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ABSTRACT 

 

 Basically, the purposes of buried conduit structures are to carry water in 

water supply system, to carry wastewater or storm water and also for 

conducting small streams or drains under embankments. Buried conduit 

structures such as buried pipes, culverts and arches are generally 

designed to resist the load of overlaying soil, traffic load and also the 

internal fluid pressure. 

 

In this project,  the selected buried conduit structure was a steel pipe. The 

analysis was carried out by Finite Element Method which was written in 

high level programming language, FOTRAN, environment. The models 

were carried out in linear and nonlinear analysis for various load cases. 

The comparison result of linear and nonlinear analysis were carried out, in 

order to study the behavior of steel pipe and surrounding soil react to the 

load cases.  In this study also, all the models were simulated by taking into 

account the effect of interface element. 

 

In addition, the classical method in designing the steel pipe, previous 

study on buried pipe, theory of finite element method and the theory of  

nonlinear elastic soil model were also presented. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

Buried conduit structures system are commonly used to transport water, 

sewerage, oil, natural gas, electric power, telecommunication cables, 

transportation , etc .  Since the pipelines carry materials essential to the 

support of life and maintenance of property they often referred to as 

“lifelines’”(M.O’Rourke and Lie,2000). Normally the top of the pipe is filled 

with earth. Basically, the purposes of buried conduit structures are to carry 

water in water supply system, to carry wastewater or storm water and also 

for conducting small streams or drains under embankments. Buried 

conduit structures such as buried pipes, culverts and arches are generally 

designed to resist the load of overlaying soil, traffic load and also the 

internal fluid pressure. In many instances, the variation of external soil and 

traffic loads on the pipelines shall be a minor effect if the pipe is not placed 

close to the surface. 

 

The understanding of soil-structure interaction is very important to the 

analysis, design and performance of the buried structures, because buried 

structures alone cannot withstand or resist the loads to which they are 
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subjected without the supporting strength of the surrounding soil in a 

complex interaction. 

 

This soil-structure interaction will be affected by the properties of structure 

such as type of material, size and stiffness of that material. Beside that, 

the construction method, the way the backfill material placed and the 

existing of the external loading such as transportation load may take into 

account during the design state. 

 

The characteristics of the interfaces between the structure and foundation 

may affect the response of the structure-foundation system when 

subjected to dynamic loadings such as the movement or settlement of soil.  

  

1.2 Application of Buried Steel Pipe 

 

The steel buried pipe is used widely in storm drainage, long span 

structure, corrugated steel box, storm water management and special 

water related issues.  Generally, drainage facilities can be classified into 

three major types of construction; culvert, storm water and bridge. 

The distinction between culvert and storm sewers is made mostly on the 

basis of length and types of inlets and outlets. A culvert is defined as an 

enclosed channel serving as a continuation or substitute for an open 

stream, where that stream meets an artificial barrier such as a roadway, 
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embankment or leveee. A culvert may also be classified as a type of 

bridge. Normally, the rigid definition of bridge requires that the deck of the 

structure also be the roadway surface and simply an extension of the 

roadway. The use of corrugated steel pipe large diameter pipe arches, 

structural plate and corrugated steel box culvert have played a major role 

as replacements for deteriorated bridges and altered this conventional 

definition. 

 

   

 Figure 1.1 : Steel pipe is used for median drainage in Ontario Highway 

 

Corrugated steel storm sewers have a service of over 100 years. The use 

of corrugated steel pipe for storm sewer has grown. The strength, 

flexibility, positive joints and installation economies of steel storm sewers 
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are assured by the use of rational corrosion design criteria and readily 

available coating and lining. Steel storm sewers are also used to re-line 

failing sewers of all sizes, shapes and materials with a minimum reduction 

in waterway area. 

 

 

 

 Figure 1.2 : Corrugated steel pipe used as storm sewer 

 

The corrugated steel pipe also used to replace or rebuilt a secondary 

bridge which has a span less than 15 m in length.  In the late 1960's, 

developments were made which involved adding longitudinal and 

circumferential stiffening members to the conventional 152 x 51 mm 

corrugation structural plate structures which permitted the use of larger 

sizes and increased permissible live and dead loads. This concept made it 

possible to achieve clear spans up to 18 m and clear areas up to 



© C
OPYRIG

HT U
PM

 5 

approximately 100 m2. With the introduction in Canada of 381 x 140 mm 

deep corrugated structural plate in the 1990's, clear spans increased to 23 

m with clear areas of 157 m2. Long span structures are particularly suited 

for relatively low, wide opening requirements. Depth of cover generally 

ranges from 0.3 to 30 m. 

