UNIVERSITI PUTRA MALAYSIA

RESONANCE FREQUENCY RESPONSE OF QUARTZ CRYSTAL MICROBALANCE WITH DIFFERENT METAL ELECTRODES IN SACCHARIDE SOLUTIONS

SITI SALMIWATI BINTI ABDUL AZIZ

FS 2008 5
RESONANCE FREQUENCY RESPONSE OF QUARTZ CRYSTAL MICROBALANCE WITH DIFFERENT METAL ELECTRODES IN SACCHARIDE SOLUTIONS

SITI SALMIWATI BINTI ABDUL AZIZ

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2008
RESONANCE FREQUENCY RESPONSE OF QUARTZ CRYSTAL MICORBALANCE WITH DIFFERENT METAL ELECTRODES IN SACCHARIDE SOLUTIONS

By

SITI SALMIWATI BINTI ABDUL AZIZ

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master Science

July 2008
RESONANCE FREQUENCY RESPONSE OF QUARTZ CRYSTAL MICROBALANCE WITH DIFFERENT METAL ELECTRODES IN SACCHARIDE SOLUTIONS

By

SITI SALMIWATI BINTI ABDUL AZIZ

July 2008

Chairman : Associate Professor Zainal Abidin Talib, PhD
Faculty : Science

This project investigated the resonance frequency response of Quartz Crystal Microbalance (QCM) with different metal electrodes in different type of liquids. The study investigates the relationship of the density and viscosity of the solutions as a function of the resonance frequency shift (ΔF_w) of the QCMs. The technique used was based on the principle of electromechanical coupling of piezoelectric Quartz Crystal Microbalance.

In this study, QCMs of 10 MHz fundamental frequency with chromium, molybdenum, tungsten and gold electrodes were used to measure their ΔF_w in saccharide solutions. The quartz crystal was clamped between two O-rings in a liquid flow cell. Only one side of the crystal was exposed to the solutions which flow through it propelled by a micro-tube pump. A total of six different saccharide solutions were chosen. The saccharide samples (glucose, fructose, mannose, sucrose, maltose and lactose) were prepared as
solutions with different concentrations. All the measurements were carried out at room
temperature, 26.5 ± 0.5 °C.

The research demonstrates that the interaction of the vibrating quartz crystal with the
liquid medium is expressed by a decrease in the resonance frequency, which is
proportional to the product of the square root of the solution viscosity and density. The
increase in the viscosity of the liquid also causes the vibrating mass to increase on the
quartz crystal surface, and this make resonance frequency decreases. The aim of the
study was to achieve an understanding of the information provided by measuring the
shifts in the resonance frequency of the QCM with different metal electrodes (Cr, Mo,
W, and Au) in saccharide solutions.

Resonance frequency shift (ΔF_w) of the QCM with gold electrodes was found more
responsive compared to chromium, molybdenum and tungsten electrodes in saccharide
solutions. The determination of parameter K, the coefficient of the equation that governs
the relationship between ΔF_w, viscosity and density is one of the major objectives of the
project. It was found that value K changes with different saccharide solutions in the
range of 0.647×10^4-3.234×10^4 cm2 g$^{-1}$ s$^{-1/2}$.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

RESPON FREKUENSI RESONAN PENIMBANG MIKRO HABLUR KUARTZA DENGAN BERLAINAN ELEKTROD LOGAM DALAM LARUTAN SAKARIDA

Oleh

SITI SALMIWATI BINTI ABDUL AZIZ

Julai 2008

Pengerusi : Profesor Madya Zainal Abidin Talib, PhD
Fakulti : Sains

disediakan sebagai larutan ceair dengan kepekatan yang berlainan. Semua pengukuran dilakukan pada suhu bilik, 26.5 ± 0.5 °C.

Kajian ini menunjukkan bahawa interaksi getaran hablur kuartza dengan medium kelikatan dapat dinyatakan oleh penurunan frekuensi yang mana adalah berkadar terus dengan punca kuasa dua produk bagi kepekatan dan kelikatan larutan. Peningkatan dalam kelikatan bagi suatu ceair menyebabkan peningkatan getaran jisim ke atas permukaan hablur kuartza dan meningkatkan frekuensi resonan. Kajian ini bertujuan untuk mencapai dan memahami dalam meningkatkan maklumat tentang pengukuran perubahan dalam frekuensi resonan bagi Penimbang Mikro Hablur Kuartza dengan berlainan elektrod logam (kromium, molibdenum, tungsten dan emas) dalam larutan sakarida.

