UNIVERSITI PUTRA MALAYSIA

GROWTH PERFORMANCE AND GENETIC VARIATION OF FOUR ACACIA SPECIES PLANTED IN PAHANG, MALAYSIA

MOHD NOOR MAHAT

FH 2007 10
GROWTH PERFORMANCE AND GENETIC VARIATION OF FOUR *ACACIA* SPECIES PLANTED IN PAHANG, MALAYSIA

By

MOHD NOOR MAHAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2007
GROWTH PERFORMANCE AND GENETIC VARIATION OF FOUR ACACIA SPECIES PLANTED IN PAHANG, MALAYSIA

By

MOHD NOOR MAHAT

October 2007

Chairman: Profesor Nor Aini Ab Shukor, PhD

Faculty: Forestry

Acacia mangium Willd, Acacia auriculiformis A. Cunn. ex Benth., Acacia crassicarpa A. Cunn. ex Benth. and Acacia aulacocarpa A. Cunn. ex Benth. are the four fast-growing tropical acacias which have received high priority for genetic assessment and improvement in the Asian region. Despite their rapid early growth and tolerance to a wide range of environmental conditions, only A. mangium has been widely planted in the Compensatory Forest Plantation Programme in Malaysia. The seed sources utilised in the plantation were however, unselected and originated from a narrow genetic base. Therefore, this study was conducted at Kampung Aur Gading, Kuala Lipis, Pahang to evaluate the genetic variation and growth performance of a base breeding populations of Acacia species in terms of their quantitative and qualitative growth characteristics. Estimates of some parameters such as genetic correlation and heritability were also made. Twenty progenies each of the species were collected from two geographic regions namely Queensland and Papua New Guinea were used in this study. This trial was laid out in a randomized complete block design with four replications.
Generally all species adapted and performed well in local condition and their growth performances were significantly different (P< 0.05) between species, provenance and family. *A. mangium* was the best performer in almost all of the traits tested, followed by *A. crassicarpa, A. auriculiformis* and *A. aulacocarpa*. Concurrently, all species exhibited high intra species variation for all the traits assessed. There were also significant genetic variation between regions, between provenances within region and between families within the provenances exists in the quantitative traits assessed for all species. The populations collected from Papua New Guinea, generally, outperformed those from Queensland in quantitative growth traits except for stem quality which appeared otherwise. The progenies in the family also exhibit high genetic variability with variance component ranging from 39% to 93.7% of the total variance. Out of these, few individuals were found to be exceptionally good performer, even from the poor families such as JSL3777 of *A. mangium*, MHL14 of *A. crassicarpa*, BH14068 of *A. auriculiformis* and GB100 of *A. aulacocarpa*. Among the top performing families were KN097, CG1853 and JSL380 of *A. mangium*, BVG2609 and MHL13A of *A. crassicarpa*, GB098, MM1016 and AR10 of *A. aulacocarpa* and BH14607 and JSL363 of *A. auriculiformis*.

There were significant differences between species (at P<0.05) for selected wood properties tested. *A. aulacocarpa* gave the highest wood density of 0.59 g/cm³, followed by *A. auriculiformis* (0.54 g/cm³), *Acacia crassicarpa* (0.51 g/cm³) and *A. mangium* (0.43 g/cm³). On the contrary, the order of ranking differed in fiber length where, *A. crassicarpa* produced the longest fiber length (0.91mm), followed by *A. mangium* (0.85mm), *A. aulacocarpa* (0.83mm) and *A. auriculiformis* (0.83mm).
The study found that all species were efficient in their photosynthetic capabilities since they produced Fv/Fm values above 0.80 and were not significantly different.

