MICROPROPAGATION AND EFFECT OF GROWTH RETARDANTS ON SELECTED SPECIES OF MELASTOMATACEAE

By
RAMANI POOSPOORAGI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2005
Dedicated to:

My beloved father Poosporagi, mother Muniammah

My dearest sister Thavamalar and brother Suntharam

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy
This study consists of four parts. The first part was to develop an efficient in vitro micropropagation protocol for Melastoma malabathricum, Melastoma decemfidum, Melastoma dodecandrum and Tibouchina semidecandra. These plants are locally known as 'senduduk'. Nodal segment and shoot tip of each species were used as explants for shoot initiation. Shoot tip was a more suitable explant for M. malabathricum, M. dodecandrum and M. decemfidum shoot initiation performed in full strength Murashige and Skoog (MS) medium supplemented with 30 μM 6-benzylaminopurine (BAP), while nodal explant was chosen for T. semidecandra shoot initiation in full strength MS medium supplemented with 20 μM BAP.

Shoot multiplication and elongation was optimal in half strength MS medium supplemented with 6 μM BAP for T. semidecandra, 9 μM BAP for M. malabathricum and 12 μM BAP for M. decemfidum while M. dodecandrum required quarter strength MS medium supplemented with 3 μM BAP. Shoots
cultured on MS medium without any growth regulators supplementation was found to have higher *in vitro* rooting compared to medium supplemented with naphthalene acetic acid (NAA), indole butyric acid (IBA) and indole acetic acid (IAA). Full strength MS medium was suitable for *in vitro* rooting of *T. semidecandra* and *M. decemfidum*, opposed to half strength MS medium for *M. malabathricum* and quarter strength MS medium for *M. dodecandrum*. Rooting in the solid medium was better than liquid medium. A higher percentage of plantlets survived when they were acclimatized for one week compared to plantlets that were directly transferred from tissue culture medium to the soil.

The second part of this study was to regenerate shoots directly from the leaf, petiole and internode explants of *M. malabathricum*. Explants obtained from the most apical part of the plant formed a higher number of shoots compared to those below the apical end. Quarter strength MS medium was the most suitable medium strength for shoot regeneration of all explants tested. The highest number of shoots was formed from the leaf explant at 9 µM BAP, followed by petiole at 6 µM BAP, and internode at 9 µM BAP.

The third part of this study was to regenerate shoots from leaf-, petiole- and internode-derived calli of *M. malabathricum*. A suitable callus induction medium was found to be a full strength MS medium supplemented with 2.5 µM dicamba and 2.5 µM kinetin for leaf explant, 10.0 µM NAA and 2.5 µM BAP for petiole explant, and 10.0 µM NAA and 2.5 µM kinetin for internode explant. Full
strength MS medium supplemented with 5.0 to 7.5 µM BAP alone had induced multiple shoots from the leaf-derived callus compared to 2.5 to 5.0 µM BAP for petiole-derived callus. A combination of 0.5 µM NAA and 5.0 µM BAP, however, was found to enhance shoot formation from the petiole-derived callus compared to when 5.0 µM BAP was used alone.

The final part of this study was to evaluate the effects of growth retardants on vegetative growth and the flowering of \textit{M. malabathricum}, \textit{M. decemfidum} and \textit{T. semidecandra}. Growth retardants (paclobutrazol and flurprimidol) significantly reduced the plant size, induced early flowering and increased the number of flowers formed unlike the untreated plants. Paclobutrazol applied at 200 mg/L (w/v) was found to be suitable for \textit{M. malabathricum} compared to 300 mg/L (w/v) for \textit{M. decemfidum}. Flurprimidol applied at 50 mg/L (w/v) concentration was suitable for \textit{T. semidecandra}.
Kajian ini merangkumi empat bahagian. Bahagian pertama bertujuan mendapatkan protokol yang sesuai untuk pembiakan Melastoma malabathricum, Melastoma decemfidum, Melastoma dodecandrum dan Tibouchina semidecandra secara *in vitro*. Tumbuhan ini lebih dikenali dengan nama tempatannya sebagai senduduk. Dalam kajian ini, bahagian hujung pucuk dan buku batang bagi setiap spesis digunakan sebagai eksplan untuk penghasilan pucuk. Hujung pucuk didapati lebih sesuai untuk penghasilan pucuk bagi *M. malabathricum*, *M. decemfidum*, *M. dodecandrum* bila dikultur dalam medium Murashige dan Skoog (MS) penuh yang mengandungi 30 \(\mu \text{M} \) 6-bensilaminopurina (BAP) manakala eksplan buku batang dipilih untuk penghasilan pucuk bagi *T. semidecandra* bila dikultur dalam medium MS penuh yang mengandungi 20 \(\mu \text{M} \) BAP.

