UNIVERSITI PUTRA MALAYSIA

NON-DESTRUCTIVE TEST ON DISTRESSED REINFORCED CONCRETE STRUCTURE

CHAI KOK HONG

FK 2002 107
ACKNOWLEDGEMENT

This project could not have been possible without the unfailing assistance, understanding and guidance rendered by numerous people throughout the project.

Grateful appreciation is due to Prof. Madya Dr. Ir. Mohd Saleh Jaafar, the supervisor of this study, for his invaluable advice, guidance, enthusiastic encouragement and understanding throughout the course of this study and in the preparation of this report.

Utmost gratitude is also forwarded to Associate Prof. Dr. Waleed A. Malik Thanoon and Prof. Madya Dr. Jamaloddin Noorzaei, the examiners of this project for their advice throughout the course of this study.

Special thanks must go to Ir. Daniel Sio of Vertitech Appraisal (M) Sdn. Bhd. that allowed me to utilize some raw data for this project.

The last but not least, the author would like to express his greatest love and gratitude to his parents and his wife H.L. Wong for their continuous support, understanding and encouragement throughout the graduation exercise.
The concrete characterization and properties of reinforced concrete members subjected to reinforcement corrosion was studied using several non-destructive tests and in-situ tests. A few structures suffered corrosion problem were selected for the study.

This project presents some findings on the use of parameters to detect corrosion damage in reinforced concrete members. The changes of concrete properties of deteriorated reinforced concrete members caused by corrosion of reinforcement were depicted base on some cases study in Malaysia. The nominated structures consists of a bridge in Seberang Perai, a low cost apartment and a college in Melaka, two shop-lots in Tanjung Sepat and silo structures in Wilayah Labuan, Sabah.

A set of diagnostic tool and parameter was established for purpose of ascertaining the presence of damage, cause, geometric location, severity and structural capacity through nominal non-destructive test and laboratory test.

Correlation between the tests and the changes of its modal parameter was analyzed and revealed by the nominal tests conducted. This investigation provided further insight on the use of NDT and to minimize the frequency of destructive testing in appraisal and diagnosis to the corroded reinforced concrete members.
Table of Contents

ABSTRACT

Page

ACKNOWLEDGEMENT

Page

CONTENTS

Page

LIST OF FIGURES

Page

LIST OF TABLES

Page

CHAPTER 1: INTRODUCTION

1.1 General
1.2 Corrosion Diagnostic Tools and Parameter
1.3 Objectives of Project

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction
2.2 Corrosion in Reinforced Concrete
2.2.1 General Corrosion
2.2.2 Corrosion Mechanism
2.3 Effect of Corrosion on Structural Behavior
2.3.1 Deterioration of Bond Properties
2.3.2 Load Carrying Capacity Reduction
CHAPTER 3: METHODOLOGY AND INSTRUMENTATION

3.1 General 18
3.2 Methodology 18
3.3 Field Testing on Concrete Elements 20
 3.3.1 Electronic Covermeter Measurement using Profometer 4 20
 3.3.2 Testing for Chloride Content (Rapid Chloride Test) 22
 3.3.3 Half Cell Potential Measurements 24
3.4 Laboratory Testing on Concrete Elements 26
 3.4.1 Concrete Carbonation Test 26
 3.4.2 Concrete Sorptivity Test 27
 3.4.3 Concrete In-situ Compressive Strength 28
 3.4.4 Concrete Density 29
3.5 Method Statement 29

CHAPTER 4: RESULTS AND DISCUSSION

4.1 General 30
4.2 Diagnostic Flow Chart 30
4.3 Corrosion Diagnostic Tools and Parameter 32
4.4 Interpretation of Test Result
 4.4.1 Case Study A: Reinforced Concrete Silo Structure in Labuan, Sabah 35
 4.4.2 Case Study B: Reinforced Concrete Low Cost Apartment in Melaka. 47
4.4.3 Case Study C: Double Storey Shoplot in Tanjung Sepat. 57
4.4.4 Case Study D: Reinforced Concrete College in Melaka. 63
4.4.5 Case Study E: Bridge in Seberang Perai. 73

4.5 Analysis of the Test Result 80
4.5.1 Correlation between Rebound Hammer and Compressive Strength Measurement 80
4.5.2 Correlation between Rebound Hammer and Carbonation Depth 83
4.5.3 Correlation between Ultrasonic Pulse Velocity (UPV) and Compressive Strength measurement 86
4.5.4 Correlation between Ultrasonic Pulse Velocity (UPV) and Density Test 88
4.5.5 Correlation between Compressive Strength and Density test 90
4.5.6 Correlation between Compressive Strength and Chloride Content 92

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1 Parameter of the Diagnostics Tools 94
5.2 Correlation between the tests 96
5.3 Recommendations 97

