

UNIVERSITI PUTRA MALAYSIA

PHOTOTHERMAL AND ELECTRICAL CHARACTERIZATION OF ZnO-BASED VARISTOR SYSTEMS

ZAHID RIZWAN

FS 2007 61

PHOTOTHERMAL AND ELECTRICAL CHARACTERIZATION OF ZnO-BASED VARISTOR SYSTEMS

By

ZAHID RIZWAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2007

DEDICATION

I dedicate these humble efforts, the fruit of my thoughts and studies to my affectionate mother (late) who inspired me to higher ideals of life.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of requirement for the degree of Doctor of Philosophy

PHOTOTHERMAL AND ELECTRICAL CHARACTERIZATION OF ZnO-BASED VARISTOR SYSTEMS

By

ZAHID RIZWAN

September 2007

Chairman: Azmi Zakaria, PhD

Faculty: Science

Photopyroelectric spectroscopy is a powerful tool for examining the optical properties related to non-radiative de-excitation processes in materials. This technique consists of using a thin photopyroelectric (PPE) film in intimate contact with a solid sample on which modulated monochromatic light beam is incident. The non-radiative de-excitation process within the solid causes the sample temperature to fluctuate and PPE signal is produced in PPE transducer as a result of this temperature fluctuation. Varistor is a voltage dependant resistor and is used as a protective device to regulate transient voltage surges of unwanted magnitudes caused by lightning and switching of circuits containing inductors, capacitors, and can inflict serious damages on machinery and other equipments. In this study, the electrical properties of ZnO based varistor doped with different additives are investigated in conjunction with the photothermal properties. The wavelength of incident light is kept in the range from 300 to 800 nm and the PPE spectrum with reference to the doping level, sintering conditions is

discussed. The energy band-gap or shortly as band-gap is determined from the plot $(\rho hv)^2$ vs hv. The band-gap is reduced from 3.2 eV (pure ZnO) to about 1.9 eV for single additive MnO₂ or when it is used with the combination of other additives. The steepness factors σ_A (in A-region), and σ_B (in B-region), which characterize the slope of exponential optical absorption are discussed in conjunction with the band-gap which give the information about the disordering of the structure. It was also found that the value of band-gap slightly increases or decreases in 13 material systems in the range of 0.03 to 0.05 eV. It was found that the secondary phases such as Bi₄Ti₃O₁₂, Zn₂TiO₄, Zn₇Sb₂O₁₂ are grain suppressors. The maximum and minimum relative densities for all systems in this study are about 96 %, 78 %, respectively. The maximum grain size was found to be 82 µm when ZnO was doped with MnO₂, Co₃O₄, Bi₂O₃, TiO₂ for 3 hour sintering time. It was found that the TiO_2 is a strong grain enhancer; Sb_2O_3 is a strong grain suppressor upto certain doping level. SEM and EDX results show that the additives Bi₂O₃, Y₂O₃, Er₂O₃, Dy₂O₃ and Pr₆O₁₁ are segregated at the grain boundaries and at the triple point junctions. EDX analysis show that the Co, Mn, Ti ions are distributed on the grain surfaces as well as grain boundaries. Current-voltage characteristics of the varistor show that the varistor voltage increases with the decrease of grain size. The value of barrier height increases with the increase of the nonlinear coefficient and vice versa but it deviates in some cases. The value of band-gap decreases due to the increase in the structural disordering and increases due to the decrease in the structural disordering. It is found that the increase or decrease in the band-gap ranges from 0.03 to 0.05 eV in all cases but this ranges from 0.1 to 0.3 eV only for xBi₂O₃ and xPr₆O₁₁ doped ZnO system. The change in the value of the band-

