UNIVERSITI PUTRA MALAYSIA

NONLINEAR FINITE ELEMENT ANALYSIS OF INTEGRAL BRIDGE INCLUDING FOUNDATION SOIL INTERACTION (WINKLER ANALOGY)

MOHAMMAD SOFFI BIN MD. NOH

FK 2006 115
NONLINEAR FINITE ELEMENT ANALYSIS OF INTEGRAL BRIDGE INCLUDING FOUNDATION SOIL INTERACTION (WINKLER ANALOGY)

By

MOHAMMAD SOFFI BIN MD. NOH

GS 15733

A Project Report Submitted in Partial Fulfillment
Of the Requirements for the Degree of
Master of Science in Structural Engineering and Construction
In the Faculty of Engineering
University Putra Malaysia

2006
ACKNOWLEDGEMENT

Be all praise for the almighty ALLAH S.W.T the most Benevolent and the most Merciful, for giving me the strength and spirit to have this project completed successfully.

I would like to take this opportunity to express my sincere thanks and deepest gratitude to my supervisor, Associate Professor Ir. Dr Jamaloddin Noorzaei for his deep insight and guidance during the course of my studies at University Putra Malaysia. I also would like to thank Associate Professor Ir. Dr Mohd. Saleh Jaafar and Assoc. Prof. Ir. Dr. Mohd. Razali B. Abdul Kadir for their advices and assistance.

Finally, I sincerely express my appreciation to my beloved wife; Sarini, and my son Muhammad Ariff Irfan for their companionship, understanding and continuous encouragement throughout this challenging endeavor.
ABSTRACT

Bridges without expansion joints are called “integral bridges.” Eliminating joints from bridges creates concerns for the piles and the abutments of integral bridges because the abutments and the piles are subjected to temperature-induced lateral loads. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings, and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with the soil-structure interaction of the abutment walls and the supporting piles.

This study describes the implementation of a two dimensional finite element model of integral bridge system which explicitly incorporates the nonlinear soil response. The superstructure members have been represented by means of three-noded isoperimetric beam elements with three degree of freedom per node which take into account the effect of transverse shear deformation.

The soil mass is idealized by eight noded isoperimetric quadrilateral element at near field and five noded isoperimetric infinite element to simulate the far field behavior of the soil media. The nonlinearity of the soil mass has been represented by using the Duncan and Chang approach. In order to study the behavior of integral bridge under various loading condition including the effect of temperature load, three type of
analysis was carried out, which are Winkler’s spring analysis, linear analysis and nonlinear analysis. The results show that, the soil nonlinearity has significant effect on the results, where the displacement which obtained from nonlinear analysis is much higher than that obtained from linear analysis and spring analysis.
APPROVAL SHEET

This project attached here, entitled “NONLINEAR FINITE ELEMENT ANALYSIS OF INTEGRAL BRIDGE INCLUDING FOUNDATION SOIL INTERACTION (WINKLER ANALOGY)” prepared and submitted by MOHAMMAD SOFFI BIN MD. NOH (GS 15733) in partial fulfillment of the requirements for the Degree in Master of Science in Structural Engineering and Construction is hereby approved.

Supervisor
(ASSOC. PROF. DR. JAMALODIN NOORZAEI)
Department of Civil Engineering, UPM

Panel Examiner
(ASSOC. PROF. DR. MOHD SALEH JAAFAR)
Department of Civil Engineering, UPM

Panel Examiner
(ASSOC. PROF. DR. MOHD. RAZALI B. ABDUL KADIR)
Department of Civil Engineering, UPM
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

..