 

Design procedures covering these long span structures can be found in 

the Canadian Highway Bridge Design Code (CHBDC) and the latest 

editions of the AASHTO Standard Specifications for Highway Bridges, 

Section 12.7, and LRFD Bridge Design Specifications, Section 12.8. 

 

 

Figure 1. 3 : Corrugated steel pipe is used a long span structure 
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 Figure 1.4 : Corrugated steel pipe is used as culvert bridge  

 

The continuing spread of urbanization requires new drainage concepts to 

provide efficient and safe disposal of storm water runoff. Existing storm 

drains in most areas cannot handle the additional volume at peak flow 

times. Severe flood damage can occur without storm water management 

utilizing such tools as retention and detention systems. 

 

Where storm water runoff has no outlet for disposal, a retention system is 

a viable solution. The storm water is deliberately collected and stored, 

then allowed to dissipate by infiltration into the ground. Additional benefits 

are the enhancement of the ground water resources and the filtration of 

storm water through percolation. The use of fully perforated corrugated 
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steel pipe for recharge wells and linear pipes is a very cost effective way 

of disposing of excess storm water. 

 

Where storm water runoff has an outlet that is restricted due to 

downstream use during peak flow periods, a detention system can be 

used. Temporary detention of storm water in corrugated steel pipe storage 

tanks can be most economical and reliable. Storm water is detained 

beyond the peak flow period and then systematically released into the 

downstream storm drain. The demand for zero increase in rate of runoff is 

very apparent in urban drainage design. Using corrugated steel pipe for 

detention and retention systems answers that need.  

 

 

 Figure 1.5 : Corrugated steel pipe is used as detention system 
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Soil erosion by water is a common and destructive force that plagues 

many engineering works. It makes unsightly gullies on roadways, cut 

slopes and embankments. It gouges out side ditches, fills culverts with 

sediment and is a costly nuisance. There are three basic ways of 

preventing erosion. The first is to treat the surface by paving, riprap, 

erosion-resistant turf, vines, or other vegetation. The second is to reduce 

the velocity of the water by means of ditch checks. The third is to intercept 

the water by means of inlets and convey it in corrugated steel flumes, pipe 

spillways, stream enclosures, or storm drains. Larger streams may be 

controlled by steel sheeting, jetties, or retaining walls. Corrugated steel 

pipe, with its long lengths, positive joints and flexibility to conform to 

shifting soil, provides a most dependable means of solving erosion 

problems. 

Earth dams, levees and many other types of embankments require 

culverts or outlets for intercepted or impounded water. Corrugated steel 

pipes are particularly advantageous and have enviable records for this 

type of service Small dams are used extensively for soil conservation and 

to supply drinking water for livestock. Large dams may impound water for 

public supplies, irrigation, power, recreation, or navigation. All dams 

require some means, such as a drain pipe spillway, to handle normal 

overflow and prevent overtopping and possible washout. For emergency 

overflow, a turf covered ditch, or one lined with a corrugated steel flume, 
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or chute is usually satisfactory. Soil conditions at these locations are 

seldom ideal. Hence strong, flexible pipes are needed to resist disjointing, 

settlement and infiltration of the surrounding soil.  

 

In many sites, the need to accommodate migrating fish passage is an 

important consideration in culvert design. Transportation and drainage 

designers should seek early coordination with environmental, fish, and 

wildlife agencies Extensive experience has shown clearly that culverts can 

be designed to provide for fish passage. Design criteria for the specific fish 

species should be clarified during project development. Conversely, 

prevention of migration of rough fish or lampreys into upstream spawning 

grounds can also be accommodated, through the incorporation of suitable 

weirs or barriers into the culvert design. Several variations in design are 

possible to accommodate fish passage: 

1.  Open-Bottom Culverts - or arch-type culverts on spread footings 

retain the use of the natural streambed. This approach is favored in 

streams with rocky or semi-resistant channels. Selection of a wider-

than-usual arch span also provides for maintenance of natural 

stream velocities during moderate flows. 

