations and citations, which have been duly acknowledged. I also declare that this it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

FIONA HOW NI FOONG

Date: 25 September 2008

LIST OF TABLES

Table		Page
4.1	Physical and analytical data of substituted dithiocarbazate ligands	54
4.2	Selected IR bands of all substituted dithiocarbazate ligands.	55
4.3	Qualitative antimicrobial assay of all the dithiocarbazate ligands	70
4.4	Quantitative antimicrobial assay results (MIC value, $\mu g \text{ cm}^{-3}$) of the dithiocarbazate ligands	71
4.5	Cytotoxic activity of the dithiocarbazate ligands.	71
4.6	Physical and analytical data of SB4MA, SB3MA and their complexes	73
4.7	Selected IR bands of SB4MA, SB3MA and metal complexes	74
4.8	UV-Vis, conductivity and magnetic susceptibility data for SB4MA, SB3MA and their metal complexes	76
4.9	Qualitative antimicrobial assay for SB4MA, SB3MA and their complexes	92
4.10	Cytotoxic activity for SB4MA, SB3MA and their complexes	92
4.11	Physical and analytical data of SM4MA and SM3MA with their complexes	94
4.12	Selected IR bands of SM4MA, SM3MA and their metal complexes	96
4.13	UV-Vis, conductivity and magnetic susceptibility measurements data of SM4MA, SM3MA and their metal complexes	98
4.14	Comparison on selected bond lengths and angles for SM4MA, SM3MA, <i>cis-trans</i> S2P2APRY, <i>trans-cis</i> SB2AT and <i>trans-cis</i> SB2AF	108
4.15	Qualitative antimicrobial assay for SM4MA and SM3MA and their complexes	109
4.16	Quantitative antimicrobial assay (MIC value) for SM4MA, SM3MA and their complexes	110
4.17	Cytotoxic activity of SM4MA, SM3MA and their complexes	110
4.18	Physical and analytical data of S2P4MA, S2P3MA and their complexes	112
4.19	Selected IR bands of S2P4MA, S2P3MA and their complexes	113
4.20	UV-Vis, conductivity and magnetic data of S2P4MA, S2P3MA and their metal complexes	115
4.21	Qualitative antimicrobial assay for S2P4MA, S2P3MA and their complexes	126
4.22	Quantitative antimicrobial assay results (MIC value, $\mu g \text{ cm}^{-3}$)	

xiii

	for S2P4MA, S2P3MA and their complexes	126
4.23	Cytotoxic activity for S2P4MA, S2P3MA and their complexes	127
4.24	Physical and analytical data of S4P4MA, S4P3MA, S4P2MA and their complexes	129
4.25	Selected IR bands of S4P4MA, S4P3MA, S4P2MA and their metal complexes	131
4.26	UV-Vis, conductivity and magnetic susceptibility measurements data of S4P4MA, S4P3MA, S4P2MA and their metal complexes	133
4.27	Comparison on selected bond lengths and angles for S4P4MA, S4P3MA, <i>cis-trans</i> S2P2APRY, <i>trans-cis</i> SB2AT and <i>trans-cis</i> SB2AF	145
4.28	Qualitative antimicrobial assay for S4P4MA, S4P3MA, S4P2MA and their complexes	146
4.29	Cytotoxic activity for S4P4MA, S4P3MA, S4P2MA and their complexes	147
4.30	Physical and analytical data of SNM4MA, SNM3MA with their complexes	149
4.31	Selected IR bands of SNM4MA, SNM3MA and their metal complexes	151
4.32	UV-Vis, conductivity and magnetic susceptibility data for SNM4MA and SNM3MA with their metal complexes	153
4.33	Qualitative antimicrobial assay results for SNM4MA, SNM3MA and their metal complexes	166
4.34	Cytotoxic activity for SNM4MA, SNM3MA and their metal complexes	166
4.35	Physical and analytical data of SNM4AP.H ₂ O, SNM3AP.2H ₂ O and SNM2AP with their complexes	168
4.36	Selected IR bands of SNM4AP.H ₂ O, SNM3AP.2H ₂ O, SNM2AP and their metal complexes	170
4.37	Stretching vibration (cm ⁻¹) and coordination mode of the carboxylate group for the acetate bonding complexes	171
4.38	UV-Vis, conductivity and magnetic susceptibility measurements data of SNM4AP.H ₂ O, SNM3AP.2H ₂ O, SNM2AP and their complexes	173
4.39	Comparison of selected bond lengths and angles in Zn(II) complexes	187
4.40	Qualitative antimicrobial assay for SNM4AP.H ₂ O, SNM3AP.2H ₂ O and SNM2AP with their complexes	189
4.41	Cytotoxic activity for SNM4AP.H ₂ O, SNM3AP.2H ₂ O and SNM2AP with their complexes	190
4.42	Physical and analytical data of SQ2M4MA and SQ2M3MA	191

