UNIVERSITI PUTRA MALAYSIA

IDENTIFICATION OF PROTEIN BIOMARKERS FOR CANDIDA PARAPSILOSIS AND CANDIDA TROPICALIS

LEE PEY YEE

FPSK(p) 2014 5
IDENTIFICATION OF PROTEIN BIOMARKERS
FOR CANDIDA PARAPSILOSIS AND CANDIDA TROPICALIS

By

LEE PEY YEE

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfilment of the
Requirements for the Degree of Doctor of Philosophy

June 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

IDENTIFICATION OF PROTEIN BIOMARKERS FOR CANDIDA PARAPSILOSIS AND CANDIDA TROPICALIS

By

LEE PEY YEE

June 2014

Chair: Associate Professor Chong Pei Pei, PhD
Faculty: Medicine and Health Sciences

Candida species are the major human fungal pathogens and incidence of systemic candidiasis has been rising over the years with Candida albicans as the main species isolated. However, Candida parapsilosis and Candida tropicalis have emerged recently as increasingly prevalent pathogens, but only few studies have focused on them thus far. In the first part of this study, systemic infection of C. parapsilosis and C. tropicalis were generated in mice via intravenous challenge and their pathogenicity was studied. It was demonstrated that mice challenged with C. parapsilosis and C. tropicalis exhibited different survival rate, with death only observed for C. tropicalis-infected mice. Besides, C. tropicalis-infected mice displayed higher fungal tissue burden and more severe kidney damage. Overall, the results indicate that C. tropicalis was more virulent than C. parapsilosis and suggests that specific virulence factors such as morphogenesis may account for variation in pathogenesis. In another context, difficulty in establishing definitive diagnosis for candidasis has prompted the search of biomarkers for the disease. Squalene synthase is a novel antigenic protein of C. tropicalis that was discovered from a previous study. To investigate its potential as a biomarker candidate, this protein was expressed in Pichia pastoris and the fusion protein was purified by affinity chromatography. The results showed that the purified recombinant protein was specifically recognized by polyclonal antibodies from C. tropicalis-infected mice on Western blot, suggesting that the protein could be a potential biomarker for C. tropicalis. However, further testing is needed to confirm its utility. To further discover protein biomarkers for C. parapsilosis and C. tropicalis and to understand their host-pathogen interactions, an immunoproteomic analysis was performed. For this purpose, cell wall proteins-enriched fractions of C. parapsilosis and C. tropicalis were systemically screened for antigens using antisera obtained from experimentally infected mice. This analysis led to the identification of 12 immunogenic proteins each for C. parapsilosis and C. tropicalis, of which 8 were common antigens for both species. Among these antigens, 14 have been previously reported as antigens of C. albicans, whereas isocitrate dehydrogenase (Idh2p) and dihydrolipooyllysine-residue
succinyltransferase (Kgd2p) were novel immunogenic proteins that were reported for the first time for Candida species. The present work showed that these antigens were expressed in vivo during infection and are likely to play important roles in pathogenesis. Next, the newly reported antigens, Idh2p and Kgd2p were overexpressed as recombinant proteins in Escherichia coli and subsequently purified by affinity chromatography. The antigenicity of the recombinant proteins was verified by immunoblotting using antisera from infected mice. This preliminary work suggests that the two proteins may find potential application as biomarker for C. parapsilosis and C. tropicalis. However, additional work is required to evaluate the usefulness of these proteins. Collectively, findings from the mouse model of infection and antigen profiling by immunoproteomics help to improve understanding on host response to C. parapsilosis and C. tropicalis infection, as well as discovering new protein antigens to be employed as disease biomarker candidates. This work also described the production of several antigenic recombinant proteins that lays the foundation for further research.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGENDALI PASTIAN PENANDA BIOLOGI PROTEIN UNTUK CANDIDA PARAPSILOSIS DAN CANDIDA TROPICALIS

Oleh

LEE PEY YEE

Jun 2014

Pengerusi: Profesor Madya Chong Pei Pei, PhD
Fakulti: Perubatan dan Sains Kesihatan

ACKNOWLEDGEMENTS

I would like to express my sincerest appreciation to all those who gave me the possibility to complete this project and thesis. Firstly, I would like to express my deep and sincere thanks to Assoc Prof Dr Chong Pei Pei for giving me the opportunity to perform this PhD study. This research project would have not been completed without her continuous guidance, constructive comments and support. Besides, her stimulating suggestions, advice and encouragement also helped me a lot in all the time of research and writing of this thesis. I would also like to thank my co-supervisors, Prof Rozita Rosli and Prof Gam Lay Harn for their important support throughout my study. Also special thanks to Prof Gam for her expert technical assistance in the mass spectrometry work. It has been a pleasure to do this PhD research under their supervision.

I also like to warmly thank Dr Phelim for his teaching on various lab techniques, valuable advice and friendly help during my early Phd study. Besides, I also wish to express my warm thanks to my labmates, including Dr Crystale, Dr Nabil, Dr Alireza, Chee Hong, Darren, Priya, Alan, Shira, Matun, Yatie, Voon Kin and Foong for their friendly help and sharing of knowledge. I appreciate the chance to be part of the team and enjoy the good time that we had together.

