

UNIVERSITI PUTRA MALAYSIA

COMPARATIVE STUDY OF ROOF TRUSS CONSTRUCTION METHODS IN MALAYSIA

MOHD SYAHRUL HISYAM BIN MOHD SANI

FK 2004 129

COMPARATIVE STUDY OF ROOF TRUSS CONSTRUCTION METHODS IN MALAYSIA

MOHD SYAHRUL HISYAM BIN MOHD SANI

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING UNIVERSITI PUTRA MALAYSIA SERDANG, SELANGOR 2004

COMPARATIVE STUDY OF ROOF TRUSS CONSTRUCTION METHODS IN MALAYSIA

BY MOHD SYAHRUL HISYAM BIN MOHD SANI

A Project Report Submitted In Partial Fulfillment of the Requirements for the Degree of Master of Science in the Faculty Of Engineering, Universiti Putra Malaysia Serdang, Selangor Nov 2004

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING UNIVERSITI PUTRA MALAYSIA SERDANG, SELANGOR 2004

PROJECT APPROVAL FORM

Name : Mohd Syahrul Hisyam bin Mohd Sani Project Title : Comparative Study Of Roof Truss Construction Methods In Malaysia

This project report attached hereby entitled: "COMPARATIVE STUDY OF ROOF TRUSS CONSTRUCTION METHODS IN MALAYSIA" is submitted by Mohd Syahrul Hisyam bin Mohd Sani in partial fulfillment of the requirement for the Master Science (Structure and Construction) in Faculty of Engineering; Universiti Putra Malaysia is hereby accepted.

Approved by:

Date: _____

Professor Abang Abdullah Abang Ali Department of Civil Engineering Faculty of Engineering (Supervisor)

Date:

Associate Prof. Ir.Dr. Salleh Jaafar Department of Civil Engineering Faculty of Engineering (Panel Examiner)

Date: _____

Associate Prof. Dr. Jamalodin Norzaei Department of Civil Engineering Faculty of Engineering (Panel Examiner)

Acknowledgement

Alhamdullillah, I would like to take this opportunity to dedicate this report to my dearest parents, Mohd Sani bin Samsudin and Norbishah bt Abdul Wahab for their support during the preparation of this study. I would also like to express my sincere gratitude to my project supervisor, Professor Abang Abdullah Abang Ali, for his priceless guidance, suggestions, supportive advice and constructive criticisms all the way through this study project.

I wish to place on record of appreciation to Associate. Prof. Dr. Waleed A.M. Thanoon, Associate. Prof. Dr. Mohd Salleh Jaafar and Associate. Prof. Dr. Jamaloddin Norzaei for their fondness and effort as panel examiner for this project.

I offer my special thanks and appreciation to all the questionnaire respondents and the company of the prefabrication roof trusses system manufacturer for their answers, ideas and suggestion.

Last but not least, I would like to send my thanks and grateful to all my friends especially my course mates for being lenient and ready to lend a hand to make this project successful. Not forgotten to those who have helped me in anyway directly or indirectly in the preparation of this thesis.

CONTENT	PAGE
ACKNOWLEDGEMENT	I
ABSTRACT	II
TABLES OF CONTENTS	IV
LIST OF TABLES	IX
LIST OF FIGURES	
CHAPTER 1: INTRODUCTION	
1.1 INTRODUCTION	1
1.2 OBJECTIVE	3
1.3 SCOPE OF STUDY	3