4.43	Selected IR bands, conductivity and UV-Vis data of SQ2M4MA and SQ2M3MA	192
4.44	Comparison on selected bond lengths and bond angles for SQ2M4MA, SQ2M3MA, <i>cis-trans</i> S2P2APRY, <i>trans-cis</i> SB2AT and <i>trans-cis</i> SB2AF	200
4.45	Qualitative antimicrobial assay for SQ2M4MA and SQ2M3MA	202
4.46	Cytotoxic activity for SQ2M4MA and SQ2M3MA	202
4.47	Cytotoxic activity of the dataset	205
4.48	Descriptors with their descriptions involved in the model equation	207
4.49	Statistics of the MLRA and PLS model	209
4.50	Calculated and predicted $log(1/CD_{50})$ and CD_{50} for compounds in the prediction set	211
4.51	Cytotoxic activity of all compounds in the dataset	213
4.52	Additional compounds added to the model	214
4.53	Descriptors with their descriptions involved in the model equation	215
4.54	Statistics of the MLRA and PLS model	217
4.55	Calculated and predicted $log(1/IC_{50})$ and IC_{50} for compounds in the prediction set	219
4.56	Cytotoxicity against MCF-7 and MDA-MB-231 for all series of Schiff bases	229
4.57	Cytotoxic activity for MCF-7 and MDA-MB-231 for all series of metal complexes	236

LIST OF FIGURES

Figure		Page
1.1	Tautomerism in dithiocarbazate ligands	1
1.2	Reaction pathway for the synthesis of S-alkyldithiocarbazate	2
1.3	Potential binding modes of SBDTC	2
1.4	The thione (a) and thiol (b) tautomeric forms of the Schiff bases and also the thiolate form of its monoanion (c)	4
1.5	Formation of Schiff bases (Source: Solomons and Fryhle, 1998)	4
1.6	The role of molecular descriptors (Source: Todeschini and Consonni, 2000)	17
2.1	Possible structural conformations of S-R-dithiocarbazate	20
2.2	(a) <i>cis-trans</i> and (b) <i>trans-cis</i> SMDTC with (c) <i>trans-cis</i> S-methyl-N-methyldithiocarbazate (Source: Lanfredi <i>et al.</i> , 1977)	21
2.3	SBDTC and S2PDTC with 50% probability displacement ellipsoids [Shanmuga <i>et al.</i> , 2000 and Crouse <i>et al.</i> , 2003]	22
2.4	Bite angle of <i>cis-trans</i> and <i>trans-cis S</i> -R-dithiocarbazate (Source: Lanfredi <i>et al.</i> , 1977; Mattes and Weber, 1980; Shanmuga <i>et al.</i> , 2000)	22
2.5	<i>S</i> -2-picolyl-β- <i>N</i> -(2-acetylpyrrole)dithiocarbazate, <i>S</i> -benzyl-β- <i>N</i> - (2-acetylthiophene)dithiocarbazate and <i>S</i> -benzyl-β- <i>N</i> - (2-acetylfuran)dithiocarbazate with 50% probability displacement ellipsoids (Source: Crouse <i>et al.</i> , 2004; Chan <i>et al.</i> , 2003; Khoo <i>et al.</i> , 2005)	24
2.6	Bite angle of <i>cis-trans</i> and <i>trans-cis</i> Schiff bases (Source: Crouse <i>et al.</i> , 2004; Chan <i>et al.</i> , 2003; Khoo <i>et al.</i> , 2005)	24
2.7	<i>Cis</i> -planar Pd(II) complex of SMDTC and acetone (Source: Ali <i>et al.</i> , 2002a)	25
2.8	Crystal structure of trans-planar complexes (Source: Ali et al., 2000)	26
4.1	Dithiocarbazate backbone and its various changes	51
4.2	Thione-thiol tautomerism of S-substituted dithiocarbazate ligands	52
4.3	The different types of S-substituted dithiocarbazate ligands	53
4.4	¹³ C NMR spectrum for SNMDTC	59
4.5	¹ H NMR spectrum for SNMDTC	60
4.6	¹³ C NMR spectrum for SQ2MDTC	61
4.7	¹ H NMR spectrum for SQ2MDTC	62
4.8	¹³ C NMR spectrum for SBNBDTC	63