Generally the heritability estimates were variable between traits and between species. The heritability estimates of quantitative growth traits for *A. aulacocarpa* were found to be almost consistent for all traits ranging from 0.36 to 0.40. Similarly, *A. mangium* gave estimates ranging from 0.30 to 0.36. On the contrary *A. auriculiformis* gave comparatively more variable estimates ranging from 0.23 to 0.37. *A. crassicarpa* recorded comparatively lower estimates ranging from 0.20 to 0.30. The heritability estimates for the qualitative traits were however, low with majority of them estimating narrow sense heritabilities below 0.20. The heritability estimates for wood properties and chlorophyll fluorescence varied significantly from none (0.0) to moderate (0.32) for families of all species tested. The phenotypic and genetic correlations varied widely ranging from 0.0 to 0.96 for the former and from 0.0 to 0.83 for the latter, respectively. Generally, these correlations were found to vary between traits as well as between species. The correlations between growth traits and stem qualitative traits were generally moderate (0.4 –0.6) to high (above 0.6). The correlations between quantitative traits and other traits were found to be generally low (below 0.4) whereas correlations between physiological traits and wood properties and with other traits were generally very low (below 0.1) or even not correlated at all. This study indicated that further improvement could still be done on this base breeding population by employing further selection on a few selected traits at a time for the development of advanced breeding or even for the production populations.
PRESTASI PERTUMBUHAN DAN VARIASI GENETIK EMPAT SPESIES ACACIA DI TANAM DI PAHANG, MALAYSIA

Oleh

MOHD NOOR MAHAT

Oktober 2007

Pengerusi : Professor Nor Aini Ab Shukor, Ph.D.

Fakulti : Perhutanan

Acacia mangium Willd, Acacia auriculiformis A. Cunn. ex Benth, Acacia crassicarpa A. Cunn ex Benth dan Acacia aulacocarpa A. Cunn ex Benth merupakan empat spesies Acacia tropika yang cepat tumbuh yang mendapat penilaian utama penilaian genetik dan penambahbaikan di kawasan Asia. Walaupun mempunyai kadar pertumbuhan awal yang cepat dan toleransi terhadap pelbagai keadaan persekitaran, hanya Acacia mangium yang ditanam secara meluas di bawah Program Kompensatori Hutan Ladang di Malaysia. Sumber biji benih yang digunakan dalam program ini walau bagaimanapun, tidak dipilih dan berasal daripada asas genetik yang kecil. Oleh yang demikian, kajian ini dijalankan di Kampung Aur Gading, Kuala Lipis, Pahang untuk menilai variasi genetik dan prestasi ciri-ciri pertumbuhan populasi pembijakan asas genotip Acacia dari sudut kuantitatif dan kualitatif. Di samping itu anggaran terhadap beberapa parameter seperti korelasi genetik dan keterwarisan juga dibuat. Sebanyak 20 progeni setiap spesies dari dua kawasan geografi iaitu Queensland dan Papua New Guinea digunakan dalam kajian ini. Kajian spesies, provenan dan progeni dijalankan menggunakan reka bentuk blok rawak lengkap.
Secara umum, kesemua spesies berupaya menyesuai dan tumbuh dengan baik di Malaysia dan menunjukkan kadar pertumbuhan yang berbeza secara bererti (P<0.05) antara spesies, provenan dan famili. *A. mangium* menunjukkan pertumbuhan yang terbaik diikuti dengan *A. crassicarpa*, *A. auriculiformis* and *A. aulacocarpa*. Pada masa yang sama kesemua spesies mempamerkan variasi intra-spesifik yang tinggi bagi setiap ciri yang dinilai. Variasi genetik juga didapati ketara antara kawasan geografi, antara provenan dari kawasan yang sama, dan antara famili daripada provenans yang sama dalam kesemua ciri yang dikaji daripada keempat-empat spesies. Populasi yang berasal dari Papua New Guinea pada umumnya menunjukkan prestasi yang lebih baik berbanding Queensland dalam semua ciri pertumbuhan kuantitatif kecuali kualiti batang. Progeni-progeni dalam famili juga menunjukkan variasi genetik yang tinggi dengan varians antara 39% ke 93.7%. Beberapa individu didapati menunjukkan kadar pertumbuhan yang begitu baik walaupun berasal daripada famili yang inferior seperti *Acacia mangium* JSL3777, *A. crassicarpa* MHL14, *A. auriculiformis* BH14068 dan *A. aulacocarpa* GB100. Antara famili terbaik ialah *A. mangium* KN097, CG1853 dan JSL380, *A. crassicarpa* BVG2609 dan MHL13A, *A. aulacocarpa* GB098, MM1016 dan AR10, dan *A. auriculiformis* BH14607 dan JSL363. Terdapat juga perbezaan secara bererti (P<0.05) untuk beberapa sifat-sifat kayu yang diuji. *A. aulacocarpa* memberikan ketumpatan kayu tertinggi iaitu 0.59 g/cm³, diikuti dengan *A. auriculiformis* (0.54 g/cm³), *A. crassicarpa* (0.51 g/cm³) dan *A. mangium* (0.43 g/cm³). Berbeza pula dengan saiz gentian di mana *A. crassicarpa* menghasilkan gentian terpanjang (0.91 mm), diikuti dengan *A. mangium* (0.85 mm), *A. aulacocarpa* (0.83 mm) dan *A. auriculiformis* (0.83 mm). Kajian ini juga mendapati
semua spesies mempunyai keupayaan fotosintesis yang efisien kerana menghasilkan nilai Fv/Fm melebihi 0.80 dan tidak berbeza secara bererti.