TABLE OF CONTENTS

CHAPTER 2: LITERATURE REVIEW

2.0	INTRODUCTION

2.1 TRUSSES

2.1.1 General	4
2.1.2 Common Types of Roof Trusses	9
2.1.3 Timber and Steel in Roof Trusses System	11

2.2 PREFABRICATION ROOF TRUSSES

	2.2.1 Introduction	14
	2.2.2 Organization of Structural Company	15
	2.2.3 Bidding on contract	16
	2.2.4 Preparation of Shop Drawings	17
	2.2.5 Assembling of Trusses	19
	2.2.6 Typical Roof Truss Design Drawing	20
2.3	REVIEW OF USING PREFABRICATED ROOF TRUSSES	
	2.3.1 Prefabricated timber/ wood roof trusses	22
	2.3.1.1 Truss Manufacture	23
	2.3.1.2 Truss Handling, Installation and Storage	24
	2.3.1.3 Suggested Architectural Specifications	24
	2.3.2 Prefabricated Steel Roof Trusses	28
2.4	ON-SITE CONSTRUCTION ROOF TRUSSES SYSTEM	28
2.5	THE VIRTEK TRUSSLINE	29
2.6	DESIGN OPTIMIZATION OF N-SHAPED ROOF TRUSSES	30

USING REACTIVE TABOO SEARCH

2.7	TRUSS-T-GRIP	32
2.8	ROOF TRUSS FAILURES AND ROOF COLLAPSE	34
2.9	CONSTRUCTION INDUSTRY DEVELOPMENT BOARD	37
	(CIDB)	

CHAPTER 3: METHODOLOGY

3.0	INTRODUCTION	39
3.1	QUESTIONNAIRE FOR CONTRACTORS AND CONSULTANTS/	
	ARCHITECTS	40
3.2	QUESTIONNAIRE FOR MANUFACTURERS	41
3.3	OBSERVATION OF THE METHODS	42
3.4	OBSERVATION OF MANUFACTURING METHODS	42
3.5	METHODS OF ANALYSIS	43
CHAI	PTER 4: RESULTS AND DISCUSSIONS	
4.1	INTRODUCTION	45
4.2	FREQUENCIES	
	4.2.1 Frequency Table	45
	4.2.2 Conclusion	69
4.3	CASE STUDIES	
	4.3.1 Case Study No. 1, Pryda Prefabricated Timber Structure	
	4.3.1.1 Features and Benefits	72
	4.3.1.2 Advantages of Timber Truss	75

		4.3.1.3 Procedure of Quotation	81
	4.3.2	Case Study No.2, Multinail Roof Trusses System	
		4.3.2.1 Introduction	82
		4.3.2.2 Multinail Fabricators	85
		4.3.2.3 Truss Numbering System	88
		4.3.2.4 Truss systems in Multinail Prefabrication	90
		4.3.2.5 Special Truss Systems	97
		4.3.2.6 Standard and Special Design	100
		4.3.2.7 Multinail Steelwood Specification	103
		4.3.2.8 Conclusion	106
	4.3.3	Case Study No.3, Mega Steel Prefabrication Trusses	
		4.3.3.1 Introduction	109
		4.3.3.2 Lightweight Steel Truss	111
		4.3.3.3 Roof Batten	113
		4.3.3.4 Design	114
		4.3.3.5 Accredited Installer	115
		4.3.3.6 Warranty	116
		4.3.3.7 Advantages	116
	4.3.4	Case Study No.4, Steel Built On-site Roof Trusses	119
4.4	HAND	DLING AND ERECTING TRUSSES	126
4.5	EREC	TIONS AND FIXING	129
4.6	ROOF	TRUSS FAILURES	133
4.7	HOW	TO AVOID THE ROOF TRUSS SYSTEM FAILURES	

	AND COLLAPSE	141
4.8	SITE OBSERVATION CONCLUSION	
	4.8.1 Prefabrication	145
	4.8.2 Built onsite	147
	4.8.3 Cost Analysis	149
CHAP	PTER 5: CONCLUSION AND RECOMMENDATION	
5.1	CONCLUSION	154
5.2	RECOMMENDATION FOR FURTHER STUDY	158
REFE	ERENCES	160
APPE	ENDIX	
Appe	ndix A	
Appe	ndix B	
Appe	ndix C	

UPM

LIST OF FIGURES

Figu	ure	Page
3.1	Some basic terminology used for trusses	6
3.2	Parts of a roof truss system	6
3.3	Parts of a truss framed roof	8
3.4	Example of roof Truss-T-Grip	34
4.1	Graph shows the prefabrication system score versus the frequenc	y 63
4.2	Graph shows the built on-site system score versus the frequency	63
4.3	Graph show the mean versus characteristic no.1	65
4.4	Graph show the mean versus characteristic no.2	65
4.5	Graph show the mean versus characteristic no.3	66
4.6	Graph show the mean versus characteristic no.4	66
4.7	Graph show the mean versus characteristic no.5	67
4.0		