gap in conjunction with the nonlinearity of the doped ZnO can be categorized in four cases as both band-gap and nonlinearity increases in system 5, band-gap decreases and nonlinearity increases in system 2, system 10 and system 11, band-gap increases and nonlinearity decreases in system 6, system 8 and system 13, both band-gap and nonlinearity decreases in system 7, system 9, and system 12. System 12 which is Bi₂O₃, TiO₂, Co₃O₄, doped ZnO with and without Sb₂O₃ at different sintering temperatures is the best system found in which both band-gap and nonlinearity decreases having the maximum value of nonlinearity that is 7.9 at the sintering temperature of 1210 °C for one hour sintering time with 0.02 mol% Sb₂O₃. The second best system found in the project is System 13 which is Bi₂O₃, TiO₂, MnO₂, doped ZnO with and without Sb₂O₃ at different sintering temperatures in which band-gap and nonlinearity decreases and nonlinearity decreases having the maximum value of nonlinearity that is 7.9 at the sintering temperature of 1210 °C for one hour sintering time with 0.02 mol% Sb₂O₃. The second best system found in the project is System 13 which is Bi₂O₃, TiO₂, MnO₂, doped ZnO with and without Sb₂O₃ at different sintering temperatures in which band-gap increases and nonlinearity decreases with the maximum value of nonlinearity that is 18.6 at the sintering temperature of 1180 °C for one hour sintering time with Sb₂O₃.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

CIRI-CIRI FOTOTERMA DAN ELEKTRIK BAGI SISTEM-SISTEM VARISTOR BERASASKAN ZnO

Oleh

ZAHID RIZWAN

September 2007

Pengerusi: Azmi Zakaria, PhD

Fakulti: Sains

Spektroskopi fotopiroelektrik adalah peralatan berkebolehan tinggi untuk menganalisis ciri-ciri optik berkaitan proses-proses nyah-pengujaan bukan-radiasi dalam bahan. Teknik ini melibatkan penggunaan filem fotopiroelektrik (PPE) nipis yang bersentuh rapat dengan sampel pepejal yang mana alur cahaya monokromatik termodulasi menimpa. Proses nyah-pengujaan bukan-radiasi di dalam pepejal menyebabkan suhu sampel turun-naik dan signal PPE akan terhasil di dalam transduser PPE sebagai hasil dari penurun-naikan suhu ini. Varistor adalah resistor sandaran voltan dan digunakan sebagai peranti pelindung untuk mengawal-atur pendadakan voltan fana bermagnitud berlebihan yang disebabkan oleh kilat dan pensuisan litar-litar mengandungi induktur kapasitor, dan boleh menyebabkan kerosakan serius pada mesin dan peralatan-peralatan lain. Di dalam kajian ini, ciri-ciri elektrik varistor berasaskan ZnO terdop dengan tambahan-tambahan berbeza diselidiki sehubungan dengan sifat-sifat fototerma.