Pada umumnya, anggaran keterwarisan berbeza antara ciri dan antara spesies. Anggaran keterwarisan ciri pertumbuhan kuantitatif $A. aulacocarpa$ didapati hampir konsisten bagi semua ciri iaitu antara 0.36 ke 0.40. $A. mangium$ juga menunjukkan anggaran yang agak konsisten antara 0.30 ke 0.36. Sebaliknya, $A. auriculiformis$ memberikan anggaran yang lebih tidak sekata iaitu antara 0.23 ke 0.37. $A. crassicarpa$ pula merekodkan anggaran yang jauh lebih rendah antara 0.20 ke 0.30. Anggaran keterwarisan untuk ciri–ciri kualitatif walau bagaimanapun rendah dengan majoriti di bawah 0.20. Anggaran keterwarisan untuk sifat-sifat kayu dan pendarfluor klorofil berbeza dengan bererti daripada tiada (0.0) ke sederhana (0.32) untuk kesemua famili yang diuji. Korelasi fenotip dan genetik pula mempunyai perbezaan yang jelas dengan julat 0.0 ke 0.96 untuk korelasi fenotip dan 0.0 ke 0.83 untuk korelasi genetik. Secara umum, korelasi-korelasi ini didapati berbeza antara ciri dan juga antara spesies. Korelasi antara ciri pertumbuhan dan ciri kualitatif batang adalah sederhana (0.4 – 0.6) ke tinggi (melebihi 0.6). Korelasi antara ciri kuantitatif dan ciri-ciri yang lain pada dasarnya didapati lebih rendah (di bawah 0.4), manakala korelasi antara ciri fisiologi dan sifat-sifat kayu dengan ciri-ciri yang lain adalah sangat rendah (di bawah 0.1) atau tidak ada korelasi. Kajian ini menunjukkan bahawa kualiti populasi pembiakan asas ini mampu dipertingkatkan dengan melakukan pemilihan berterusan pada ciri-ciri terpilih dan juga boleh digunakan sebagai populasi pengeluaran bahan tanaman.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my greatest gratitude to Allah S.W.T. for giving me the strength, courage and time without which this study could not be completed.

I would like to extend my heartfelt gratitude to my supervisors, Prof. Dr. Nor Aini Ab Shukor, Assoc. Prof. Dr. Kamis Awang and Dr. Ab Rasip Ab Ghani, for their wise counsel, constant guidance, healthy criticism, constant encouragement, persistent inspiration and various logistical support throughout the entire graduate programme. Their knowledgeable experiences in this field have often served as my inspiration.

I am also indebted to the Forest Research Institute of Malaysia (FRIM), for the time allowed to undertake the study and to Ministry of Science for the financial support to see the project through. I am also thankful to the Director of Forest Plantation Division of FRIM, Dr. Ahmad Zuhaidi Yahya who has strongly supported me to finish this study.

Friends who have shown support and encouragement throughout this study, will always be remembered, Dr. Norwati Muhammad, Mohd Zaki Abdullah and Rosdi Koter are greatly appreciated. Special thanks go to Tuan Nor Azmira, Rohaidah
Ngah and Zawiah Ngah for their time and efforts in assisting me throughout the course of the study.