REFERENCES 98

APPENDIX A 100
APPENDIX B 106
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Corrosion process of the steel surface</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Bond Strength versus level of corrosion for pullout specimens</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Bond Strength versus level of corrosion for beam specimens</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Ultimate load versus level of corrosion</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow Chart of Diagnostic Test to Building with Corrosion Problem</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Typical view of Covermeter (Profometer 4)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Typical view of RCT measurement work.</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Half-Cell Test Kits</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Typical view of carbonation depth on core sample.</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Typical view of Sorptivity Test</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Typical view of Compressive Strength test</td>
<td>29</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Diagnostic Flow Chart</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Correlations between Compressive Strength and Rebound Hammer Measurement</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Correlation graph between Hammer rebound R-value and Estimated Cylindrical Compressive Strength provided by manufacturer</td>
<td>82</td>
</tr>
</tbody>
</table>
List of Figures

Figure 4.4 Correlations between Rebound Hammer and Carbonation Depth 85
Figure 4.5 Correlations between Compressive Strength and UPV 87
Figure 4.6 Correlations between UPV and Density of Core samples 89
Figure 4.7 Correlations between Estimated Compressive Strength and Density of Core samples
Figure 4.8 Correlations between Estimated Compressive Strength and Chloride Content 93
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Summary of Results for loading test</td>
<td>13</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>List of In-situ test</td>
<td>32</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>List of laboratory test</td>
<td>33</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Results of relevant Rebound Hammer and Compressive Strength</td>
<td>81</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Results of Relevant Rebound Hammer and Carbonation Depth</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Results of Compressive Strength and UPV measurement</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Results of Relevant UPV measurement and Density test</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Results of Relevant Compressive Strength and Density Test</td>
<td>90</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Results of Relevant RCT measurement and Compressive Strength test</td>
<td>88</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Parameter and Threshold of the Diagnostic Tests</td>
<td>94</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

1.1 GENERAL

Past assessments and surveys have revealed that deterioration caused by reinforcement corrosion causes the design life span of structures to be shortened. As reported by Wallbank [8], of 200 concrete highway bridges examined, 25 had minor blemishes, 114 were classed as fair 61 categorized as being in poor condition. The primary reason for this deterioration was corrosion of reinforcement.

This phenomenon has been confirmed by researches worldwide. Transport and Road Research Laboratory, UK [9] studied on the effects of corrosion deterioration on the assessment of concrete bridges. The results show that severe general corrosion could cause a complete breakdown of the bond between concrete and the reinforcement. Similarly, Yoshihiro et. al [6] found that the reduction in stiffness and load carrying capacity occurred in the corrosion damaged beams.

Nevertheless, the use of concrete as a structural material has increased tremendously ever since it was introduced to the construction industry worldwide. In Malaysia, concrete has gained immense popularity as a construction material and is widely used in many structures and buildings over the last three decades.
As problems related to long term performance and durability of the material unveil gradually, monitoring and assessing the health and safety of existing concrete structures and buildings has become a major and important activity in structural engineering. Engineers have at their disposal techniques ranging from visual inspection to full-scale load testing for appraisal and assessment of structures.

Recently, in-situ testing such as Rapid Chloride Tester and Half-cell Potential tester has been introduce for the purpose of establishing the structural integrity in construction industry. Others test required to compliment the results of Rapid Chloride Tester and Half-cell Potential Measurement are Compressive strength test, Rebound Hammer measurement and Density test.

However, the tests results acquire specialized skill and others engineering input for the raw data obtained. Different engineers might have their own perspective and engineering judgment to the building suffered corrosion problem. Further to that, there were no provision of any technical note or code of practice that serve as a guidance to conduct a comprehensive appraisal and assessment to the structure. This had eventually lead to many discrepancies and doubt in the structural appraisal industry.
Chapter 1 Introduction

1.2 CORROSION DIAGNOSTIC TOOLS AND PARAMETER

Many reinforced concrete structures have given excellent service with minimal maintenance. However, as the infrastructure has aged it has become apparent that some environments were more severe than originally thought, and some construction and design problems have led to lower service lives and higher maintenance costs than originally envisaged. The worst of these problems is caused by corrosion of steel in concrete, either due to carbonation, chloride attack and other factors.

It is important that to establish a building diagnostic tool and parameter to determine the root causes and extend of damaged of the structures suffered corrosion problem so that cost effective remedial works could be carried out to restore the serviceability and durability of the structures. Recently, there was no provision of definite parameters and guidance in accordance to code of practice for the corrosion diagnostic and this project would serve for the purpose.
1.3 OBJECTIVES OF PROJECT

This project presents some findings on the use of parameters to detect corrosion damage in reinforced concrete members. It was also concerned with the changes of concrete properties of deteriorated reinforced concrete members caused by corrosion of reinforcement based on some cases study in Malaysia.

Thus, the primary objective of the project is to establish a diagnostic tool and parameter for purpose of ascertaining the presence of damage, cause/s, geometric location, severity and structural capacity through nominal non-destructive test and laboratory test. The aim could be achieved by establishing a relationship between the structural integrity of defect concrete members and the changes of its modal parameter, revealed by the nominal tests conducted.
REFERENCES