fotopiroelektrik dengan rujukan kepada tahap dop, keadaan-keadaan pensinteran adalah dibincangkan. Tenaga jurang jalur atau ringkasnya jurang jalur ditentukan daripada plot $(\rho hv)^2$ lwn hv. Jurang jalur adalah berkurangkan daripada 3.2 eV (ZnO tulen) kepada 1.9 eV untuk tambahan tunggal MnO₂ atau bila ia digunakan dengan kombinasi dari tambahan-tambahan lain. Faktor kecerunan σ_A (dalam rantau A) dan σ_B (dalam rantau B), yang mana mencirikan cerun dari eksponen penyerapan optik adalah dibincangkan sehubungan dengan jurang jalur yang mana memberikan maklumat tentang ketaktertiban struktur. Didapati juga bahawa nilai jurang jalur menaik atau menurun secara lemah dalam 13 sistem bahan dan perubahan ini adalah dalam julat 0.03 ke 0.05 eV. Didapati bahawa fasa-fasa sekunder seperti Bi₄Ti₃O₁₂, Zn₂TiO₄, Zn₇Sb₂O₁₂ adalah penindas butiran. Ketumpatan relatif maksimum dan minimum untuk semua sistem dalam kajian ini adalah kira-kira 96 % dan 78%, masing-masingnya. Saiz butiran maksimum didapati adalah 82 µm apabila ZnO didop dengan MnO₂, Co₃O₄, Bi₂O₃, TiO₂ untuk 3 jam masa pensinteran. Adalah didapati bahawa TiO₂ adalah penggalak butiran kuat; Sb_2O_3 adalah perencat butiran kuat sehingga ke paras dop tertentu. Keputusan-keputusan SEM dan EDX menunjukkan bahawa bahan tambahan Bi₂O₃. Y2O3, Er2O3, Dy2O3 dan Pr6O11 adalah terasing di sempadan butiran dan di simpangsimpang titik tigaan. Analisis EDX menunjukkan bahawa ion-ion Co, Mn, Ti adalah teragih di atas permukaan-permukaan butiran dan juga di sempadan-sempadan butiran. Pencirian arus-voltan dari varistor menunjukkan bahawa voltan varistor menaik dengan penurunan saiz butiran. Nilai tinggi sawar menaik dengan penaikkan pekali tak linear dan sebaliknya, tetapi ia menyisih dalam kes-kes tertentu. Nilai jurang jalur menurun dengan peningkatan tahap pendopan dan meningkat dengan pengurangan tahap

pendopan. Didapati jurang jalur meningkat atau menurun dari 0.03 hingga ke 0.05eV dalam semua kes tetapi jurang dari 0.1 hingga 0.3eV adalah hanya untuk sistem ZnO terdop xBi_2O_3 dan xPr_6O_{11} . Perubahan dalam nilai jurang jalur sehubungan dengan ketak-linearan daripada ZnO terdop boleh dikategorikan dalam empat kes dengan kedua-dua jurang jalur dan ketak-linearan meningkat di sistem 5, jurang jalur menurun manakala ketak-linearan meningkat di sistem 2, sistem 10 dan sistem 11, jurang jalur meningkat manakala ketak-linearan menurun di sistem 6, sistem 8 dan sistem 13, kedua-dua jurang jalur dan ketak-linearan menurun di sistem 7, sistem 9 dan sistem 12. Sistem 12 iaitu ZnO terdop Bi₂O₃, TiO₂, Co₃O₄ dengan atau tanpa Sb₂O₃ pada suhu pensinteran berbeza adalah sistem yang terbaik yang ditemui di mana kedua-dua jurang jalur dan ketak-linearan menurun mempunyai nilai maksimum iaitu 7.9 pada suhu pensinteran 1210 °C untuk satu jam masa pensinteran dengan 0.02 mol% Sb₂O₃ Sistem kedua terbaik ditemui dalam kajian ini adalah sistem 13 iaitu ZnO terdop Bi₂O₃, TiO₂, MnO₂ dengan atau tanpa Sb₂O₃ pada suhu pensinteran berbeza di mana jurang jalur meningkat dan ketak-linearan menurun dengan nilai maksimum dari ketak-linearan iaitu 18.6 pada suhu pensinteran 1180 °C untuk satu jam masa pensinteran dengan Sb₂O₃.

ACKNOWLEDGEMENTS

In the Name of ALLAH, the most Merciful and Beneficent

First and foremost, I bow my head before Allah Almighty Who Blessed me with good health and vital resources to complete this project. These research investigations were supervised by Dr (s) Azmi Zakaria (Assoc. Prof.), Mansor Hashim (Assoc. Prof.), Abdul Halim Shaari (Prof.) and W. Mahmood Mat Yunus (Prof.).