Perubahan frekuensi \(\Delta F_w\) resonan bagi Penimbang Mikro Hablur Kuartza dengan elektrod logam emas menunjukkan respon yang lebih baik berbanding elektrod logam kromium, molibdenum dan tungsten. Penentuan parameter \(K\) adalah nilai permulaan bagi persamaan yang merangkumi hubungan antara \(\Delta F_w\), kelikatan dan ketumpatan adalah objektif utama di dalam projek ini. Kajian menunjukkan bahawa nilai \(K\) berubah dengan perbezaan larutan sakarida dengan julat antara 0.647x10^4-3.234x10^4 cm² g⁻¹ s⁻¹/2.
DEDICATIONS

For my lovely husband and daughter;
 Jumain Bin Arifin
 Fatin Najwa Binti Jumain

For my dearest family and siblings;
 Abdul Aziz Bin Abdul Razak
 Zainun Binti Abdul Hamid

For my supervisor, co-supervisor and friends,

Thank you for their understanding, supporting and encouragement.

-MIE 2008-
ACKNOWLEDGEMENTS

Alhamdulillah, in the name of Allah S.W.T., for giving me health and strength for successfully completing my project and writing this thesis. I also extend greet to Prophet, Muhammad S.A.W. I would like to take this opportunity to express my sincere appreciation and heartfelt thanks to the followings that have contributed in many ways and supported me along the journey towards the completion of this thesis.

Firstly, I would like to extend my sincerest appreciation to my research supervisor, Associate Professor Dr. Zainal Abidin Talib for in his invaluable guidance, comments, suggestions, corrections and encouragement during the process of my project and during the preparation of this report.

I would also like to convey special thank to my co-supervisors, Professor Dr. W. Mahmood Mat Yunus and Professor Dr. Anuar Kassim and all the staff in Department of Physics and Department of Chemistry, Faculty of Science, Universiti Putra Malaysia for assisting and helping me in order to accomplish this research project successfully.

To my beloved husband, Jumain Arifin, my parent, brothers and sisters, I wish to thank them for their understanding, support, encouragement and advice through the duration of this research. Finally, I would like to acknowledge all my friends for their help, support and encouragement in making this thesis a success. The financial support under IRPA, vote No. 54372 is also gratefully acknowledge and appreciated. Thank you very much.
I certify that an Examination Committee met on 4th July 2008 to conduct the final examination of Siti Salmiwati Binti Abdul Aziz on her Master of Science thesis entitled “Resonance Frequency Response of Quartz Crystal Microbalance with Different Metal Electrodes in Saccharide Solutions” in accordance with Universiti Pertanian Malaysia (Hinger Degree) Act 1980 and Universiti Pertanian Malaysia (Hinger Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Abdul Halim Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Kaida Khalid, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Wan Mohamad Daud Wan Yusoff, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Fauziah Haji Abdul Aziz, PhD
Professor
Science School and Technology
Universiti Malaysia Sabah
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 August 2008
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Zainal Abidin Talib, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

W. Mahmood Mat Yunus, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Anuar Kassim, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professors and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 September 2008
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

SITI SALMIWATI ABDUL AZIZ

Date: 21 July 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATIONS</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/NOTATION/GLOSSARY OF TERMS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Quartz Crystal Microbalance (QCM) Characteristics 1
 1.2 Application of Quartz Crystal Microbalance Electrochemistry 3
 1.3 Research Scope in the QCM Technique 6
 1.3.1 Electrodes 6
 1.3.2 Saccharide 7
 1.4 Objectives of The Study 8
 1.5 Outline of the Thesis 9

2 LITERATURE REVIEW
 2.1 Introduction 10
 2.2 Review of Quartz Crystal Microbalance on Species in Solution and Solution Properties 11
 2.3 Review of Longitudinal Waves of QCM in Liquids Behaviour 26
 2.4 Summary of the Previous Study 28

3 THEORY
 3.1 Effect of Mass-Frequency Correlations 30
 3.2 Effect of the Solution on Oscillation 32
 3.3 Background of Saccharide Solutions 35
 3.3.1 Monosaccharide 37
 3.3.2 Disaccharides 39