Pembiakan dan pemanjangan pucuk didapati paling sesuai dalam medium setengah MS yang mengandungi 6 \(\mu \text{M} \) BAP bagi *T. semidecandra*, 9 \(\mu \text{M} \) BAP bagi *M. malabathricum* dan 12 \(\mu \text{M} \) BAP bagi *M. decemfidum* manakala medium
seperempat MS yang mengandungi 3 µM BAP didapati sesuai bagi *Melastoma dodecandrum*. Medium MS tanpa pengawalatur pertumbuhan telah meningkatkan pengeluaran akar secara *in vitro* bagi pucuk berbanding medium yang mengandungi asid naftalena asetik (NAA), asid indolabutirik (IBA) dan asid indolasetik (IAA). Medium MS penuh didapati paling sesuai untuk pengeluaran akar secara *in vitro* bagi *T. semidecandra* dan *M. decemfidum* berbanding dengan medium setengah MS bagi *M. malabathricum* dan medium seperempat MS bagi *M. dodecandrum*. Pengeluaran akar dalam medium pepejal didapati lebih sesuai berbanding medium cecair. Peratusan pokok yang hidup selepas seminggu dalam proses aklimasi didapati lebih tinggi berbanding dengan pokok yang dipindahkan secara terus dari medium kultur tisu ke tanah.

Dalam bahagian kedua, regenerasi pucuk secara langsung daripada eksplan daun, petiol and ruas batang *M. malabathricum* telah dikaji. Eksplan yang diambil daripada bahagian paling atas pokok telah menghasilkan bilangan pucuk yang lebih tinggi berbanding dengan eksplan daripada bahagian bawah. Medium seperempat MS didapati paling sesuai untuk regenerasi pucuk bagi semua eksplan yang dikaji. Bilangan pucuk tertinggi didapati bagi eksplan daun pada 9 µM BAP, diikuti dengan petiol pada 6 µM BAP dan ruas batang pada 9 µM BAP.

Dalam bahagian ketiga, regenerasi pucuk daripada kalus daun, petiol dan ruas batang *M. malabathricum* telah dikaji. Medium yang paling sesuai untuk induksi kalus adalah medium MS penuh yang mengandungi 2.5 µM dicamba dan 2.5 µM
kinetin bagi eksplan daun, 10.0 µM NAA dan 2.5 µM BAP bagi eksplan petiol dan 10.0 µM NAA dan 2.5 µM kinetin bagi eksplan ruas batang. Medium MS penuh yang mengandungi 5.0 hingga 7.5 µM BAP telah menghasilkan pucuk daripada kalus daun berbanding dengan 2.5 hingga 5.0 µM BAP bagi kalus petiol. Kombinasi 0.5 µM NAA dan 5.0 µM BAP telah meningkatkan penghasilan pucuk daripada kalus petiol berbanding bila hanya 5.0 µM BAP digunakan.

Dalam bahagian terakhir, kesan bahan perencat pertumbuhan terhadap pertumbuhan vegetatif dan pembungaan M. malabathricum, M. decemfidum dan T. semidecandra telah dikaji. Perencat pertumbuhan (paclobutrazol dan flurprimidol) telah berjaya mengurangkan saiz pokok, mempercepatkan pengeluaran bunga dan meningkatkan bilangan bunga secara ketara berbanding dengan pokok kawalan. Paclobutrazol yang digunakan pada kepekatan 200 mg/L (b/i) amat sesuai bagi M. malabathricum berbanding dengan 300 mg/L (b/i) bagi M. decemfidum. Rawatan dengan flurprimidol pada kepekatan 50 mg/L (b/i) didapati sesuai bagi Tibouchina semidecandra.
ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Dr. Maziah Mahmood, Dr. Janna Ong Abdullah and Dr. Mohd Puad Abdullah for their invaluable guidance and encouragement during the course of my study and the preparation of this thesis.