Mr. Hashim Wan Samsi, Dr. Norwati Muhammad and Dr. Mohd Nor Yusof who have unselfishly allowed me to use their laboratory facilities in conducting this research. I would like to acknowledge the assistance of the various office and field staffs involved throughout this study. My thanks to Ab Molok Ab. Ghani, Rosli Izhar, and Pak Lang who shared their diligence with me, for this research study. I would also like to thank all my friends who have assisted me in one way or another.

My appreciation to my wife Sapurah Rajulan and family for their patience and understanding. Great amount of time has been spent elsewhere, when I should have been with them.

I dedicate this thesis to both my parents and may Allah bless you both. Alhamdulillah.
I certify that an Examination Committee has met on 5th October 2007 conduct the final examination of Mohd Noor Mahat on her Doctor of Philosophy thesis entitled “Growth Performance and Genetic Variation of Four Acacia Species Planted in Pahang, Malaysia” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommended that the candidate be awarded the degree of Doctor of Philosophy.

Members of the Examination Committee were as follows:

Mohd Zaki Hamzah, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Azmy Mohamed, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Mohamad Azani Alias, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Mohamad Osman, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Nor Aini Ab. Shukor, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Ab. Rasip Ab. Ghani, PhD
Forest Plantation Division
Forest Research Institute Malaysia (FRIM)
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 February 2007
DECLARATION

I declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHD NOOR MAHAT

Date: 1 January 2008
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION	1
Introduction	1
The Study Background and Justification	5
The Objectives	8

II LITERATURE REVIEW	9
Acacia as a Plantation Species	9
Acacia mangium	10
Natural Distribution and Ecology	11
Growth and Performance of *Acacia mangium* in Malaysia	11
Wood Properties and Utilization	13
Other Selected *Acacia* Species	14
Natural Distribution and Ecology	15
Growth and Yield	17
Wood Properties and Uses	22
Wood and Genetic Control	23
Variation within Tree	25
Variation between Tree	30
Wood Variation among Sites and Geographic Regions	33
Wood Density	38
Fiber Length	41

III MATERIALS AND METHODS	45
The Materials	45
Field Establishment	45
Experimental Design and Layout	46
The Sub-studies	50
Data Analysis	50
Analysis of Species Performance	51
Variance Component	52
Results and Discussion 145
 Variation between Species 145
 Variation within Species 147
 Variance Components 156

VII GENETIC VARIATION OF THE CHLOROPHYLL FLOURESCENCE OF THE PROGENY 160
Introduction 160
Photosynthesis and Environment 162
Chlorophyll Frouescence 165
Materials and Methods 167
 The Materials 167
 Chlorophyll Flourescence 167
 Stomata Count 168
 Statistical Analysis 169
 Analysis of Variance 169
Results and Discussion 170
 Variation Between and Within Species 170

VIII HERITABILITY ESTIMATION AND CORRELATION BETWEEN THE TRAITS 181
Introduction 181
Heritability 183
Correlation between Traits 186
Phenotypic and Genetic Correlations 188
Materials and Methods 191
 The Materials 191
 Heritability 191
 Genetic Correlation 192
Results and Discussion 192
 Heritability of The Traits 192
 Relationship between Traits 200

IX GENERAL DISCUSSION AND CONCLUSION 210
 The Growth Performance of The Species 213
 Genetic Variation and Implications for Future Selection 215
 Heritabilities and Correlations between Traits 219
 Recommendation for Further Breeding Strategy 221