I am extremely thankful to Dr Azmi Zakaria his support, guidance and patience for very enriching and thought provoking discussions which helped me to complete this project. He was always on my side to achieve the objectives. His keen interest for provision of equipment and research material at proper time and adequate needs special appreciation. I would also like to express my sincere thanks to members of my supervisory committee for kind guidance, support and encouragement throughout the period of my study. I am also indebted to the staff of the Department of Physics, Universiti Putra Malaysia, for their help and cooperation. Special thanks are extended to my laboratory fellows Mrs. Monir Noroozi, Mrs. Sabrina Mohd. Shapee, Miss Siti Fauziah Mat Adam, Miss Saliza Mat Isa. Mr. Liaw Hock Sang and Mr. Ghulam Ali Bajwa for their friendly help and support in every aspect of my research. Help extended by Mr. Shahrom Mahamud, Mrs. Noriza Maslan and Miss Yusnita Osman for characterization of the samples is also deeply acknowledged.

At last but not the least I would like to express my gratitude to my father, brothers and sisters for their prayers, continuous moral support and encouragement. I would like to say that my all endeavours and achievements are endowed to my wife, Iffat Rafique and sons, Usman Zahid, Rana Hannan Zahid, daughters Ayesha Zahid and Hamna Zahid. They have to bear a lot of hardships in my absence. They, however, remained a source of inspiration and encouragement for me to achieve this goal.

I certify that an Examination Committee has met on 27-September-2007 to conduct the final examination Zahid Rizwan on his Doctor of Philosophy thesis entitled "Photothermal and Electrical Characterization of ZnO-Based Varistor Systems" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Elias Saion, PhD

Professor Faculty of Science University Putra Malaysia (Chairman)

Jumiah Hassan, PhD

Associate Professor Faculty of Science University Putra Malaysia (Internal Examiner)

Zulkifly Abbas, PhD

Lecturer Faculty of Science University Putra Malaysia (Internal Examiner)

Ibrahim Abu Talib, PhD

Professor Faculty of Science and Technology Universitiy Kebangsaan Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor / Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Azmi Zakaria, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Abdul Halim Shaari, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

W. Mahmood Mat Yunus, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Mansor Hashim, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 13 December 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ZAHID RIZWAN

Date: 23 October 2007

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	XXX

CHAPTER

1	INT	RODUCTION	1
	1.1	Photothermal Spectroscopy	1
	1.2	Photopyroelectric Technique	4
	1.3	Zinc Oxide Varistor	5
	1.4	Low-Voltage Varistors	7
	1.5	Problem statement	10
	1.6	Objectives of the research	10
2	LIT	ERATURE REVIEW	12
	2.1	Brief history	12
	2.2	Zinc oxide	13
	2.3	Fabrication of zinc oxide varistor	17
	2.4	Development of microstructure	17

2.5	Sintering stages for varistor	18
2.6	Effect of additives	19
2.7	Varistor microstructure	20
2.8	Microstructure disorder	24

3	THE	ORY	25
	3.1	Thought experiment for the conduction mechanism	25
	3.2	Physical basis of varistor action	30

3.3	Limitation of Double Schottky Barrier (DSB)	33
3.4	Theory of Photopyroelectric Technique	34
3.4.1	Optically Opaque and thermally Thick Pyroelectrics	37
3.5	Dielectric properties of the materials	40
3.6	Sintering phenomena	44
3.7	Energy band-gap (Eg)	48

56

4 **METHODOLOGY**

4.1	Sample description	56
4.2	Choice of additives and their known roles	56
4.3	Material systems and their processing conditions	58
4.4	Sample preparation	65
4.5	Photopyroelectric measurements	68
4.6	Optical-absorption tail	70
4.7	Experimental setup	71
4.8	Nonlinear electrical characteristics measurements	76
4.9	Scanning Electron Microscopy (SEM)	76
4.10	Energy Dispersive X-ray (EDX)	77
4.11	X Ray Diffraction (XRD) measurements	79
4.12	Dielectric measurements	81
4.13	Grain size measurements	82
4.14	Density Measurements	83

RESULTS AND DISCUSSION 5

RESULTS AND DISCUSSION		85
5.1	Morphological studies of all systems	85
5.2	Photothermal studies of all systems	163
5.3	Electrical studies of all systems	245