I would like to thank Universiti Putra Malaysia for financial support (PASCA) and my supervisor Dr. Maziah Mahmood which enable this study to be completed.

I would also like to express my deepest thanks to my father Poosporagi, my mother Muniammah, my sister Thavamalar, my brother Suntharam for their encouragement, patience and moral support during the period of studies. Finally, I would also like to thanks my friends Tee, Rosli, Sri, CY, Ida, Sobri, Anna, Janna, Dorene, Saras and Judy who always help, give advice and motivate during the studies.
I certify that an Examination Committee met on 17 January 2005 to conduct the final examination of Ramani Poospooragi on her Doctor of Philosophy thesis entitled ‘Micropropagation and Effect of Growth Retardants on Vegetative Growth and Flowering of Selected Species of Melastomataceae Family’ in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Siti Khalijah Daud, Ph.D.
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Radzali Muse, Ph.D.
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences,
Universiti Putra Malaysia.
(Member)

Mohd. Arif Syed, Ph.D.
Professor
Faculty of Biotechnology and Biomolecular Sciences,
Universiti Putra Malaysia.
(Member)

Chan Lai Keng, Ph.D
Professor
School of Biological Sciences,
Universiti Sains Malaysia, Penang
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Marziah Mahmood, Ph.D.
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Mohd. Puad Abdullah, Ph.D.
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Janna Ong Abdullah, Ph.D.
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

RAMANI POOSPOORAGI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/NOTATIONS</td>
<td>xxx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1

1.2 Objectives 11

2 LITERATURE REVIEW

2.1 Floriculture Industry in Malaysia 12

2.1.1 Production 12

2.1.2 Export Market 15

2.1.3 Issues and Problems in Floriculture Industry in Malaysia 15

2.2 Flowers of Malaysia 18

2.2.1 Malaysian ornamental plants 18

2.3 Melastomataceae family 20

2.3.1 Description and distribution 20

2.3.2 *Melastoma malabathricum* . 21

2.3.3 *Melastoma decemfidum* 23

2.3.4 *Melastoma dodecandrum* 24

2.3.5 *Tibouchina semidecandra* 25

2.4 Use of tissue culture techniques for plant propagation 26

2.5 Methods of micropropagation 28

2.5.1 Axillary shoot proliferation 28

2.5.2 Adventitious shoot regeneration 29

2.5.2.1 Direct plant regeneration 31

2.5.2.2 Indirect regeneration from callus 32

2.5.3 Somatic embryogenesis 33

2.6 Factors influencing plant regeneration 35

2.6.1 Effect of explant 35

2.6.2 Effect of plant growth regulators 37

2.6.3 Effect of medium 40

2.6.4 Effect of carbon source 41
3 MICROPRESS ORATION OF THE SELECTED PLANT
SPECIES OF THE MELASTOMATA CEAE FAMILY 52
3.1 Introduction 52
3.2 Materials and Methods 55
3.2.1 Establishment of in vitro plants of Melastoma malabathricum, M. dodecandrum, M. decemfidum and Tibouchina semidecandra 55
3.2.1.1 Preparation of tissue culture media 55
3.2.1.2 Culture conditions 56
3.2.1.3 Surface sterilization test 56
3.2.1.4 Shoot initiation 57
3.2.1.5 Shoot multiplication and elongation 59
3.2.1.5.1 Effect of medium strength and BAP concentration 59
3.2.1.5.2 Effect of solid and liquid medium 60
3.2.1.5.3 Effect of medium type on shoot proliferation of M. dodecandrum 61
3.2.1.5.4 Effect of sucrose on shoot proliferation of M. dodecandrum 62
3.2.1.5.5 Effect of casein hydrolysate on shoot proliferation of M. dodecandrum 63
3.2.1.6 Rooting of in vitro plants 64
3.2.1.6.1 Effect of auxins 64
3.2.1.6.2 Effect of different medium strength 65
3.2.1.6.3 Effect of solid and liquid medium 65
3.2.1.7 Acclimatization of in vitro plants 66
3.2.2 Direct shoot regeneration from leaf, petiole and internode explants of Melastoma malabathricum 68
3.2.2.1 Plant material 68
3.2.2.2 Culture medium for shoot induction 68
3.2.3 Indirect shoot regeneration from leaf, petiole and Internode explants of Melastoma malabathricum 69
3.2.3.1 Callus induction medium 70
3.2.3.2 Callus maintenance medium 71
 3.2.3.2.1 Measurement of callus growth 72
3.2.3.3 Regeneration from callus 73