xvi

4.9	¹ H NMR spectrum for SBNBDTC	64
4.10	Fragment ions of SNMDTC	65
4.11	Fragment ions of SQ2MDTC	66
4.12	Crystal structure of SQ2MDTC with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	67
4.13	Crystal structure of SBNBDTC with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	68
4.14	Crystal structure of SMNBDTC with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	69
4.15	Thione-thiol tautomerism of SB4MA and SB3MA	72
4.16	¹³ C NMR spectrum for SB4MA	79
4.17	¹ H NMR spectrum for SB4MA	80
4.18	¹³ C NMR spectrum for SB3MA	81
4.19	¹ H NMR spectrum for SB3MA	82
4.20	Fragment ions of SB4MA	83
4.21	Crystal structure of Co(SB4MA) ₂ with displacement ellipsoids at 50% probability level	85
4.22	Crystal structure of Ni(SB4MA) ₂ with displacement ellipsoids at 50% probability level	87
4.23	Crystal structure of $Ni(SB3MA)_2$ with displacement ellipsoids at 50% probability level	87
4.24	Crystal structure of Cu(SB4MA) ₂ with displacement ellipsoids at 50% probability level	89
4.25	Crystal structure of Cu(SB3MA) ₂ with displacement ellipsoids at 50% probability level	89
4.26	Crystal structure of Zn(SB4MA) ₂ with displacement ellipsoids at 50% probability level	91
4.27	Thione-thiol tautomerism of SM4MA and SM3MA	93
4.28	¹³ C NMR spectrum for SM4MA	101
4.29	¹ H NMR spectrum for SM4MA	102
4.30	¹³ C NMR spectrum for SM3MA	103
4.31	¹ H NMR spectrum for SM3MA	104
4.32	Fragment ions of SM4MA	105
4.33	Crystal structure of SM4MA with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	107
4.34	Crystal structure of SM3MA with displacement ellipsoids at 50%	

xvii

	probability level. H atoms are shown as spheres of arbitrary radius	107
4.35	Thione-thiol tautomerism of S2P3MA and S2P4MA	111
4.36	¹³ C NMR spectrum for S2P4MA	119
4.37	¹ H NMR spectrum for S2P4MA	120
4.38	¹³ C NMR spectrum for S2P3MA	121
4.39	¹ H NMR spectrum for S2P3MA	122
4.40	Fragment ions of S2P4MA	123
4.41	Crystal structure of Ni(S2P3MA) ₂ with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	124
4.42	Thione-thiol tautomerism of S4P2MA, S4P3MA and S4P4MA	128
4.43	¹³ C NMR spectrum for S4P4MA	136
4.44	¹ H NMR spectrum for S4P4MA	137
4.45	¹³ C NMR spectrum for S4P3MA	138
4.46	¹ H NMR spectrum for S4P3MA	139
4.47	¹³ C NMR spectrum for S4P2MA	140
4.48	¹ H NMR spectrum for S4P2MA	141
4.49	Fragment ions of S4P2MA	142
4.50	Crystal structure of S4P4MA with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	144
4.51	Crystal structure of S4P3MA with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	144
4.52	Thione-thiol tautomerism of SNM3MA and SNM4MA	148
4.53	SNM4MA as dimer	148
4.54	¹³ C NMR spectrum for SNM4MA	157
4.55	¹ H NMR spectrum for SNM4MA	158
4.56	¹³ C NMR spectrum for SNM3MA	159
4.57	¹ H NMR spectrum for SNM3MA	160
4.58	Fragment ions of SNM3MA	161
4.59	Crystal structure of SNM4MA with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	163
4.60	Crystal structure of Ni(SNM4MA) ₂ with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	% 164
4.61	Thione-thiol tautomerism of SNM2AP, SNM3AP and SNM4AP	167
4.62	Schematic representation of the coordination modes for	