MOHAMMAD SOFFI BIN MD NOH
Date:
TABLE OF CONTENTS

ACKNOWLEDGEMENT

ABSTRACTS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1 – INTRODUCTION

1.1 Introduction of Bridge Structure

1.2 Design Selection of Bridge

1.3 Nature of Problem

1.4 Objectives of Study

1.5 Scope of Study

1.6 Organization of Report

CHAPTER 2 – LITERATURE VIEW

2.1 What is an Integral Bridges?

2.2 Characteristic of Integral Bridges

2.3 Integral Bridge Elements

 2.3.1 Integral Abutment

 2.3.1.1 Type of Integral Abutments

 2.3.2 Deck Slabs / Continuous Slabs

 2.3.3 Approach Slabs
3.3 Energy Method

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Energy Method</td>
<td>40</td>
</tr>
</tbody>
</table>

3.4 Finite Element Formulation

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1 Three-Noded Isoparametric Beam Bending Element</td>
<td>42</td>
</tr>
<tr>
<td>3.4.1.1 Shape Functions</td>
<td>42</td>
</tr>
<tr>
<td>3.4.1.2 Strain-displacement Relationship</td>
<td>44</td>
</tr>
<tr>
<td>3.4.1.3 Stress-strain Relationship</td>
<td>44</td>
</tr>
<tr>
<td>3.4.1.4 Stiffness Matrix</td>
<td>45</td>
</tr>
<tr>
<td>3.4.2 2-D Eight-Noded Isoparametric Element</td>
<td>45</td>
</tr>
<tr>
<td>3.4.2.1 Shape Functions</td>
<td>46</td>
</tr>
<tr>
<td>3.4.2.2 Strain-displacement Relationship</td>
<td>47</td>
</tr>
<tr>
<td>3.4.2.3 Stress-strain Relationship</td>
<td>47</td>
</tr>
<tr>
<td>3.4.2.4 Stiffness Matrix</td>
<td>48</td>
</tr>
<tr>
<td>3.4.3 Five-Noded Mapped Infinite Element</td>
<td>49</td>
</tr>
</tbody>
</table>

3.5 Loads on Integral Bridge System

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1 Permanent Loads</td>
<td>51</td>
</tr>
<tr>
<td>3.5.1.1 Dead Load</td>
<td>51</td>
</tr>
<tr>
<td>3.5.1.2 Superimposed Dead Loads</td>
<td>52</td>
</tr>
<tr>
<td>3.5.2 Transient Loads</td>
<td>53</td>
</tr>
<tr>
<td>3.5.2.1 Temperature Loads</td>
<td>53</td>
</tr>
<tr>
<td>3.5.2.2 Primary Highway Bridge Live Loads</td>
<td>55</td>
</tr>
<tr>
<td>3.5.2.2.1 HA Loading</td>
<td>56</td>
</tr>
<tr>
<td>3.5.2.2.2 HB Loading</td>
<td>57</td>
</tr>
<tr>
<td>3.5.3 Load Combinations</td>
<td>58</td>
</tr>
<tr>
<td>3.5.3.1 Load Combination 1</td>
<td>58</td>
</tr>
<tr>
<td>3.5.3.2 Load Combination 2</td>
<td>59</td>
</tr>
</tbody>
</table>
4.8.1 Results of Spring Analysis