3.3 Results and discussions 74
3.3.1 Establishment of *in vitro* plants of *Melastoma malabathricum*, *M. dodecandrum*, *M. decemfidum* and *Tibouchina semidecandra* 74
 3.3.1.1 Surface sterilization test 74
 3.3.1.2 Shoot initiation 79
 3.3.1.3 Shoot multiplication and elongation 90
 3.3.1.3.1 Effects of growth regulator and medium strength 90
 3.3.1.3.2 Effect of solid and liquid MS medium 107
 3.3.1.3.3 Effect of different types of media on shoot proliferation of *M. dodecandrum* 112
 3.3.1.3.4 Effect of sucrose on shoot proliferation of *M. dodecandrum* 117
 3.3.1.3.5 Effect of casein hydrolysate on shoot proliferation of *M. dodecandrum* 123
 3.3.1.4 Rooting of *in vitro* plant 128
 3.3.1.4.1 Effect of auxin 128
 3.3.1.4.2 Effect of different media strength 135
 3.3.1.4.3 Effect of solid and liquid medium 140
 3.3.1.5 Acclimatization of the *in vitro* plant 150
 3.3.1.6 Micropropagation protocol 153
3.3.2 Direct shoot regeneration from leaf, petiole and internode explants of *Melastoma malabathricum* 157
 3.3.2.1 Effect of media strength 157
 3.3.2.1.1 Leaf explants 157
 3.3.2.1.2 Petiole explants 166
 3.3.2.1.3 Internode explant 171
 3.3.2.2 Effect of growth regulators 175
 3.3.2.2.1 Leaf explants 175
 3.3.2.2.2 Petiole explants 177
 3.3.2.2.3 Internode explants 178
 3.3.2.3 Effect of explant position 179
 3.3.2.3.1 Leaf explant 179
 3.3.2.3.2 Petiole explant 180
 3.3.2.3.3 Internode explant 181
 3.3.2.4 Effect of explant type 181
 3.3.2.5 Direct shoot regeneration protocol 183
3.3.3 Indirect shoot regeneration from the leaf, petiole and internode explant of *Melastoma malabathricum* 183

3.3.3.1 Callus induction from different explants 183
 3.3.3.1.1 Leaf explant 183
 3.3.3.1.2 Internode explant 194
 3.3.3.1.3 Petiole explant 207

3.3.3.2 Callus maintenance medium 220
 3.3.3.2.1 Leaf derived callus 220
 3.3.3.2.2 Petiole derived callus 223
 3.3.3.2.3 Internode derived callus 226

3.3.3.3 Regeneration from callus 233
 3.3.3.3.1 Effect of cytokinin alone 233
 3.3.3.3.2 Effect of cytokinin and auxin 239

3.3.3.4 Indirect shoot regeneration protocol 242

4 THE EFFECT OF GROWTH RETARDANTS ON THE ESTABLISHED IN VITRO PLANTLETS OF THE SELECTED SPECIES OF THE MELASTOMATACEAE FAMILY 244

4.1 Introduction 244

4.2 Materials and Methods 245
 4.2.1 Research location 245
 4.2.2 Application of growth retardants 245
 4.2.3 Data collection 246
 4.2.4 Experimental design 249

4.3 Results 249
 4.3.1 *Melastoma malabathricum* 249
 4.3.2 *Melastoma decemfidum* 255
 4.3.3 *Tibouchina semidecandra* 258