4 METHODOLOGY
 4.1 Introduction 42
 4.2 Saccharide Solutions Preparation 42
5 RESULTS AND DISCUSSION
 5.1 Introduction
 5.2 Resonance Frequency Response of QCM with Different Metal Electrodes in Saccharide Solutions
 5.2.1 Glucose solution
 5.2.2 Fructose solution
 5.2.3 Mannose solution
 5.2.4 Sucrose solution
 5.2.5 Maltose solution
 5.2.6 Lactose solution
 5.3 The Density and Viscosity for Saccharide Solutions
 5.3.1 Monosaccharide Solutions
 5.3.2 Disaccharides Solutions
 5.4 Effect of the Concentration for Saccharide Groups onto the QCM Electrodes
 5.5 Dependence of the Resonance Frequency Decrease on Density and Viscosity of the Solutions Product
 5.6 The Sensitivity of Parameter K

6 CONCLUSION AND SUGGESTIONS
 6.1 Conclusion
 6.2 Suggestions

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Disaccharide descriptions and components</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>The density of distilled water data at room temperature of mass, m=24.831g</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Characteristic of the frequency signal from the QCM crystal in water</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>Data list of density and viscosity for 10 MHz QCM crystal in monosaccharide solutions</td>
<td>66</td>
</tr>
<tr>
<td>5.2</td>
<td>Data list of density and viscosity for 10 MHz QCM crystal in disaccharides solutions</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Resonance frequency shift (ΔF_w) of QCM with different metal electrodes (Cr, Mo, W, Au) in various saccharide solutions</td>
<td>70</td>
</tr>
<tr>
<td>5.4</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with chromium (Cr) electrodes in various saccharide solutions</td>
<td>79</td>
</tr>
<tr>
<td>5.5</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with molybdenum (Mo) electrodes in various saccharide solutions</td>
<td>80</td>
</tr>
<tr>
<td>5.6</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with tungsten (W) electrodes in various saccharide solutions</td>
<td>81</td>
</tr>
<tr>
<td>5.7</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with gold (Au) electrodes in various saccharide solutions</td>
<td>82</td>
</tr>
<tr>
<td>5.8</td>
<td>The values of parameter K determined for 10 MHz QCM with different metal electrodes in various saccharide solutions</td>
<td>87</td>
</tr>
<tr>
<td>5.9</td>
<td>Data on $\Delta F_w/K$ for various saccharide solutions</td>
<td>88</td>
</tr>
<tr>
<td>A.1</td>
<td>List of data record density measurement for monosaccharide solutions</td>
<td>99</td>
</tr>
<tr>
<td>A.2</td>
<td>List of data record density measurement for disaccharides solutions</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>A.3</td>
<td>List of data record efflux time for distilled water</td>
<td>100</td>
</tr>
<tr>
<td>A.4</td>
<td>List of data record efflux time for monosaccharide solutions</td>
<td>101</td>
</tr>
<tr>
<td>A.5</td>
<td>List of data record efflux time for disaccharides solutions</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Quartz Crystal Microbalance (QCM) Characteristic (O’Sullivan and Guilbuilt, 1999)</td>
<td>2</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical structure of monosaccharide (glucose, fructose and mannose)</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical structure of disaccharide (sucrose, maltose and lactose)</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Pyconometer (volume 25 cm3)</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Cannon-Ubbelohde viscometer</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Experimental set-up for measuring the changes in the frequency of QCM in liquid</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Cut-out cross-section of the flow cell with one of the QCM electrodes in contact with the liquid</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>The Front Panel of GPIB Instrument Control.vi</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>The Block Diagram of GPIB Instrument Control.vi</td>
<td>51</td>
</tr>
<tr>
<td>4.7</td>
<td>Flow chart of the methodology</td>
<td>52</td>
</tr>
<tr>
<td>5.1</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with different metal electrodes (Cr, Mo, W, Au) in glucose solution</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with different metal electrodes (Cr, Mo, W, Au) in fructose solution</td>
<td>57</td>
</tr>
<tr>
<td>5.3</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with different metal electrodes (Cr, Mo, W, Au) in mannose solution</td>
<td>58</td>
</tr>
<tr>
<td>5.4</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with different metal electrodes (Cr, Mo, W, Au) in sucrose solution</td>
<td>61</td>
</tr>
<tr>
<td>5.5</td>
<td>Resonance frequency shift (ΔF_w) of the QCM with</td>
<td>61</td>
</tr>
</tbody>
</table>
different metal electrodes (Cr, Mo, W, Au) in maltose solution

5.6 Resonance frequency shift (ΔF_w) of the QCM with different metal electrodes (Cr, Mo, W, Au) in lactose solution

5.7 Resonance frequency shift (ΔF_w) of the QCM with chromium electrodes versus concentration (wt %) for various saccharide solutions