4.8.1.1 Comparison Results for Girder Vertical Displacement

4.8.1.2 Comparison of Result for Abutment Displacement.

4.8.1.3 Comparison of Result for Pile Displacement.

4.8.2 Results of Linear Analysis

4.8.2.1 Comparison Results for Girder Vertical Displacement

4.8.2.2 Comparison of Result for Abutment Displacement.

4.8.2.3 Comparison of Result for Pile Displacement.

4.8.3 Results of Nonlinear Analysis

4.8.3.1 Comparison Results for Girder Vertical Displacement

4.8.3.2 Comparison of Result for Abutment Displacement.

4.8.3.3 Comparison of Result for Pile Displacement.

4.8.4 Comparative Study between Winkler’s Spring Analysis, Linear and Nonlinear Analysis.

4.8.4.1 Comparison Results for Girder Vertical Displacement

4.8.4.2 Comparison of Result for Abutment Displacement.

4.8.4.3 Comparison of Result for Pile Displacement.

4.9 Concluding Remarks
CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

References

Appendix A

Appendix B

Appendix C
LIST OF TABLES

CHAPTER 2 – LITERATURE VIEW

Table 2.1: Range of design criteria for selection of integral bridge 18

CHAPTER 3 - METHODOLOGY

Table 3.1: Application of Dead Load 52

CHAPTER 4 – ANALYSIS AND RESULTS

Table 4.1: Properties of soils 84
Table 4.2: Typical values of coefficient of subgrade reaction, Ks 85
(Terzaghi 1955)
Table 4.3: Value of subgrade reaction are used in the study 86
Table 4.4: Laboratory results at shearing stage 88
Table 4.5: Nonlinear soil parameters 89
Table 4.6: Material properties used in this study 91
Table 4.7: Load cases and analysis considered for this study 93
Table 4.8: Maximum vertical displacement of girder 96
Table 4.9: Lateral displacement at top of abutment 99
Table 4.10: Maximum lateral displacement of piles 102
Table 4.11: Maximum vertical displacement of girder 103
Table 4.12: Lateral displacement at top of abutment 108
Table 4.13: Maximum lateral displacement of piles 111
Table 4.14: Maximum vertical displacement of girder 114
Table 4.15: Lateral displacement at top of abutment 118
Table 4.16: Maximum lateral displacement of piles 121
Table 4.17: Maximum vertical displacement of girder 122
Table 4.18: Lateral displacement of abutment 125
Table 4.19: Lateral displacement of pile 126
LIST OF FIGURES

CHAPTER 2 – LITERATURE VIEW

Figure 2.1: Integral and Semi-Integral Abutments 9
Figure 2.2: Integral Bridge Abutment System 10
Figure 2.3: Integral Bridge Elements 12
Figure 2.4: Full integral abutment on pile – Steel girder 13
Figure 2.5: Full integral abutment on pile – Precast girder 14
Figure 2.6: Full integral abutment on spread footing 14
Figure 2.7: Pinned-integral abutment 15
Figure 2.8: Semi-integral abutment with sliding bearings 15
Figure 2.9: Approach Slab in Integral Bridges 17
Figure 2.10: Illustration of abutment rotations due to pile constraints and the backfill soil pressure 30
Figure 2.11: Interaction mechanism between abutment and approach fill 32

CHAPTER 3 - METHODOLOGY

Figure 3.1 Research Methodology Flow Chart 39
Figure 3.2: One-dimensional beam bending element in natural coordinate system 42
Figure 3.3: 2-D Eight-noded isoparametric element using natural coordinate system 46
Figure 3.4: 2-D Five nodded infinite element 50
Figure 3.5: Dimensions of HB Vehicle 57
Figure 3.6: Hyperbolic stress-strain curve for soil 64
Figure 3.7: Geometry of example 65
Figure 3.8: Input data of example 66
Figure 3.9 Geometry of Example 1 68
Figure 3.10 Input Data File 68
Figure 3.11 Output Data File 69

CHAPTER 4 – ANALYSIS AND RESULTS

Figure 4.1: Longitudinal Geometry of Sg. Rawang Bridge 73
Figure 4.2: Transverse Geometry of Sg. Rawang Bridge 73
Figure 4.3: Bridge Dimension of Transverse Section 74
Figure 4.4: Beam Cross Section 76
Figure 4.5: Application of HB Loading 78
Figure 4.6: Maximum Differential Temperature Change in Rawang area 80
Figure 4.7: Loading Arrangement 83
Figure 4.8: Winkler Spring Model 86
Figure 4.9: The stress-strain relationship for sandy SILT 87
Figure 4.10: Transformed stress-strain curves for corresponding strain 89
Figure 4.11: Logarithmic Plotting of Minor Stress against Elastic Modulus 91
Figure 4.12: Finite – infinite element discretization of proposed integral bridge 92
Figure 4.13: Vertical displacement of girder at 0.0L load position 94
Figure 4.14: Vertical displacement of girder at 0.25L load position 94
Figure 4.15: Vertical displacement of girder at 0.50L load position 95
Figure 4.16: Vertical displacement of girder for varies load position
Figure 4.17: Lateral displacement of abutment at 0.0L load position
Figure 4.18: Lateral displacement of abutment at 0.25L load position
Figure 4.19: Lateral displacement of abutment at 0.50L load position
Figure 4.20: Lateral displacement of pile at 0.0L load position
Figure 4.21: Lateral displacement of pile at 0.25L load position
Figure 4.22: Lateral displacement of pile at 0.50L load position
Figure 4.23: Vertical displacement of girder at 0.0L load position
Figure 4.24: Vertical displacement of girder at 0.25L load position
Figure 4.25: Vertical displacement of girder at 0.50L load position
Figure 4.26: Lateral displacement of abutment at 0.0L load position
Figure 4.27: Lateral displacement of abutment at 0.25L load position
Figure 4.28: Lateral displacement of abutment at 0.50L load position
Figure 4.29: Lateral displacement of pile at 0.0L load position
Figure 4.30: Lateral displacement of pile at 0.25L load position
Figure 4.31: Lateral displacement of pile at 0.50L load position
Figure 4.32: Vertical displacement of girder at 0.0L load position
Figure 4.33: Vertical displacement of girder at 0.25L load position
Figure 4.34: Vertical displacement of girder at 0.50L load position
Figure 4.35: Lateral displacement of abutment at 0.0L load position
Figure 4.36: Lateral displacement of abutment at 0.25L load position
Figure 4.37: Lateral displacement of abutment at 0.50L load position
Figure 4.38: Lateral displacement of pile at 0.0L load position
Figure 4.39: Lateral displacement of pile at 0.25L load position
Figure 4.40: Lateral displacement of pile at 0.50L load position
Figure 4.41: Vertical displacement of girder for different method of analysis 122
Figure 4.42: Lateral displacement of abutment for different method of analysis without considering temperature load 124
Figure 4.43: Lateral displacement of abutment for different method of analysis with considering temperature load 124
Figure 4.44: Lateral displacement of piles for different method of analysis with and without considering temperature load 127
CHAPTER 1