4.4 Discussions 263
 4.4.1 Effect on the vegetative growth 263
 4.4.2 Effect on the flowering 267

5 CONCLUSION 269

REFERENCES 276
APPENDICES 301
BIODATA OF THE AUTHOR 305
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Gross Domestic Product (GDP) by industrial origin in 1987 constant prices, Malaysia (RM million)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Distribution of orchid flower producers and production according to name of flowers, Malaysia 2000</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Distribution of non-orchid flower producers and production according to name of flowers, Malaysia 2000</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Distribution of ornamental plants producers and production according to name of ornamental plants, Malaysia 2000</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Distribution of foliage producers and production according to name of foliage, Malaysia 2000</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Production of flowers according to category of producers and states, 2000</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Main growing areas of flowers according to districts and states, Malaysia 2000</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Exports of floriculture product 1995 - 2001 (RM'000)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Export of floriculture commodity according to destination in 2001</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Effect of different percentages of Clorox® (5.25% sodium hypochlorite) and exposure time on percentage of aseptic shoot tips and nodal segment of Tibouchina semidecandra, Melastoma malabathricum, M. dodecandrum and M. decemfidum after 4 weeks of culture</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of various concentrations of BAP and kinetin alone on shoot tips and nodal explant of Tibouchina semidecandra, Melastoma malabathricum, Melastoma dodecandrum and Melastoma decemfidum</td>
<td>80</td>
</tr>
</tbody>
</table>
3.3 Effect of different MS media strength and BAP supplied concentration on shoot multiplication and length for *Tibouchina semidecandra, Melastoma malabathricum, M. dodecandrum* and *M. decemfidum* 91

3.4 Effect of different types of media on shoot morphology of *Melastoma dodecandrum*. Data were recorded after 4 weeks of culture 115

3.5 Effect of different concentrations of sucrose on shoot morphology of *Melastoma dodecandrum*. Data were recorded after 4 weeks of culture 121

3.6 Effect of different concentrations of casein hydrolysate on shoot morphology of *Melastoma dodecandrum*. Data were recorded after 4 weeks of culture 125

3.7 Effect of different auxins (IBA, NAA and IAA) on *in vitro* rooting of *Tibouchina semidecandra* 129

3.8 Effect of different auxins (IBA, NAA and IAA) on *in vitro* rooting of *Melastoma malabathricum* 131

3.9 Effect of different auxins (IBA, NAA and IAA) on *in vitro* rooting of *Melastoma dodecandrum* 132

3.10 Effect of different auxins (IBA, NAA and IAA) on *in vitro* rooting of *Melastoma decemfidum* 133

3.11 Effect of different MS media strength on rooting of *in vitro* developed shoots of *Tibouchina semidecandra* . 136

3.12 Effect of different MS media strength on rooting of *in vitro* developed shoots of *Melastoma malabathricum* 136

3.13 Effect of different MS media strength on rooting of *in vitro* developed shoots of *Melastoma dodecandrum* 138

3.14 Effect of different MS media strength on rooting of *in vitro* developed shoots of *Melastoma decemfidum* 138

3.15 Effect of different formulations of MS media on rooting of *in vitro* developed shoots of *Tibouchina semidecandra* 141

3.16 Effect of different formulations of MS media on rooting of *in vitro* developed shoots of *Melastoma malabathricum* 144
3.17 Effect of different formulations of MS media on rooting of
in vitro developed shoots of *Melastoma decemfidum* 144

3.18 Effect of different formulations of MS media on rooting of
in vitro developed shoots of *Melastoma dodecandrum* 144

3.19 The percentage of plantlet survival for four different species after
4 weeks transferred into soil 152

3.20 Effect of MS media strength, growth regulator (BAP and kinetin)
and explant position on shoot formation from the leaf of
Melastoma malabathricum 163

3.21 Effect of MS media strength, growth regulator (BAP and kinetin)
and explant position on shoot formation from petiole of
Melastoma malabathricum 168

3.22 Effect of MS media strength, growth regulator (BAP and kinetin)
and explant position on shoot formation from internode of
Melastoma malabathricum 172

3.23 Effect of different combinations of NAA and kinetin or BAP on
callus induction from the leaf explants of *Melastoma
malabathricum* after 4 weeks of culture 185

3.24 Effect of different combinations of dicamba and kinetin or BAP on
callus induction from the leaf explants of *Melastoma
malabathricum* after 4 weeks of culture 188

3.25 Effect of different combinations of picloram and kinetin or BAP on
callus from the leaf explants of *Melastoma malabathricum*
after 4 weeks of culture 190