	acetate bonding complexes (Source: Ribot et al., 1991)	171
4.63	¹³ C NMR spectrum for SNM4AP	178
4.64	¹ H NMR spectrum for SNM4AP	179
4.65	¹³ C NMR spectrum for SNM3AP	180
4.66	¹ H NMR spectrum for SNM3AP	181
4.67	¹³ C NMR spectrum for SNM2AP	182
4.68	¹ H NMR spectrum for SNM2AP	183
4.69	Fragment ions of SNM4AP	184
4.70	Crystal structure of SNM4AP with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	185
4.71	Crystal structure of Zn(SNM2AP) ₂ with displacement ellipsoids at 509 probability level. H atoms are shown as spheres of arbitrary radius	% 187
4.72	Antiproliferative activity of thiosemicarbazones derivatives (Source: Kovala-Demertzi <i>et al.</i> , 2006)	188
4.73	Thione-thiol tautomerism of SQ2M3MA and SQ2M3MA	191
4.74	¹³ C NMR spectrum for SQ2M4MA	195
4.75	¹ H NMR spectrum SQ2M4MA	196
4.76	¹³ C NMR spectrum for SQ2M3MA	197
4.77	¹ H NMR spectrum for SQ2M3MA	198
4.78	Fragment ions of SQ2M4MA	199
4.79	Crystal structure of SQ2M4MA with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	201
4.80	Crystal structure of SQ2M3MA with displacement ellipsoids at 50% probability level. H atoms are shown as spheres of arbitrary radius	201
4.81	Plot of experimental vs. predicted log(1/CD ₅₀) for MLRA model	210
4.82	Plot of experimental vs. predicted $log(1/CD_{50})$ for PLS model	210
4.83	Structure for outlier coded as <7>	211
4.84	Actual activity vs. predicted activity using PLS	212
4.85	Actual activity vs. predicted activity using MLRA	212
4.86	Plot of experimental vs. predicted $log(1/IC_{50})$ for MLRA model	217
4.87	Plot of experimental vs. predicted $log(1/IC_{50})$ for PLS model	217
4.88	Graph actual activity vs. predicted activity using PLS	219
4.89	Graph actual activity vs. predicted activity using MLRA	220
4.90	Generic structure of S-R ₁ -dithiocarbazate	222

4.91	Removal of leaving group (LG) forms naphthalenylic cation	224
4.92	Stabilization through the effect of resonance	224
4.93	Pyridine is less reactive towards electrophiles (Source: Solomons and Fryhle, 1998)	225
4.94	Benzene forms a stable arenium ion (Source: Solomons and Fryhle, 1998)	225
4.95	Mechanisms of DNA damage induced by benzene metabolites (Source: Kawanishi et al., 2002)	227
4.96	The variety of Schiff bases synthesized	228