4.8 Graph show the comparison between overall mean versus

	Methods of construction	68
4.9	Example of the Pryda project	77
4.10	Example of timber used for truss systems	78
4.11	Example of a high quality metal connector plate	78
4.12	Saw setup for cutting process	79
4.13	Timber roof truss system assembly	79
4.14	Example of software application	80
4.15	Procedure or method in prefabrication timber roof trusses	87
4.16	Multinail Truss Numbering System No.1	88
4.17	Multinail Truss Numbering System No.2	89
4.18	The Gable End and the out-rigger purlins supported by the	
	top chords	92
4.19	Using Under-Purlins attached to the lower edges of the top	
	chords.	92
4.20	Cantilevered Beam with the Standard Truss	93
4.21	The Hip Roof System	94
4.22	The Dutch Hip Truss System	95
4.23	The Girder and Saddle Truss System	96
4.24	The Girder Truss with the Saddle Trusses and other support	96
4.25	The bearing with the solid length of the heel joint	98
4.26	The bearing close to heel	99
4.27	The large distance between heel and bearing	99
4.28	The representative labor from Prefabrication Company that using	

	crane to install the roof truss systems	102
4.29	Using the crane to install and erecting the prefabrication roof	
	truss systems	102
4.30	Prefabrication roof truss systems is delivery to site for	
	installation	103
4.31	Example of a roof layout for design and construction	105
4.32	Using the automatic jigs and saw for cutting timber	107
4.33	Example of Multinail Connection	108
4.34	The view of the timber truss systems with Multinail connection	108
4.35	Example of the steel hollow section for roof truss systems	112
4.36	Steel prefabrication roof truss systems	118
4.37	The inside construction view of the steel roof truss systems	119
4.38	The finishing steel (aluminum) built on-site system	121
4.39	The actual roof truss system after final stages	121
4.40	The back view of the built on-site system	122
4.41	The backward view of the roof truss systems	122
4.42	The bottom chord and the support of the roof truss systems	123
4.43	The systematic arrangement and the connection of the roof	
	truss systems	123
4.44	The side view of the roof truss systems	124
4.45	The Aluminium C-Lipped Channel (material) for roof truss	
	system	124
4.46	The Aluminium C-Lipped Channel	125

4.47	The view of the material is look so clean and systematic	126
4.48	Example of truss failure resulting from fatigue on a knot in the	
	timber	136
4.49	Example of truss failure resulting from fatigue due to old age	
	an subsequent improved support struts inserted to keep trusses	
	from sagging further	137
4.50	Example of truss failure resulting from geyser load due to	
	incorrect placement of geyser across trusses	137
4.51	Termite infested timber	138
4.52	Leaking roof screws result in rotting roof timber and eventual	
	truss and beam failure	138
4.53	A 70 foot truss failed while workers were setting it in place on	
	a building under construction on Medical Centre Drive	139
4.54	The Battens Are To Be Nailed To Each Of The Top Chord	142

Declaration

I hereby declare that the project is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institution.

Signature

LIST OF TABLES

Table		Page
4.1	The result of analysis questionnaire data	45-62
4.2	Analysis of comparison between built on site and prefabricated	64
	roof truss mean values	
4.3	The overall mean between two methods of construction	68
4.4	Show the cost comparison between prefabrication and on-site	153
	method	
4.5	Show the time of completion between prefabrication and on-site	153
	method	

A Master Project Report Submitted In Partial Fulfillment of the Requirement for the Master of Science in the Faculty Of Engineering, Universiti Putra Malaysia

COMPARATIVE STUDY OF ROOF TRUSS CONSTRUCTION METHODS IN MALAYSIA

October 2004

ABSTRACT

The first light frame trusses were built on site using nailed plywood gusset plates. These trusses offered acceptable spans but demanded considerable time to build. In the 1950's the metal connector plate transformed the truss industry by allowing efficient prefabrication of short and long span trusses. With the growing demand for affordable housing, increasing construction costs and heightened concern for energy-efficiency, contractors and builders across Malaysia have recently begun to re-examine their options for the delivery of housing. Roof trusses come in all shapes and sizes to suit almost every single design of roof. This trend has resulted in a growing interest in prefabricated building system including roof truss systems.