SUMMARY, CONCLUSION AND 6 310 **RECOMMENDATIONS FOR FUTURE REARCH** 6.1 Brief summary of main results 310

0.1	Dher summary of main results	510
6.2	Conclusion	324
6.3	Recommendations for future	325

REFERENCES	326
BIODATA OF THE AUTHOR	337
LIST OF PUBLICATIONS	338

LIST OF TABLES

Table		Page
5.3.2.1	Comparison of E_g and α for the system 2	252
5.3.5.1	Comparison of E_g and α for the system 5	260
5.3.6.1	Comparison of E_g and α for the system 6	266
5.3.7.1	Comparison of E_g and α for the system 7	270
5.3.8.1	Comparison of E_g and α for the system 8	276
5.3.9.1	Comparison of $E_{\rm g}$ and α for the system 9	280
5.3.10.1	Comparison of E_g and α for the system 10	288
5.3.11.1	Comparison of E_g and α for the system 11	294
5.3.12.1	Table Comparison of E_g and α for the system 12	301
5.3.13.1	Comparison of E_g and α for the system 13	309

LIST OF FIGURES

Figure		Page
1.1	Processes involved in Photothermal Spectroscopy	2
1.3.1	Circuit scheme with voltage supply, varistor and load connected in parallel	8
1.3.2	Typical current-voltage characteristics for ZnO varistors (redrawn from Clark, 1999)	9
2.2.1	Schematic image of ZnO structure	15
2.7.1	Schematic image of the morphology in triple grain junctions in ZnO varistor [Elfwing, 2000]	23
3.1.1	Thought experiment for the formation of potential barrier at grain boundary, joining two identical semiconductor grains with an inverting layer of grain-boundary material [Pike, 1994; Matsuoka, <i>et al.</i> , 1969]	28
3.1.2	Schematic diagram for the effect of applied voltage on the band structure at a grain boundary	29
3.1.3	Graph of $\ln J$ versus $E^{1/2}$	30
3.2.1	Energy band diagram for varistor grain boundary under an applied voltage	33
3.4.1	One-dimensional geometry of the photopyroelectric system	35
3.6.1	Dragging of grain boundary movement by second phase particles (Zener effect)	45
3.7.1	Energy bands: (a) in pure semiconductor at 0 K and (b) at room temperature	52
3.7.2	Modified Bohar model to calculate the binding energy of the extra valance electron of the pentavalent impurity atom revolving around the single charge positive As ion and (b) energy of the donor level in an n-type semiconductor	52

3.7.3	Modified Bohar model to calculate the binding energy of the extra hole of the trivalent impurity atom (b) energy of the acceptor level in an p-type semiconductor	53
3.7.4	Schematic drawing of various impurity levels in	53
3.7.5	The representation of bands in k-space (a) and in real space (b)	54
3.7.6:	Band structures of (a) direct and (b) indirect band gap semiconductors	54
3.7.7	Optical absorption spectra for (a) direct and (b) indirect band-gap semiconductor	55
4.4.1	Schematic flow chart for the sample preparation	67
4.5.1	PPE signal of carbon black	69
4.5.2	Energy band-gap of pure ZnO	69
4.7.1.1	Xenon arc lamp (6269, above) and spectral irradiance of several types of Xenon arc (below)	72
4.7.2	Schematic diagram for the experimental setup	75
4.7.3	Schematic diagram of sample-PVDF sensor holder	75
4.9.1	Schematic diagram of Si(Li) X-ray detector (below) and emission of characteristic X-rays from the atom (above)	78
4.11.1	Schematic diagram for the derivation of Bragg's Law.	80
4.13.1	Replicate of the boundary-crossing method for the measurement of grain size	84
5.1.1.1	XRD pattern for pure ZnO and MnO doped ZnO	87
5.1.2.1.1	XRD pattern of Dy ₂ O ₃ doped ZnO for 1H sintering time	90
5.1.2.1.2	Variation of density with Dy ₂ O ₃ for 1and 5H sintering time	90
5.1.2.1.3	Grain size variation with doping level for 1 & 5H sintering time	91