5.8 Resonance frequency shift (ΔF_w) of the QCM with molybdenum electrodes versus concentration (wt %) for various saccharide solutions

5.9 Resonance frequency shift (ΔF_w) of the QCM with gold electrodes versus concentration (wt %) for various saccharide solutions

5.10 Resonance frequency shift (ΔF_w) of the QCM with gold electrodes versus concentration (wt %) for various saccharide solutions

5.11 ΔF_w (Hz) of the QCM with different metal electrodes versus $\sqrt{\rho \eta - \rho_w \eta_w} \times 10^2$ in glucose solution

5.12 ΔF_w (Hz) of the QCM with different metal electrodes versus $\sqrt{\rho \eta - \rho_w \eta_w} \times 10^2$ in fructose solution

5.13 ΔF_w (Hz) of the QCM with different metal electrodes versus $\sqrt{\rho \eta - \rho_w \eta_w} \times 10^2$ in mannose solution

5.14 ΔF_w (Hz) of the QCM with different metal electrodes versus $\sqrt{\rho \eta - \rho_w \eta_w} \times 10^2$ in sucrose solution

5.15 ΔF_w (Hz) of the QCM with different metal electrodes versus $\sqrt{\rho \eta - \rho_w \eta_w} \times 10^2$ in maltose solution

5.16 ΔF_w (Hz) of the QCM with different metal electrodes versus $\sqrt{\rho \eta - \rho_w \eta_w} \times 10^2$ in lactose solution

5.17 Proportionality between $-(\Delta F_w / K) \times 10^2$ versus $\sqrt{\rho \eta - \rho_w \eta_w} \times 10^2$ for saccharide solutions
A.1 The Block Diagram of GPIB Instrument Control.vi 102
(continued)
C_f Sensitivity factor; Hz cm² μg⁻¹
D Dissipation factor
ΔF Frequency shift; Hz
Δm The change in mass; g
f_o Resonance frequency; Hz
F_b The basic oscillation of quartz; 10 MHz
k Propagation constants, \(k = \frac{2\pi}{\lambda}; \text{ cm}^{-1} \)
L Thickness of the layer
m Mass; g
m_f Foreign material mass
m_q Mass of the crystal
n Number of harmonic (e.g., \(n = 1 \) for the fundamental or first harmonic frequency, \(n = 2 \) for the second harmonic, and \(n = 3 \) for the third harmonic, etc)
R_q Resistance; Ω
t Time; s
t_o Flow time of the solution/solvent; s
v Volume; cm⁻³
wt % Weight percent
z Function of distance
ε Dielectric constants
κ Specific conductance
\[\mu_q \] Shear modulus of quartz, \(\mu_q = 2.947 \times 10^{10} \text{ N m}^{-2} \)

\[\eta \] Dynamic viscosity of the Solution; g cm\(^{-1}\) s\(^{-1}\) or P

\[\eta_o \] Dynamic viscosity of the Solvent; g cm\(^{-1}\) s\(^{-1}\) or P

\[\eta_w \] Dynamic viscosity of the water, \(\eta_w = 0.894 \times 10^{-2} \text{ g cm}^{-1}\text{ s}^{-1} \) or P

\[v_o \] Velocity of the surface; m s\(^{-1}\)

\[\rho \] Density of the solution; g cm\(^{-3}\)

\[\rho_q \] Density of quartz, \(\rho_q = 2.648 \text{ g cm}^{-3} \)

\[\rho_w \] Density of water, \(\rho_w = 0.997 \text{ g cm}^{-3} \)

Au Gold

Cr Chromium

Mo Molybdenum

W Tungsten

CMC Critical Micellar Concentration

CTMAB Centyltrimethylammonium Bromide

ESPS Electrode-Separated Piezoelectric Sensor

EQCM Electrochemical Quartz Crystal Microbalance

GPIB General Purpose Interface Bus

LAL Limulus Amebocyte Lysate

PQC Piezoelectric Quartz Crystal

QCM Quartz Crystal Microbalance

REPS Ringed-Electrode Piezoelectric Sensor
CHAPTER 1

INTRODUCTION

The development and construction of new chemical sensors, which are specific for particular chemical species, is an active area of research. Many methods have been newly applied to the study of electrochemical interfaces. One of these methods is based on Quartz Crystal Microbalance (QCM) technology. The increased interest in using microbalance has resulted, in part, from the rapid progress in scientific instrumentation. Today, highly sophisticated automatic, microprocessor-controlled devices are available commercially and satisfy most requirements of scientific and technological investigators. Parallel progress in vacuum science and technology has provided a mean of controlling the environment required for many experiments using the QCM (Lu and Czanderna, 1984).