Both prefabricated roof truss systems and onsite roof truss construction are used currently. From this two system, many macroeconomic factors and regulatory factors like speed of construction and use advanced technology have been cited as reasons for this, little attention has been paid to the nature of the homebuilding industry, its operational structures and the ability of the product itself to accommodate the contractor's needs and preferences.

From these two methods, the site observation, interview and questionnaire data are been analysed from the characteristic factors that involve in roof truss construction. All the parties that involve in construction industry like roof truss

Π

manufacturers, contractors and consultants are being interviewed and asked about the roof truss system. Finally the result that been generated is show that the prefabricated system is the most popular system and give many advantages to Malaysian construction industry.

CHAPTER 1 INTRODUCTION

1.1) GENERAL

The purpose of a roof truss is to support the roof which keeps the elements such as rain, snow and wind out and to support the loads from ducts, piping and ceiling. While performing these functions, they must also support the roofs and their own weight. There are two basic terminology used for trusses in residential construction which are pitched (triangular) truss and parallel chord (flat) truss. Lightweight trusses are manufactured to suit virtually any roof profile. Pitched or flat, they are only limited to the load arrangements and the support locations. Flat trusses also known as parallel chord trusses are an alternative to conventional floor joist systems and are a competitive option to open web joint systems. Parallel chord floor trusses may be designed with varying chord and web arrangements and bearing support details. The different truss systems and methods will be considered in this study to know where the suitable method and give benefit to Malaysian construction industry. All advantages and disadvantages will be showed to recognize the better solution that can make profit and benefit to client and contractor.

The goal of this study was to determine if innovative building systems and materials have the potential to lead to better productivity and give benefit in the Malaysian construction activity. Furthermore, it is to establish the premise that builders who use prefabrication and built onsite methods will perform more productively than those contractors or builders who don't. These ideas were pursued by first reviewing the history of home building to determine trends and patterns in innovation. The practical phase of the study was accomplished by interviewing local and regional contractors and manufacturers about their actual systems of construction used for residential homes construction. These systems were then analyzed to determine the contribution of these systems to the builder's productivity.

Prefabricated roof truss systems have replaced conventional or onsite construction roof trusses systems for 75% of single and multi-family construction. This is no surprise, due to the many advantages of using prefabrication trusses system. This engineering eliminates guesswork, provides a more uniform roof appearance and speeds the construction process. Using trusses will cut down on time and labor costs on the job site. Houses and buildings can be enclosed more quickly and thus avoid weather related problems. So that from here can make analysis and determine the good one for construction on site either using prefabrication system or using onsite construction system. Otherwise to know how this both system can give more economic to our economy status.

2

1.2) OBJECTIVE OF STUDY

The objective of this research project is to study and compare the different roof trusses used in Malaysia. From here we can determine the most suitable systems and relevant system in the residential houses that suite to the Malaysian construction industry. This will be know by making analysis between this both system in many aspect like cost, quality, environment, time taken, high buildability score and etc. Then, from the study we can determine all the advantages and disadvantages occur for prefabrication roof trusses system in Malaysia construction scope. After that, we also to determine all advantages and disadvantages of onsite roof trusses system. Beside that, to study the stages of prefabrication roof trusses system from prepare material until delivery the roof trusses to construction site. Finally from questionnaire information, site observation and result we can select the good and productivity system in Malaysia achieve the new area of construction technologies. Better in time, better in construction and make the profit.