1.0 INTRODUCTION

1.1 Introduction of Bridge Structure

Bridge structure built to provide ready passage over natural or artificial obstacles, or under another passageway. Bridges serve highways, railways, canals, aqueducts, utility pipelines, and pedestrian walkways. In many jurisdictions, bridges are defined as those structures spanning an arbitrary minimum distance, generally about 10–20 ft (3–6 m); shorter structures are classified as culverts or tunnels. In addition, natural formations eroded into bridge like form are often called bridges. This article covers only bridges providing conventional transportation passageways.

Bridges generally are considered to be composed of three separate parts: substructure, superstructure, and deck. The substructure or foundation of a bridge consists of the piers and abutments which carry the superimposed load of the superstructure to the underlying soil or rock. The superstructure is that portion of a bridge or trestle lying above the piers and abutments. The deck or flooring is supported on the bridge superstructure; it carries and is in direct contact with the traffic for which passage is provided.
Bridges are classified in several ways. Thus, according to the use they serve, they may be termed railway, highway, canal, aqueduct, utility pipeline, or pedestrian bridges. If they are classified by the materials of which they are constructed (principally the superstructure), they are called steel, concrete, timber, stone, or aluminum bridges. Deck bridges carry the deck on the very top of the superstructure. Through bridges carry the deck within the superstructure. The type of structural action is denoted by the application of terms such as truss, arch, suspension, stringer or girder, stayed-girder, composite construction, hybrid girder, continuous, cantilever, or orthotropic (steel deck plate).

Bridge designs differ in the way they support loads. These loads include the weight of the bridges themselves, the weight of the material used to build the bridges, and the weight and stresses of the vehicles crossing them. There are basically eight common bridge designs: beam, cantilever, arch, truss, suspension, cable-stayed, movable, and floating bridges. Combination bridges may incorporate two or more of the above designs into a bridge. Each design differs in appearance, construction methods and materials used, and overall expense. Some designs are better for long spans. Beam bridges typically span the shortest distances, while suspension and cable-stayed bridges span the greatest distances.

1.2 Design Selection of Bridge

Engineers must consider several factors when designing a bridge. They consider the distance to be crossed and the feature, such as a river, valley, or other transportation
routes, to be crossed. Engineers must anticipate the type of traffic and the amount of load the bridge will have to carry and the minimum span and height required for traffic traveling across and under the bridge. Temperature, environmental conditions, and the physical nature of the building site (such as the geometry of the approaches, the strength of the ground, and the depth to firm bedrock) also determine the best bridge design for a particular situation.