REFERENCES 223
APPENDICES 260
BIODATA OF THE AUTHOR 299
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Details of Species, Region, Provenance and Progeny Used in the Study</td>
<td>48-49</td>
</tr>
<tr>
<td>2</td>
<td>Random Distribution of Families in Block 1</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Random Distribution of Families in Block 2</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>Random Distribution of Families in Block 3</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>Random Distribution of Families in Block 4</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>Means for Height, Diameter at Breast Height, Clear Bole Height, Crown Height and Crown Size of the Three Year Old Acacia Species Planted at Aur Gading, Kuala Lipis Pahang.</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>Analysis of Variance for Species Using Restricted Maximum Likelihood (REML) Method for the Growth Traits.</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>Analysis of Variance for the Quantitative Growth Traits at 36 Month after Planting of A. mangium</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>Analysis of Variance for the Quantitative Growth Traits at 36 Month after Planting of A. crassicarpa.</td>
<td>74</td>
</tr>
<tr>
<td>10</td>
<td>Analysis of Variance for the Quantitative Growth Traits at 36 Month after Planting of A. auriculiformis</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>Analysis of Variance for the Quantitative Growth Traits at 36 Month after Planting of A. aulacocarpa.</td>
<td>74</td>
</tr>
<tr>
<td>12</td>
<td>Means of the Growth Traits for Geographic Regions of A. mangium at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang</td>
<td>77</td>
</tr>
<tr>
<td>13</td>
<td>Means of the Growth Traits for Provenances of A. mangium at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>Means of the Growth Traits for Families of A. mangium at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang</td>
<td>78</td>
</tr>
<tr>
<td>15</td>
<td>Means of the Growth Traits for Geographic Regions of A. crassicarpa at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang</td>
<td>79</td>
</tr>
</tbody>
</table>
Branch Size and Branch Angle for Species Using Restricted Maximum Likelihood (REML) Method for All Growth Traits

32 Frequency and Percentage of Trees According to Class for Bole Quality of the Three Year Old *Acacia* species planted at Aur Gading, Kuala Lipis Pahang.

33 Frequency and Percentage according to Class for Forking Habit of the Three Year Old *Acacia* species planted at Aur Gading, Kuala Lipis Pahang.

34 Frequency and Percentage according to Class for Stem Form of the Three Year Old *Acacia* species planted at Aur Gading, Kuala Lipis Pahang.

35 Frequency and Percentage according to Class for Branch Size of the Three Year Old *Acacia* species planted at Aur Gading, Kuala Lipis Pahang.

36 Frequency and Percentage according to Class for Branch Angle of the Three Year Old *Acacia* species planted at Aur Gading, Kuala Lipis Pahang.

37 Results of Analysis of Variance for Qualitative for Stem Quality at 36 Month after Planting of *A. mangium*.

38 Results of Analysis of Variance for Qualitative for Stem Quality at 36 Month after Planting of *A. crassicarpa*.

39 Results of Analysis of Variance for Qualitative for Stem Quality at 36 Month after Planting of *A. auriculiformis*.

40 Results of Analysis of Variance for Qualitative for Stem Quality at 36 Month after Planting of *A. aulacocarpa*.

41 Means of the Qualitative Traits for Geographic Regions of *A. mangium* at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

42 Means of the Qualitative Traits for Geographic Regions of *A. crassicarpa* at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

43 Means of the Qualitative Traits for Geographic Regions of *A. aulacocarpa* at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

44 Means of the Qualitative Traits for Geographic Regions of *A.*
auriculiformis at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

45 Means of the Qualitative Traits for Provenances of A. mangium at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

46 Means of the Qualitative Traits for Provenances of A. crassicarpa at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

47 Means of the Qualitative Traits for Provenances of A. aulacocarpa at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

48 Means of the Qualitative Traits for Provenances of A. auriculiformis at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

49 Means of the Qualitative Traits for Families of A. mangium at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

50 Means of the Qualitative Traits for Families of A. crassicarpa at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

51 Means of the Qualitative Traits for Families of A. aulacocarpa at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

52 Means of the Qualitative Traits for families of A. auriculiformis at 36 Months after planting at Aur Gading, Kuala Lipis, Pahang

53 Frequency and Percentage of Trees for Geographic Region According to Class for Bole Quality of the Three Year Old Acacia species planted at Aur Gading, Kuala Lipis Pahang.

54 Frequency and Percentage of Trees for Geographic Region According to Class for Forking Habit of the Three Year Old Acacia species planted at Aur Gading, Kuala Lipis Pahang.

55 Frequency and Percentage of Trees for Geographic Region According to Class for Stem Form of the Three Year Old Acacia Species Planted at Aur Gading, Kuala Lipis Pahang.