1.3) SCOPE OF STUDY

Firstly, make the questionnaire to get all information about prefabrication roof trusses system with onsite roof trusses system. The questionnaire will be pass for all parties that involve in construction and also involve in roof trusses. So the questionnaire will split into three categories that as describe below:

Besides that, these studies have to make some interview and site observation

with the trusses manufacturing and contractor.

REFERENCES

- Melissa Lynn Obiso. 1997. Analysis of Means and Methods of construction improvement in single family housing in Mid-Atlantic rural University Towns, M. Science Thesis, Virginia Polytechnic Institute and State University, USA.
- Avi Friedman and Vince Cammalleri. 2004. Prefabricated Wall systems and the North American Home Building Industry. McGill University, Montreal, Canada.
- Central Fairbank Lumber. Fabricators Of Roof and Floor Wood Trusses <u>http://besttruss.com/woodtr.htm</u>. Accessed on 16 January 2004.
- A & R Truss Company, Inc. Parts of a roof truss. http://www. Webmaster
 @ truss-frame.com. Accessed on 4 Jun 2004.
- S. Abdol Chini and Kavita Gupta. 1996. A Comparison Between Steel And Wood Residential Framing Systems. ASC Proceedings of the 32nd Annual Conference Texas A&M University- College Station, Texas, pp 117 – 126.
- MacGinley, T.J. 1997. Structural steelwork calculations and detailing, Butterworths publisher, pp 102 – 158.
- Truss Design Procedures and Specifications for light Metal Plate
 Connected Wood Trusses; Truss Plate Institute Of Canada (TPIC), 1984
 CSA Standard 086, Engineering Design in Wood.
- Part 9; Housing and Small Buildings and Part 4; Structural Design, National Building Code of Canada (NBCC).

- Winter. 1998. Timber vs Steel; Northside Trusses and Frames, A Division Of Colonial Timbers Pty Ltd. <u>http://www.ntf.net.au/</u>. Accessed on 20 July 2004.
- Tim Wilkinson. 2000. An overview of recent and current research in steel structures, IEAust Sydney Division, Civil & Structural Panel Sydney, Australia.
- 11. Alan D. Freas. Truss manufacturing the easy way. Wood Products and Their Use In Construction. <u>http://www.virtek.ca</u>. Accessed on 2 August 2004.
- 12. Kimmo J. Sahramaa. 1998. Discrete Event Simulation And Economics Of Integrated Rosette Frame Panel Delivery System; Partner, FUSA Tech, Inc., The International Conference on Steel in Green Building Construction. USA.
- Karim Hamza, Haitham Mahmoud, Kazuhiro Saitou. 2002. Design Optimization Of N-shaped Roof Trusses Using Reactive Taboo Search; University of Michigan, New York.
- R. Battiti and G. Tecchiolli. 1994. The Reactive Tabu Search; ORSA Journal on Computing; 6 pp 126-140.
- 15. L. Gil and A. Andreu. 2001. Shapes and Cross Section Optimization Of A Truss Structure, Computers and Structures 79 pp 681-689.
- 16. U. Kirsch. 1997. Optimal Design Of Trusses by Approximate Compatibility, Computers and Structures 12 pp 93-98.

- 17. Why trusses fail. <u>http://www.webmaster@roofcollapse.com</u>. Accessed on 20 Mac 2004.
- NAHB Research Center, Inc. 1998. Factory and Site-built housing a comparison for the 21st century. U.S. Department of Housing and Urban Development.
- 19. Greg Dummer. 1998. Keep'em Straight; Technical Talk Information For Builders With The Aim Of Improving Understanding Of The Truss System.
- T. June Melton. 2000. Failures of in-service MPC Parallel-Chord Wood Floor Truss Components Reveal Deficiencies in ANSI/TPI Standards;
 P.E., President Amstar Engineering, Amstar Engineering.
- 21. R.Gupta and K. Gebremedhin. 1990. Destructive Testing Of Metal-plate Connected Wood Truss Joint; ASCE, 116(7).
- 22. CIDB Industrialised Building System Steering Committees. 2000. Spearheading Innovations in the Construction Industry, Construction Industry Development Board Malaysia (CIDB).