Once engineers have the data they need in order to design a bridge, they create a work plan for constructing it. Factors to be considered include availability of materials, equipment, and trained labor; availability of workshop facilities; and local transportation to the site. These factors, in combination with the funding and time available for bridge design and construction, are the major requirements and constraints on design decisions for a particular site.

1.3 Nature of Problem

A bridge should be designed such that it is safe, aesthetically pleasing, and economical. Prior to the 1960s, almost every bridge in the world was built with expansion joints and bearings. These traditional expansion joint/bearing systems has been found to perform more or less as intended conceptually but at the cost of being a high maintenance item, especially for relatively short-span bridges. The primary problem is the corrosion and other physical deterioration of the bridge bearings that occurs with time. They required considerable maintenance, which undermined the economical operation of the bridges. Therefore, integral bridges have been found to
outperform jointed bridges, decreasing maintenance costs, and enhancing the life expectancy of the superstructures. Integral abutment and joint-less bridges cost less to construct and require less maintenance than equivalent bridges with expansion joints and bearings.

Because of the increased use of integral bridges, there is now greater awareness of and interest in their post-construction, in-service problems. Fundamentally, these problems are due to a complex soil structure interaction mechanism involving relative movement between the bridge (more specifically, its abutments) and adjacent retained soil. Because this movement is the result of natural, seasonal thermal variations, it is inherent in all integral bridges.

The main issue related to the analysis of integral abutment bridge is dealing with the soil-structure interaction of the abutment walls and the supporting piles. The behavior of the structural components including the piles can either be linear or nonlinear depending on the amount of the applied forces. The behavior of the soil on the other hand is nonlinear. Therefore, the analysis of integral bridge should take into account the nonlinearity of soil behind the abutment and the piles foundation.
1.4 Objectives of Study

The primary objectives of this study are:

1. Investigate the behavior of structural elements of the integral bridge under various load cases through finite element analysis.

2. Study the significance of thermal expansion load induced displacement.

3. Investigate the significance differences and similarities between the Winkler’s spring analysis, linear analysis and nonlinear analysis of integral bridges.

1.5 Scope of Study

In order to study the behavior of integral bridge under different of load cases, this study have been carried out within the following scope.

1. Finding a literature review to establish the current state of knowledge with regard to the behavior of integral abutment bridges.

2. Implement finite element analysis for three different type of analysis which is Winkler spring, linear elastic and nonlinear elastic analysis.
3. Descretized the finite element models through the following elements;
 a) Three noded beam bending element
 b) Eight noded isoparametric elements
 c) Five noded infinite elements

4. Loading analysis of integral bridge is based on code of practice, BD 37/88.

5. Collect the actual temperature data based on the Malaysian temperature
different obtained from Department of Meteorology Malaysia.

6. Preparation of the actual data required for the nonlinear elastic analysis based
on Malaysian soil condition.

7. Analyze the structure and soil media using existing two dimensional finite
element program available at Structural Engineering Unit, Civil Engineering
Department, Universiti Putra Malaysia.

1.6 Organization of Report

In order to achieve the objectives of this study, this report is implemented and
organized as follows.

Chapter 2: Present an overview of integral bridge in order to enhance the current
state of knowledge with regard to behavior of integral bridge system, characteristic
and type of integral abutment of the bridge. Advantages and problem associated with integral bridge also discussed in this chapter.

Chapter 3: Present the formulation of finite element and infinite element of structure and surrounding soil media, it also present the load of integral bridge which has been taken in consideration in the analysis. The non-linear elastic model (Duncan 1970) and Winkler’s model was discussed in details in this chapter. Explanation of the computer implementation (2-D finite element program) also discussed in this chapter.

Chapter 4: Presents the selection of case study and bridge dimension and load calculation for gravity, highway bridge live load and thermal expansion loads. Defined the finite element meshing and also the derivation of the soil parameters according to actual laboratory tests for Malaysian soil, and calculation of the Winkler spring constant. It also presents the results and discussion obtained from the analysis of integral bridge by using different techniques. Finally, presents the comparative study on different proposed models.

Chapter 5: Contains the conclusions and recommendations drawn from the research. Recommendations for future studies and research are given at the end of this chapter.
REFERENCES

133