3.26 Effect of different combinations of 2,4-D and kinetin or BAP on
callus induction from the leaf explants of *Melastoma
malabathricum* after 4 weeks of culture 193

3.27 Effect of different combinations of NAA and kinetin or BAP on
callus induction from the internode explants of *Melastoma
malabathricum* after 4 weeks of culture 196

3.28 Effect of different combinations of dicamba and kinetin or BAP on
callus induction from the internode explants of *Melastoma
malabathricum* after 4 weeks of culture 199
3.29 Effect of different combinations of picloram and kinetin or BAP on callus induction from the internode explants of *Melastoma malabathricum* after 4 weeks of culture 202

3.30 Effect of different combinations of 2,4-D and kinetin or BAP on callus induction from the internode explants of *Melastoma malabathricum* after 4 weeks of culture 205

3.31 Effect of different combinations of NAA and kinetin or BAP on callus induction from the petiole explants of *Melastoma malabathricum* after 4 weeks of culture 208

3.32 Effect of different combinations of dicamba and kinetin or BAP on callus induction from the petiole explants of *Melastoma malabathricum* after 4 weeks of culture 211

3.33 Effect of different combinations of picloram and kinetin or BAP on callus induction from the petiole explants of *Melastoma malabathricum* after 4 weeks of culture 214

3.34 Effect of different combinations of 2,4-D and kinetin or BAP on callus induction from the petiole explants of *Melastoma malabathricum* after 4 weeks of culture 217

3.35 Effect of cytokinin (BAP and kinetin) on shoot regeneration from the leaf derived callus of *Melastoma malabathricum* 234

3.36 Effect of cytokinin (BAP and kinetin) on shoot regeneration from petiole derived callus of *Melastoma malabathricum* 236

3.37 Effect of NAA and BAP on shoot regeneration from petiole derived callus of *Melastoma malabathricum* 240

4.1 The effect of paclobutrazol and flurprimidol on growth and flowering of *Melastoma malabathricum* 250

4.2 The effect of paclobutrazol and flurprimidol on growth and flowering of *Melastoma decemfidum* 256

4.3 The effect of paclobutrazol and flurprimidol on growth and flowering of *Tibouchina semidecandra* 261
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flowering plant of Melastomataceae.</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Shoot initiation from shoot tip and nodal segment of Tibouchina semidecandra after 4 weeks of culture.</td>
<td>81</td>
</tr>
<tr>
<td>3.2</td>
<td>Shoot initiation from shoot tip and nodal segment of Melastoma malabathricum after 4 weeks of culture</td>
<td>83</td>
</tr>
<tr>
<td>3.3</td>
<td>Shoot initiation from shoot tip and nodal segment of Melastoma dodecandrum after 4 weeks of culture</td>
<td>85</td>
</tr>
<tr>
<td>3.4</td>
<td>Shoot initiation from shoot tip and nodal segment of Melastoma decemfidum after weeks of culture</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>Shoot multiplication of Tibouchina semidecandra in full strength MS medium supplemented with (a) 0 (Bar = 0.3 cm), (b) 3 µM BAP (Bar = 0.6 cm), (c) 6 µM BAP (Bar = 0.3 cm), (d) 9 µM BAP (Bar = 0.6 cm), (e) 12 µM BAP (Bar = 0.3 cm), (f) 15 µM BAP (Bar = 0.6 cm)</td>
<td>93</td>
</tr>
<tr>
<td>3.6</td>
<td>Shoot multiplication of Tibouchina semidecandra in half strength MS medium supplemented with (a) 0 (Bar = 1.0 cm), (b) 3 µM BAP (Bar = 0.5 cm), (c) 6 µM BAP (Bar = 0.5 cm), (d) 9 µM BAP (Bar = 0.5 cm), (e) 12 µM BAP (Bar = 0.6 cm), (f) 15 µM BAP (Bar = 0.5 cm)</td>
<td>94</td>
</tr>
<tr>
<td>3.7</td>
<td>Shoot multiplication of Tibouchina semidecandra in quarter strength MS medium supplemented with (a) 0 (Bar = 0.4 cm), (b) 3 µM BAP (Bar = 0.4 cm), (c) 6 µM BAP (Bar = 0.5 cm), (d) 9 µM BAP (Bar = 1.0 cm), (e) 12 µM BAP (Bar = 0.5 cm), (f) 15 µM BAP (Bar = 0.5 cm)</td>
<td>95</td>
</tr>
<tr>
<td>3.8</td>
<td>Shoot multiplication of Melastoma malabathricum in full strength MS medium supplemented with (a) 0 (Bar = 1.0 cm), (b) 3 µM BAP (Bar = 0.8 cm), (c) 6 µM BAP (Bar = 0.5 cm), (d) 9 µM BAP (Bar = 0.5 cm), (e) 12 µM BAP (Bar = 0.5 cm), (f) 15 µM BAP (Bar = 0.5 cm)</td>
<td>96</td>
</tr>
</tbody>
</table>
3.9 Shoot multiplication of *Melastoma malabathricum* in half strength MS medium supplemented with (a) 0 (Bar = 0.6 cm), (b) 3 µM BAP (Bar = 0.6 cm), (c) 6 µM BAP (Bar = 0.6 cm), (d) 9 µM BAP (Bar = 0.5 cm), (e) 12 µM BAP (Bar = 0.6 cm), (f) 15 µM BAP (Bar = 0.3 cm)