56 Frequency and Percentage of Trees for Geographic Region According to Class for Branch Size of the Three Year Old Acacia Species Planted at Aur Gading, Kuala Lipis Pahang.

57 Frequency and Percentage of Trees for Geographic Region According to Class for Branch Angle of the Three Year Old Acacia Species
Planted at Aur Gading, Kuala Lipis Pahang.

58 Frequency and Percentage of Trees for Provenances According to Class for Bole Quality of the Three Year Old *Acacia* Species Planted at Aur Gading, Kuala Lipis Pahang.

59 Frequency and Percentage of Trees for Provenances According to Class for Forking Habit of the Three Year Old *Acacia* Species Planted at Aur Gading, Kuala Lipis Pahang.

60 Frequency and Percentage of Trees for Provenances According to Class for Stem Form of the Three Year Old *Acacia* Species Planted at Aur Gading, Kuala Lipis Pahang.

61 Frequency and Percentage of Trees for Provenances According to Class for Branch Size of the Three Year Old *Acacia* Species Planted at Aur Gading, Kuala Lipis Pahang.

62 Frequency and Percentage of Trees for Provenances According to Class for Branch Angle of the Three Year Old *Acacia* Species Planted at Aur Gading, Kuala Lipis Pahang.

63 Comparison of Percentage of class (5 + 6) between Geographic Regions of each Species

64 Comparison of Percentage of class (5 + 6) between Provenance of each Species

65 Variance Components and Their Percentages Toward Total Variance for Region, Provenance, Family and within Family of *A. auriculiformis*.

66 Variance Components and Their Percentages Toward Total Variance for Region, Provenance, Family and within Family of *A. aulacocarpa*.

67 Variance Components and Their Percentages Toward Total Variance for Region, Provenance, Family and within Family of *A. crassicarpa*.

68 Variance Components and Their Percentages Toward Total Variance for Region, Provenance, Family and within Family of *A. mangium*.

69 Means for the Wood Fiber Length and Ovendry Density of the Three Year old *Acacia* species planted at Aur Gading, Kuala Lipis Pahang.

70 Analysis of Variance for Between Species Using Restricted Maximum Likelihood (REML) Method for Fiber Length and Ovendry Density.
Analysis of Variance for Fiber Length and Wood Density of *A. aulacocarpa* at 36 Month after Planting.

Analysis of Variance for Fiber Length and Wood Density of *A. auriculiformis* at 36 Month after Planting.

Analysis of Variance for Fiber Length and Wood Density of *A. crassicarpa* at 36 Month after Planting.

Analysis of Variance for Fiber Length and Wood Density of *A. mangium* at 36 Month after Planting.

Means of fiber length and wood density for Geographic Regions of *A. aulacocarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of fiber length and wood density for Provenances of *A. aulacocarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of the Growth Traits for Families of *A. aulacocarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of Fiber Length and Wood Density for Geographic Regions of *A. auriculiformis* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of Fiber Length and Wood Density for Provenances of *A. auriculiformis* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of Fiber Length and Wood Density for Families of *A. auriculiformis* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of Fiber Length and Wood Density for Geographic Regions of *A. crassicarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of Fiber Length and Wood Density for Provenances of *A. crassicarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of the Growth Traits for Families of *A. crassicarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

Means of Fiber Length and Wood Density for Geographic Regions of *A. crassicarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.
A. mangium at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang

85 Means of Fiber Length and Wood Density for Provenances of A. mangium at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang

86 Means of the Growth Traits for Families of A. mangium at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang

87 Variance Components and Their Percentages Toward Total Variance for Region, Provenance, Family and within Family of A. mangium

88 Variance Components and Their Percentages Toward Total Variance for Region, Provenance, Family and within Family of A. crassicarpa

89 Variance Components and Their Percentages Toward Total Variance for Region, Provenance, Family and within Family A. auriculiformis

90 Variance Components and Their Percentages Toward Total Variance for Region, Provenance, Family and within Family of A. aulacocarpa.

91 Means for Chlorophyll Fluorescence and Stomata Density of The Three Year Old Acacia Species Planted at Aur Gading, Kuala Lipis Pahang.