LIST OF FIGURES AND TABLES IN APPENDICES

Figure/Table	e	Page
6.1	IR spectrum of SBDTC	257
6.2	IR spectrum of SMDTC	257
6.3	IR spectrum of S2PDTC	258
6.4	IR Spectrum of S4PDTC	258
6.5	IR spectrum of SNMDTC	259
6.6	IR spectrum of SQ2MDTC	259
6.7	IR spectrum of SBNBDTC	260
6.8	IR spectrum of SMNBDTC	260
6.9	IR spectra of SB4MA and SB3MA with 4- and 3-methylacetophenone	261
6.10	IR spectra of SB4MA and its metal complexes	261
6.11	IR spectra of SB3MA and its metal complexes	262
6.12	IR spectra of SM4MA and SM3MA with 4- and 3-methylacetophenone	262
6.13	IR spectra of SM4MA and its metal complexes	263
6.14	IR spectra of SM3MA and its metal complexes	263
6.15	IR spectra of S4P4MA, S4P3MA and S4P2MA with 4-, 3- and 2- methylacetophenone	264
6.16	IR spectra of S4P4MA and its metal complexes	264
6.17	IR spectra of S4P3MA and its metal complexes	265
6.18	IR spectra of S4P2MA and its metal complexes	265
6.19	IR spectra of S2P4MA and S2P3MA with 4- and 3-methylacetophenone	266
6.20	IR spectra of S2P4MA and its metal complexes	266
6.21	IR spectra of S2P3MA and its metal complexes	267
6.22	IR spectra of SNM4MA and SNM3MA.H ₂ O with 4- and 3-methylacetophenone	267
6.23	IR spectra of SNM4MA and its metal complexes	268
6.24	IR spectra of SNM3MA.H ₂ O and its metal complexes	268
6.25	IR spectra of SNM4AP.H ₂ O, SNM3AP.2H ₂ O and SNM2AP with 4-, 3- and 2-acetylpyridine	269
6.26	IR spectra of SNM4AP.H ₂ O and its metal complexes	269

6.27	IR spectra of SNM3AP.2H ₂ O and its metal complexes	270
6.28	IR spectra of SNM2AP and its metal complexes	270
6.29	IR spectra of SQ2M4MA, SQ2M3MA and SQ2MDTC with 4- and 3-methylacetophenone	271
6.30	Electronic spectrum of SNMDTC	271
6.31	Electronic spectrum of SQ2MDTC	271
6.32	Electronic spectrum SB4MA	272
6.33	Electronic spectra Co(SB4MA) ₂	272
6.34	Electronic spectra Cu(SB4MA) ₂	272
6.35	Electronic spectra Ni(SB4MA) ₂	272
6.36	Electronic spectrum Zn(SB4MA) ₂	273
6.37	Electronic spectrum of SB3MA	273
6.38	Electronic spectra of Co(SB3MA) ₂	273
6.39	Electronic spectra of Ni(SB3MA) ₂	274
6.40	Electronic spectra of Cu(SB3MA) ₂	274
6.41	Electronic spectrum of Zn(SB3MA) ₂	274
6.42	Electronic spectrum of SM4MA	275
6.43	Electronic spectrum of Co(SM4MA) ₂	275
6.44	Electronic spectra of Ni(SM4MA) ₂ .2H ₂ O	275
6.45	Electronic spectra of Cu(SM4MA) ₂ .2H ₂ O	276
6.46	Electronic spectrum of Zn(SM4MA) ₂ .2H ₂ O	276
6.47	Electronic spectrum of SM3MA	276
6.48	Electronic spectra of Co(SM3MA) ₂	276
6.49	Electronic spectra of Ni(SM3MA) ₂ .3H ₂ O	277
6.50	Electronic spectra of Cu(SM3MA) ₂	277
6.51	Electronic spectrum of Zn(SM3MA) ₂ .2H ₂ O	277
6.52	Electronic spectrum of S2P4MA	277
6.53	Electronic spectra of Co(S2P4MA) ₂	278
6.54	Electronic spectra of Ni(S2P4MA) ₂	278
6.55	Electronic spectra of Cu(S2P4MA) ₂	278
6.56	Electronic spectrum of Zn(S2P4MA) ₂	278
6.57	Electronic spectrum of S2P3MA	279
6.58	Electronic spectrum of Co(S2P3MA) ₂	279