3.10 Shoot multiplication of *Melastoma malabathricum* in quarter strength MS medium supplemented with (a) 0 (Bar = 1.0 cm), (b) 3 µM BAP (Bar = 0.6 cm), (c) 6 µM BAP (Bar = 0.4 cm), (d) 9 µM BAP (Bar = 0.4 cm), (e) 12 µM BAP (Bar = 0.4 cm), (f) 15 µM BAP (Bar = 0.4 cm)

3.11 Shoot multiplication of *Melastoma dodecandrum* in full strength MS medium supplemented with (a) 0 (Bar = 0.5 cm), (b) 3 µM BAP (Bar = 0.3 cm), (c) 6 µM BAP (Bar = 0.3 cm), (d) 9 µM BAP (Bar = 0.3 cm), (e) 12 µM BAP (Bar = 0.3 cm), (f) 15 µM BAP (Bar = 0.3 cm)

3.12 Shoot multiplication of *Melastoma dodecandrum* in half strength MS medium supplemented with (a) 0 (Bar = 0.5 cm), (b) 3 µM BAP (Bar = 0.5 cm), (c) 6 µM BAP (Bar = 0.5 cm), (d) 9 µM BAP (Bar = 0.5 cm), (e) 12 µM BAP (Bar = 0.5 cm), (f) 15 µM BAP (Bar = 0.5 cm)

3.13 Shoot multiplication of *Melastoma dodecandrum* in quarter strength MS medium supplemented with (a) 0 (Bar = 1.2 cm), (b) 3 µM BAP (Bar = 0.6 cm), (c) 6 µM BAP (Bar = 0.5 cm), (d) 9 µM BAP (Bar = 0.5 cm), (e) 12 µM BAP (Bar = 0.5 cm), (f) 15 µM BAP (Bar = 0.5 cm)

3.14 Shoot multiplication of *Melastoma decemfidum* in full strength MS medium supplemented with (a) 0 (Bar = 1.0 cm), (b) 3 µM BAP (Bar = 0.6 cm), (c) 6 µM BAP (Bar = 0.6 cm), (d) 9 µM BAP (Bar = 0.7 cm), (e) 12 µM BAP (Bar = 0.6 cm), (f) 15 µM BAP (Bar = 0.6 cm)

3.15 Shoot multiplication of *Melastoma decemfidum* in half strength MS medium supplemented with (a) 0 (Bar = 0.7 cm), (b) 3 µM BAP (Bar = 0.6 cm), (c) 6 µM BAP (Bar = 0.6 cm), (d) 9 µM BAP (Bar = 0.5 cm), (e) 12 µM BAP (Bar = 0.5 cm), (f) 15 µM BAP (Bar = 0.5 cm)
3.16 Shoot multiplication of *Melastoma decemfidum* in quarter strength MS medium supplemented with (a) 0 (Bar = 1.0 cm), (b) 3 μM BAP (Bar = 1.0 cm), (c) 6 μM BAP (Bar = 1.0 cm), (d) 9 μM BAP (Bar = 1.0 cm), (e) 12 μM BAP (Bar = 0.3 cm), (f) 15 μM BAP (Bar = 1.0 cm) 105