2.  Tailpond Control Weirs - have proven to be the most practical 

approach to meet a minimum water depth requirement in the 

culvert barrel. A series of shallow weirs, with a notch or small weir 

for low-flow passage, have proven extremely effective. Larger weirs 
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of more substantial design may require provision for separate fish 

ladder bypasses. 

3.  Oversized Culverts - limiting velocities may require the use of 

oversized culverts. Oversizing and depressing the culvert invert 

below the natural stream bed permits gravel and stone deposition, 

resulting in a nearly natural stream bed within the culvert. 

Numerous velocity profiles taken during floods indicate that wall 

and bed friction permit fish passage along the wall. In effect, the 

roughness of the steel barrel assists in fish passage. 

4.  Culverts with baffles attached to the invert - considerable recent 

laboratory and prototype research has indicated that baffles or 

spoilers can significantly aid fish passage. 

5.  Multiple barrel installations - have proven particularly effective in 

wide, shallow streams. One barrel can be specifically designed with 

weir plates inside the barrel to provide for fish passage. The use of 

baffles in the barrel. Structural plate pipe installation with fish 

baffles attached to invert. of a drainage structure is also useful at 

sites where energy dissipation may be desirable. 
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 Figure 1.6 : Corrugated steel pipe is used as fish migrating passage 

 

Power plants require vast amounts of cooling water. Structural plate steel 

pipes over 6 m in diameter have been used for water intakes. These lines 

are typically subaqueous, requiring special underwater construction by 

divers. Corrugated steel is especially suitable for this type of construction 

and has been used for such lines in the Great Lakes region. Thermal 

pollution is a major problem with discharge water from power plants. In 

large deep bodies of water, long discharge lines of structural plate pipe 

can carry the heated effluent to sufficient depth for dilution or tempering.  

 

Steel conduits serve many practical purposes other than for drainage and 

sewers. 
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Some of these are: 

 Underpasses or tunnels for safe movement of people, animals and 

vehicles. 

 Materials handling in conveyor tunnels, aerial conduits or systems 

protected by conveyor covers; and storage bins for aggregates and other 

materials. 

 Utility conduits for protecting pipe lines and cables; also entries, 

escapeways, ventilation overcasts and air ducts. 

 

 Figure 1.7: Corrugated steel pipe is used as utility conduit 
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1.3 Objective 

 

The objective of this study is involves in analysis of buried steel pipe by 

classical method and finite element method. In the finite element method, 

the model will be modeled in linear and nonlinear analysis for a various 

loading conditions. The adopted soil condition in this study is based on the 

soil investigation report for the project of Immediate Action Plan 

Multimedia Super Corridor at Sg.Rasau/Air Hitam Selangor. The 

determination of soil nonlinear parameter is based on Duncan Method et 

al (1980).  Furthermore, the applications of the buried steel pipe and past 

researches on the buried conduit structures were also presented in this 

study.    

 

1.4 Scope of Study 

 

Firstly, a brief on the type of buried conduits, construction method and 

durability of the steel pipe are presented in the literature review chapter. In 

the literature review chapter also, a brief on the code and manuals which 

are commonly used in analyzing and designing the buried pipe named as 

classical method. In addition, a past study and research on the buried 

conduit finite element modeling also presented by abstracting from 

internet, published journal and others thesis.  
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 Secondly, in methodology chapter, it will brief on the classical method 

formulation in analyzing and designing the buried pipe. Then, a theory of 

finite element method , interface element and nonlinearity of soil 

parameter also presented in this chapter.  Furthermore, it also presented 

the step of finite element modeling including the process of FOTRAN 

programme calibration.  

In chapter 4, it will be presented the theory of nonlinear elastic soil model 

by Duncan et al (1980) and the procedure of evaluation the nonlinear soil 

parameter.  In chapter 5, the study will discuss on the analysis of the 

selected buried steel pipe case, load case, the modeling results and the 

conclusion of the study will be presented chapter 6.   
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