5.1.2.1.4	SEM micrograph of 2 mol% Dy_2O_3 doped MnO - ZnO ceramics at 1300°C for 1H	91
5.1.2.1.5	SEM micrograph 2 mol% Dy_2O_3 doped MnO - ZnO ceramics at 1300°C for 1H	92
5.1.2.2.1	XRD pattern of Er ₂ O ₃ doped MnO-ZnO eramics	94
5.1.2.2.2	Variation of density for 1 and 5 hour sintering time	95
5.1.2.2.3	Dependence of grain size on E_2O_3 mol% for 1 and 5 hour sintering time	95
5.1.2.2.4	EDX spectrum at nodal point (above and) at grain boundary (below) for 2 mol% Er ₂ O ₃ for 1 H sintering time	96
5.1.2.2.5	SEM micrograph 2 mol% Er ₂ O ₃ for 1 H sintering time	97
5.1.2.3.1	XRD pattern at different doping ratio	99
5.1.2.3.2	Variation of density with the doping level	100
5.1.2.3.3	Variation of grain size with doping level	100
5.1.2.3.4	SEM micrograph at ratio 1 for 1300 °C for 1 H sintering time	101
5.1.3.1	Variation of density with doping level	104
5.1.3.2	Variation of grain size with doping level	105
5.1.3.3	SEM micrograp of ZnO +0.9 Co ₃ O ₄ +0 MnO ₂ +0.9 TiO ₂	105
5.1.4.1	XRD pattern of V_2O_5 doped ZnO at 1025 °C	107
5.1.4.2	Density variation with V ₂ O ₅ doping level	108
5.1.4.3	Grain growth behavior of the sample doped with V_2O_5	108
5.1.4.4	SEM micrographs for 1.5 mol% of V_2O_5 sintered at 1025 °C for 2 H	109
5.1.5.1.1	XRD pattern at 0.4 and 1.6 mol% of Y_2O_3	111
5.1.5.1.2	Variation of density with doping level of Y ₂ O ₃	112

5.1.5.1.3	Grain size dependence on doping level of Y ₂ O ₃	112
5.1.5.1.4	SEM micrograph at 1.6 mol% Y ₂ O ₃	113
5.1.5.2.1	XRD pattern doped with Y_2O_3 for 5 H sintering time	115
5.1.5.2.2	Variation of density with Y_2O_3 for 1 and 5 H sintering time	116
5.1.5.2.3	Grain size variation with Y_2O_3 for 1 and 5 H sintering time	116
5.1.5.2.4	EDX at different points for 1.6 mol% Y_2O_3 for 5 H	117
5.1.6.1.1	XRD pattern of Sb_2O_3 doped ZnO for 1 and 2 H sintering time	119
5.1.6.1.2	Effect of Sb ₂ O ₃ on the density	119
5.1.6.1.3	Effect of Sb ₂ O ₃ on grain size	120
5.1.6.1.4	SEM micrograph of the sample at $1.5 \text{ Sb}_2\text{O}_3$ for 2 H sintering time	120
5.1.6.2.1	XRD pattern of Sb ₂ O ₃ doped ZnO	122
5.1.6.2.2	Effect of Sb ₂ O ₃ on density	123
5.1.6.2.3	Effect of Sb ₂ O ₃ on grain size	123
5.1.6.2.4	SEM micrograph at 1.5 mol% Sb_2O_3 for 2 H sintering time	124
5.1.7.1	XRD analysis of TiO_2 doped ZnO times at 0.4 and 2.5 mol%	126
5.1.7.2	Dependence of density on doping level of TiO_2	126
5.1.7.3	Dependence of grain size on doping level of TiO_2	127
5.1.7.4.(a)	SEM micrograph at 2.5 mol% TiO ₂	127
5.1.7.4 (b)	SEM micrograph at 1.7 mol% TiO ₂	128
5.1.8.1.1	Variation of density with sintering time	130
5.1.8.1.2	Variation of grain size with sintering time	131