3.17 Effect of solid and liquid MS medium on the shoot number and length after 4 weeks of culture for (A) *Tibouchina semidecandra*, (B) *Melastoma malabathricum*, (C) *Melastoma dodecandrum* and (D) *Melastoma decemfidum* at different BAP concentration 109

3.18 Shoot multiplication in liquid medium. 110

3.19 Effect of different media on shoot number and length for *Melastoma dodecandrum*. 114

3.20 Shoot multiplication of *Melastoma dodecandrum* at different types of media 116

3.21 Effect of different concentration of sucrose concentration (%) on shoot number and length for *Melastoma dodecandrum*. 119

3.22 Shoot multiplication of *Melastoma dodecandrum* at different concentrations of sucrose in MS medium 120

3.23 Effect of different concentrations of BAP (μM) and casein hydrolysate (g/L) on shoot number and length for *Melastoma dodecandrum* 124

3.24 Shoot multiplication of *Melastoma dodecandrum* at different concentrations of casein hydrolysate 126

3.25 Rooting of *in vitro* plant of *Tibouchina semidecandra* in (A) solid (Bar = 1 cm) and (B) liquid (Bar = 0.8 cm) full strength MS medium with no growth regulator 143

3.26 Rooting of *in vitro* plant of *Melastoma malabathricum* in (A) solid (Bar = 0.8 cm) and (B) liquid (Bar = 0.8 cm) half strength MS medium with no growth regulator 145

3.27 Rooting of *in vitro* plant of *Melastoma decemfidum* in (A) solid (Bar = 0.8 cm) and (B) liquid (Bar = 0.8 cm) full strength MS medium with no growth regulator 147
3.28 Rooting of *in vitro* plant of *Melastoma dodecandrum* in (A) solid (Bar = 0.8 cm) and (B) liquid (Bar = 0.8 cm) quarter strength MS medium with no growth regulator

3.29 Rooting of *in vitro* plant of (A) *Tibouchina semidecandra* (Bar = 1.8 cm), (B) *Melastoma malabathricum* (Bar = 1.8 cm), (C) *Melastoma dodecandrum* (Bar = 1.6 cm) and (D) *Melastoma decemfidum* (Bar = 1.5 cm) in solid MS medium after 4 weeks of culture

3.30 Plantlets of (A) *Tibouchina semidecandra* (Bar = 2.0 cm), (B) *Melastoma malabathricum* (Bar = 1.6 cm), (C) *Melastoma dodecandrum* (Bar = 1.6 cm) and (D) *Melastoma decemfidum* (Bar = 1.6 cm) after 6 weeks of culture in rooting MS medium which are ready to be transferred to the soil

3.31 Successfully acclimatized plantlet growing in soil after one month of transfer to soil (A) *Tibouchina semidecandra* (Bar = 1.4 cm), (B) *Melastoma malabathricum* (Bar = 1.4 cm), (C) *Melastoma dodecandrum* (Bar = 1.8 cm) and (D) *Melastoma decemfidum* (Bar = 1.4 cm)

3.32 A two-month-old plantlets of (A) *Tibouchina semidecandra* (Bar = 1.3 cm), (B) *Melastoma malabathricum* (Bar = 1.6 cm), (C) *Melastoma dodecandrum* (Bar = 2.0 cm) and (D) *Melastoma decemfidum* (Bar = 1.5 cm) growing in the soil

3.33 Flowering of (A) *Tibouchina semidecandra* (Bar = 8.0 cm), (B) *Melastoma decemfidum* (Bar = 10.0 cm), (C) *Melastoma malabathricum* (Bar = 10.0 cm) and (D) *Melastoma dodecandrum* (Bar = 8.0 cm)

3.34 Protocol for rapid micropropagation of *Tibouchina semidecandra*

3.35 Protocol for rapid micropropagation of *Melastoma malabathricum*

3.36 Protocol for rapid micropropagation of *Melastoma dodecandrum*

3.37 Protocol for rapid micropropagation of *Melastoma decemfidum*