6.59	Electronic spectra of Ni(S2P3MA) ₂	279
6.60	Electronic spectrum of Cu(S2P3MA) ₂	279
6.61	Electronic spectrum of Zn(S2P3MA) ₂	280
6.62	Electronic spectrum of S4P4MA	280
6.63	Electronic spectra of Co(S4P4MA) ₂	280
6.64	Electronic spectra of Cu(S4P4MA) ₂	280
6.65	Electronic spectra of Ni(S4P4MA) ₂	281
6.66	Electronic spectrum of Zn(S4P4MA) ₂	281
6.67	Electronic spectrum of S4P3MA	281
6.68	Electronic spectra of Co(S4P3MA) ₂	282
6.69	Electronic spectra of Ni(S4P3MA) ₂	282
6.70	Electronic spectra of Cu(S4P3MA) ₂	282
6.71	Electronic spectrum of Zn(S4P3MA) ₂	282
6.72	Electronic spectrum of S4P2MA	283
6.73	Electronic spectrum of Co(S4P2MA) ₂	283
6.74	Electronic spectrum of Ni(S4P2MA) ₂	283
6.75	Electronic spectrum of Cu(S4P2MA) ₂	283
6.76	Electronic spectrum of Zn(S4P2MA) ₂	283
6.77	Electronic spectrum of SNM4MA	284
6.78	Electronic spectrum of Co(SNM4MA) ₂	284
6.79	Electronic spectrum of Ni(SNM4MA) ₂	284
6.80	Electronic spectrum of Cu(SNM4MA) ₂ H ₂ O	284
6.81	Electronic spectrum of Zn(SNM4MA) ₂	285
6.82	Electronic spectrum of SNM3MA.H ₂ O	285
6.83	Electronic spectrum of Co(SNM3MA) ₂	285
6.84	Electronic spectrum of Ni(SNM3MA) ₂	285
6.85	Electronic spectrum of Cu(SNM3MA) ₂ H ₂ O	286
6.86	Electronic spectrum of Zn(SNM3MA) ₂	286
6.87	Electronic spectrum of SNM4AP.H ₂ O	286
6.88	Electronic spectrum of Co(SNM4AP) ₂ ·H ₂ O	286
6.89	Electronic spectrum of Ni(SNM4AP) ₂ ·H ₂ O	287

xxiii

6.90	Electronic spectrum of Cu(SNM4AP) ₂ H ₂ O	287
6.91	Electronic spectrum of Zn(SNM4AP) ₂ ·H ₂ O	287
6.92	Electronic spectrum of SNM3AP.2H ₂ O	287
6.93	Electronic spectrum of Co(SNM3AP) ₂	288
6.94	Electronic spectrum of Ni(SNM3AP) ₂	288
6.95	Electronic spectrum of Cu(SNM3AP) ₂ ·H ₂ O	288
6.96	Electronic spectrum of Zn(SNM3AP) ₂	288
6.97	Electronic spectrum of SNM2AP	289
6.98	Electronic spectrum of [Co(SNM2AP)(CH ₃ COO)].H ₂ O	289
6.99	Electronic spectrum of [Ni(SNM2AP)(CH ₃ COO)]	289
6.100	Electronic spectrum of [Cu(SNM2AP)(CH ₃ COO)].2H ₂ O	289
6.101	Electronic spectrum of Zn(SNM2AP) ₂	290
6.102	Electronic spectrum of SQ2M4MA	290
6.103	Electronic spectrum of SQ2M3MA	290
6.104	Expansion of ¹³ C NMR spectrum for SNMDTC	291
6.105	Expansion of ¹³ C NMR spectrum for SQ2MDTC	292
6.106	Expansion of ¹³ C NMR spectrum for SBNBDTC	293
6.107	Expansion of ¹³ C NMR spectrum for SB4MA	294
6.108	Expansion of ¹³ C NMR spectrum for SB3MA	295
6.109	Expansion of ¹³ C NMR spectrum for SM3MA	296
6.110	Expansion of ¹³ C NMR spectrum for S2P4MA	297
6.111	Expansion of ¹³ C NMR spectrum for S2P3MA	298
6.112	Expansion of ¹³ C NMR spectrum for S4P3MA	299
6.113	Expansion of ¹³ C NMR spectrum for S4P2MA	300
6.114	Expansion of ¹³ C NMR spectrum for SNM4MA	301
6.115	Expansion of ¹³ C NMR spectrum for SNM3MA	302
6.116	Expansion of ¹³ C NMR spectrum for SNM4AP	303
6.117	Expansion of ¹³ C NMR spectrum for SNM3AP	304
6.118	Expansion of ¹³ C NMR spectrum for SNM3AP	205
(110	(aromatic region)	305
6.119	Expansion of "C NMR spectrum for SNM2AP	306
6.120	Expansion of C NMR spectrum for SQ2M4MA	307

xxiv