5.1.8.1.3	SEM micrograph for 1 $TiO_2 + 1 Bi_2O_3$ at 4 hour sintering time	131
5.1.8.2.1	Variation of density with sintering time	133
5.1.8.2.2	Variation of grain size with sintering time	134
5.1.9.1	Variation of density with sintering time	136
5.1.9.2	Variation of grain size with sintering time	136
5.1.9.3	SEM micrograph (with MnO ₂) for 1 and 4 H sintering time	137
5.1.10.1.1	Variation of density with Bi ₂ O ₃	139
5.1.10.1.2	Variation of grain size with Bi ₂ O ₃	139
5.1.10.1.3	SEM micrograph at different doping level and sintering temperature	140
5.1.10.2.1	Variation of density with Pr ₆ O ₁₁ doping level	142
5.1.10.2.2	Variation of grain size with Pr ₆ O ₁₁ doping level	142
5.1.10.2.3	SEM micrograph at sintering temperature and doping level	143
5.1.11.1.1	XRD pattern at different doping level	145
5.1.11.1.2	Variation of density with MnO ₂	146
5.1.11.1.3	Variation of grain size with MnO ₂	146
5.1.11.1.4	SEM micrograph for 0.1 (above), 1.3 (below) mol% MnO_2 at 1190 °C and 1270 °C sintering temperatures	147
5.1.11.2.1	Variation of density with MnO ₂	149
5.1.11.2.2	Variation of grain size with MnO ₂	149
5.1.11.2.3	SEM micrograph at different Temperatures and magnifications	150
5.1.12.1.1	Variation of density with sintering	152
5.1.12.1.2	Variation of grain size with sintering temperatures	153

5.1.12.1.3	SEM micrograph at 1300 $^{\rm o}{\rm C}$ sintering for 2 hour sintering time	153
5.1.12.2.1	Variation of density with sintering temperature	155
5.1.12.2.2	Variation of grain size with sintering temperature	156
5.1.12.2.3	SEM micrograph for 1 hour sintering time	156
5.1.13.1.1	Variation of density with sintering temperature	158
5.1.13.1.2	Variation of grain size with sintering temperature	159
5.1.13.1.3	SEM micrograph for 2 hour sintering time	159
5.1.13.2.1	Variation of density with sintering	161
5.1.13.2.2	Variation of grain size with sintering temperature	162
5.1.13.2.3	SEM micrograph for 1 hour sintering time	162
5.2.1.1	Dependence of E_g at MnO at different temperatures	166
5.2.1.2	E_{g} at different sintering temperatures for 1 % MnO	166
5.2.1.3	PPE spectra at different sintering temperatures	167
5.2.1.4	PPE signal intensity spectra for different sintering temperatures	167
5.2.1.5	Dependence of σ_A on MnO	168
5.2.1.6	Dependence of σ_B on MnO	168
5.2.2.1.1	Dependence of E_g on Dy_2O_3	171
5.2.2.1.2	PPE signal intensity spectra at 0.8 mol% Dy_2O_3 for 1 H	171
5.2.2.1.3	Variation of σ_A with Dy_2O_3 for 1 H sintering time	172
5.2.2.1.4	Variation of σ_B with Dy_2O_3 for I H sintering time	172
5.2.2.1.1.5	Variation of σ_A on Dy_2O_3 for 5 H sintering time	173
5.2.2.1.6	Variation of σ_B on Dy_2O_3 for 5 H sintering time	173