93 Means for Length and Width of The Stomata of Acacia Species Planted at Aur Gading, Kuala Lipis, Pahang

94 Analysis of Variance Using Restricted Maximum Likelihood (REML) Method for Chlorophyll Fluorescence and Stomata Density on Both Side of the Phylode at 36 Months after Planting of A. auriculiformis

95 Analysis of Variance Using Restricted Maximum Likelihood (REML) Method for Chlorophyll Fluorescence and Stomata Density on Both Side of the Phylode at 36 Months after Planting of A. mangium.

96 Analysis of Variance Using Restricted Maximum Likelihood (REML) Method for Chlorophyll Fluorescence and Stomata Density on Both Side of the Phylode at 36 Months after Planting of A. aulacocarpa

97 Analysis of Variance Using Restricted Maximum Likelihood (REML)
Method for Chlorophyll Fluorescence and Stomata Density on Both Side of the Phylode at 36 Months after Planting of *A. crassicarpa.*

98 Means of the chlorophyll fluorescence and stomata density for Families of *A. auriculiformis* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang

99 Means of the chlorophyll fluorescence and stomata density for Families of *A. aulacocarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang

100 Means of the chlorophyll fluorescence and stomata density for Families of *A. crassicarpa* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

101 Means of the chlorophyll fluorescence and stomata density for Families of *A. mangium* at 36 Months after Planting at Aur Gading, Kuala Lipis, Pahang.

102 Estimates of Family Heritability for Selected Quantitative Growth Traits of the Four Selected *Acacia* Species.

103 Estimates of Family Heritability for Selected Qualitative Traits of the Four Selected *Acacia* Species.

104 Estimates of Family Heritability for Selected Wood Properties and Physiological Traits of the Four Selected *Acacia* Species.

105 Phenotypic (Above Diagonal) and Genetic (Below Diagonal) Correlations between Traits of *Acacia mangium* at 36 months after planting.

106 Phenotypic (Above Diagonal) and Genetic (Below Diagonal) Correlations between Traits of *Acacia crassicarpa* at 36 months after planting.

107 Phenotypic (Above Diagonal) and Genetic (Below Diagonal) Correlations between Traits of *Acacia aulacocarpa* at 36 months after planting.

108 Phenotypic (Above Diagonal) and Genetic (Below Diagonal) Correlations between Traits of *Acacia auriculiformis* at 36 months after planting.

xxiii
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Map of the Location of Kampung Aur Gading in Kuala Lipis, Pahang.</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>Field Layout of Randomised Complete Block Design of Acacias Species/Provenance/Progeny Trial at Kg. Aur Gading, Kuala Lipis.</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Distribution of Families within Geographic Regions for the Total Height of A. mangium</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>Distribution of Families within Provenances for the Total Height of A. mangium</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Distribution of Families within Geographic Regions for the Total Height of A. crassicarpa</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>Distribution of Families within Provenances for the Total Height of A. crassicarpa</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>Distribution of Families within Geographic Regions for the Total Height of A. auriculiformis</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>Distribution of Families within Provenances for the Total Height of A. auriculiformis</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>Distribution of Families within Geographic Regions for the Total Height of A. aulococarpa</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>Distribution of Families within Provenances for the Total Height of A. aulococarpa</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>Distribution of Classes in the Assessment of Bole Quality</td>
<td>105</td>
</tr>
<tr>
<td>12</td>
<td>Tree Bole Quality with Score Point of 6 (round bole)</td>
<td>105</td>
</tr>
<tr>
<td>13</td>
<td>Distribution of Classes in the Assessment of Stem Form</td>
<td>106</td>
</tr>
<tr>
<td>14</td>
<td>Tree Stem Form with Score Point of 2 (2 severe bends)</td>
<td>106</td>
</tr>
<tr>
<td>15</td>
<td>Tree Fork with Score Point of 1 (multiple leaders)</td>
<td>107</td>
</tr>
<tr>
<td>16</td>
<td>Distribution of Classes in the Assessment of Branch Angle</td>
<td>107</td>
</tr>
<tr>
<td>17</td>
<td>Distribution of Classes in the Assessment Branch Size</td>
<td>108</td>
</tr>
</tbody>
</table>