1.1 Quartz Crystal Microbalance (QCM) Characteristics

The QCM earns its name from its ability to measure the mass of thin films that have adhered to its surface. The QCM comprises a thin disk of AT-cut quartz crystal sandwiched between two metal electrodes that established an alternating electric field across the crystal, causing vibration motion of the crystal at its resonance frequency. This resonance frequency is sensitive to mass changes (and other factors) of the crystal and its electrodes (Buttry and Ward, 1992). Quartz is still the most important single
crystal serving as transduction element in piezoelectric sensors. Its chemical formula is SiO₂, and it is found in several modifications, constituted of oxygen tetrahedrons with silicon at the center position (Gautschi, 2002).

The schematic of a typical quartz crystal microbalance is shown in Figure 1.1. The metal is deposited on both sides of the quartz plate. The electrical connection is made to the electrode flag by means of a spring clip with attached lead or wire holder. The circular metal electrodes in the crystal center oppose an identical electrode on the other side of the crystal. Electrical connection to the opposing electrode is made to the electrode flag. The crystal and its electrodes are incorporated into a positive-feedback oscillator circuit. The crystal diameter plays an important role in stability. The crystal is generally of 0.538 inches in diameter and electrode diameter is 0.201 inches, although crystals one inch or larger are available. The electrodes finish were polished and not etched. Etched electrode surface can have surface features that are not small as compared with the penetration depth of the acoustic waves in the fluid (O’Sullivan and Guilbuilt, 1999).

![Figure 1.1: Quartz Crystal Microbalance (QCM) (O’Sullivan and Guilbuilt, 1999)](image-url)
QCM system is typically constructed from piezoelectric materials (quartz in this application) that are incorporated into an oscillation circuit. When a current is applied to the piezoelectric material, the material expands or contracts depending on the magnitude and sign of the electric current. Application of an oscillating current will subsequently result in a mechanical oscillation of the quartz crystal (O’Sullivan and Guilbuilt, 1999).

1.2 Applications of Quartz Crystal Microbalance in Electrochemistry

The QCM is basically a mass sensing device with the ability to measure very small mass changes on a quartz crystal resonator in real-time. The sensitivity of the QCM is approximately 100 times higher than an electronic fine balance with a sensitivity of 0.1 mg. This means that QCM’s are capable of measuring mass changes as small as fraction of a monolayer or single layer atoms. The high sensitivity and real-time monitoring of mass changes on the sensor crystal make QCM a very attractive technique for a large range of applications as a sensor. In research environments, the most common QCM crystal applications include metal deposition monitors, chemical reaction monitors, biomedical sensors, and environmental monitoring applications, etc. Other applications include detection of mass, density, viscosity, adsorption, desorption, and corrosion.

Early applications of quartz crystal microbalance involved the well-documented measurement of metal deposition in high-vacuum metal evaporators, which is still widely practiced. This allow for real-time, rapid measurement of film thicknesses with Angstrom resolution. Recent advances in quartz crystal microbalance methodology in
the last decade now allow for dynamic measurements of minute mass changes at surfaces, thin films and electrode interfaces prepared on the quartz crystal, while the surface is immersed in liquid. In fact, operation in liquids is possible, and the response of the QCM is extremely sensitive to mass changes at the solid-solution interfaces. The capability for direct, real-time, highly sensitive mass measurement in liquid phase have led investigators in electrochemistry research to embraced the quartz crystal microbalance as a useful tool, since the crystal metal surface can also serve simultaneously as an electrode.

In most electrochemical experiments, the quartz wafer with its attached electrodes is clamped between two O-rings. Only one side of the wafer and one electrode, which serve both parts of the QCM oscillator circuit and as the working electrode in the electrochemical cell, are in contact with solution. This combine device often is referred to as the electrochemical QCM (EQCM) (Deakin and Buttry, 1989).

The EQCM method can be used to study interfacial processes at the electrode surface which occur to during or after the fundamental electron-transfer events. The low cost and conceptual simplicity of this method signify its development in a diverse variety of commercial and research applications. The piezoelectric property of quartz is utilized to record a frequency change that may be related to a mass change. The method has propagated rapidly, and is now used in many laboratories as a routine tool which is complementary to others normally used by electrochemist. In this respect, the method is reaching maturity fairly rapidly. On the other hand, many of the details of its responses to various situations have yet to be studied carefully. There are such as the influence of