5.2.2.2.1	Variation of E_g with Er_2O_3 for 1H sintering time	176
5.2.2.2.2	Variation of E_g with Er_2O_3 for 5 H sintering time.	176
5.2.2.3	PPE signal intensity spectra for 1 H sintering time	177
5.2.2.2.4	Variation of σ_A with Er_2O_3 for 1 H sintering time	177
5.2.2.5	Variation of σ_B with Er_2O_3 1 H sintering time	178
5.2.2.2.6	Variation of σ_A with $\mathrm{Er}_2\mathrm{O}_3$ for 5 H sintering time	178
5.2.2.2.7	Variation of σ_B with $\mathrm{Er}_2\mathrm{O}_3$ for 5 H sintering time	179
5.2.2.3.1	Variation of PPE signsl intensity with E_g for 1 H sintering time at 1300 $^{\rm o}C$	181
5.2.2.3.2	Variation of E_g with doping ratio for 1 H sintering time	182
5.2.2.3.3	Dependence of exponential optical absorption on photon energy for 1 H sintering time	182
5.2.2.3.4	Variation of σ_A with doping ratio for 1 H sintering time	183
5.2.2.3.5	Variation of σ_B with doping ratio for 1 H sintering time	183
5.2.2.3.6	Variation of σ_A with doping ratio for 5 H sintering time	184
5.2.2.3.7	Variation of σ_B with doping ratio for 5 H sintering time	184
5.2.3.1	Variation of E _g with doping	187
5.2.3.2	Effect of sintering temperature on σ_A	187
5.2.3.3	Effect of sintering temperature on σ_B	188
5.2.4.1	E_g dependence on V_2O_5	190
5.2.4.2	Variation of σ_A with V_2O_5	190
5.2.4.3	Variation of σ_B with V_2O_5	191
5.2.5.1.1	Variation of E_g with Y_2O_3	193
5.2.5.1.2	Variation of σ_A with Y_2O_3	194

5.2.5.1.3	Variation of σ_B with Y_2O_3	194
5.2.5.2.1	E_{g} dependence on $\mathrm{Y}_{2}\mathrm{O}_{3}$ for 1 and 5 H sintering time	196
5.2.5.2.2	Variation of σ_A with Y_2O_3	197
5.2.5.2.3	Variation of σ_B with Y_2O_3	197
5.2.6.1.1	Effect of Sb ₂ O ₃ on energy band-gap	199
5.2.6.1.2	Effect of Sb_2O_3 on steepness factor σ_A	200
5.2.6.1.3	Effect of Sb_2O_3 on steepness factor σ_B	200
5.2.6.2.1	Effect of Sb ₂ O ₃ on energy band-gap	202
5.2.6.2.2	Effect of Sb_2O_3 on steepness factor σ_A	203
5.2.6.2.3	Effect of Sb_2O_3 on steepness factor σ_B	203
5.2.7.1	$E_{\rm g}$ dependence on ${\rm TiO_2}$ at different sintering temperature	206
5.2.7.2	E_g at 1 mol% TiO ₂ for 3 H sintering time	206
5.2.7.3	PPE signal intensity spectra for I H sintering time at	207
5.2.7.4	Dependence of the steepness factor $\sigma_A \text{ TiO}_2 \text{ mol}\%$	207
5.2.7.5	Dependence of the steepness factor σ_B on TiO_2 mol%	208
5.2.8.1.1	Variation of E_g with sintering temperatures	211
5.2.8.1.2	Effect of sintering time on steepness factor σ_{A}	211
5.2.8.1.3	Effect of sintering time on steepness factor σ_B	212
5.2.8.2.1	Variation of E_g with sintering time	214
5.2.8.2.2	Effect of sintering time on steepness factor σ_A	214
5.2.8.2.3	Effect of sintering time on steepness factor σ_{B}	215
5.2.9.1	Variation of E_g with sintering time	217
5.2.9.2	Effect of sintering temperature on steepness factor σ_A	217