Next, I want to express my gratitude to all the staffs from the Biochemistry Lab, especially Puan Intan Darina, Cik Elina, Puan Fatimah and Cik Ruhaidah for their kind assistance in the lab. Besides, I am grateful to all the staffs from animal house and Pathology Lab for their help regarding animal work and histology analysis. I also appreciate the kind help from the staffs and members of Proteomic Lab in USM who have assisted me a lot in the experiment.

My special gratitude to School of Graduate Studies, Universiti Putra Malaysia for the financial support for my PhD study and also for the financial aid to attend international conference. I also wish to thank all those organizing committees for granting me the travel awards to participate in several workshops and conferences abroad. Also, this project was supported by grants from E-Science Fund and Research University Grant Scheme.

I would also like to express my indebtedness to my family for their support. Their endless love, encouragement and understanding have been of great value for me to complete this study.

Lastly, I would like to thank all those people that I might not have mentioned here but have helped me in any part of this project.
I certify that a Thesis Examination Committee has met on 5 June 2014 to conduct the final examination of Lee Pey Yee on her thesis entitled “Identification of Protein Biomarkers for *Candida parapsilosis* and *Candida tropicalis*” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Fauziah binti Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Patimah binti Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Wang Yue, PhD
Professor
Institute of Molecular and Cell Biology
Singapore
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 July 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Chong Pei Pei, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Rozita Rosli, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Gam Lay Harn, PhD
Professor
School of Pharmaceutical Sciences
University Sciences of Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _________________________ Date: _____________________
Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________ Signature: ____________________
Name of Chairman of Supervisory Committee: ____________________
Name of Member of Supervisory Committee: ____________________

Signature: ____________________ Signature: ____________________
Name of Member of Supervisory Committee: ____________________

Signature: ____________________ Signature: ____________________
Name of Member of Supervisory Committee: ____________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Candida and candidiasis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.1 Candida taxonomy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Morphology and growth characteristics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Risk factors for candidiasis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Epidemiology of candidiasis</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.1.5 Diagnosis and therapy</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1.6 Virulence factors, pathogenesis and host immune response</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1.7 Cell wall proteins</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.2 Animal models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.1 Introduction</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Study of host response</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.3 Recombinant protein expression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Protein expression in Escherichia coli</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Protein expression in Pichia pastoris</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.4 Proteomic analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Two-dimensional gel electrophoresis (2-DE)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Protein visualization</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.4.4 Mass spectrometry (MS)</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.4.5 Bioinformatics and database searching</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.4.6 Application of proteomic analysis to Candida</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>GENERATION OF SYSTEMIC MURINE CANDIDIASIS MODEL: CANDIDA PARAPSILOSIS VERSUS CANDIDA TROPICALIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.1 Introduction</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.2 Methodology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.1 Candida strains</td>
<td>23</td>
</tr>
</tbody>
</table>
3.2.2 Preparation of inoculum 23
3.2.3 Mice and lateral tail vein injection 23
3.2.4 Fungal burden study 24
3.2.5 Histopathology 24
3.2.6 Genomic DNA isolation 24
3.2.7 Species identification by ITS sequencing 25

3.3 Results and Discussion
3.3.1 Virulence of systemic *C. parapsilosis* and *C. tropicalis* infection in immunocompetent mice 26
3.3.2 Determination of fungal burden 27
3.3.3 Morphological examination and histopathology of kidney tissue 29

3.4 Conclusion 33

4 RECOMBINANT EXPRESSION OF SQUALENE SYNTHASE FROM *CANDIDA TROPICALIS* IN *PICHIA PASTORIS*

4.1 Introduction 34
4.2 Methodology
4.2.1 Strains 35
4.2.2 Bioinformatic analysis 35
4.2.3 Design of PCR primers 36
4.2.4 Genomic DNA isolation 36
4.2.5 Gene amplification 36
4.2.6 Restriction enzyme digestion 36
4.2.7 Ligation into expression vector 37
4.2.8 Preparation of *E. coli* competent cells and transformation 37
4.2.9 Colony PCR, plasmid isolation and analysis of recombinant clones 37
4.2.10 Transformation into *Pichia pastoris* and analysis of *Pichia* integrants 38
4.2.11 Determination of methanol utilization (Mut) phenotype 38
4.2.12 Protein expression in *P. pastoris* 38
4.2.13 Protein extraction 39
4.2.14 SDS-PAGE 39
4.2.15 Western blot 40
4.2.16 Recombinant protein purification 40
4.2.17 Preparation of immune sera 41
4.2.18 Sera reactivity with recombinant protein 41

4.3 Results and Discussion
4.3.1 Sequence analysis 41
4.3.2 Gene amplification 42
4.3.3 Construction of recombinant expression vector 43
4.3.4 Analysis of *E. coli* transformants 45
4.3.5 *P. pastoris* transformation and analysis of the *Pichia* integrants 45
4.3.6 Mut phenotype 46
4.3.7 Optimization of protein expression in *P. pastoris* 47
4.3.8 Purification of recombinant protein 51
4.3.9 Sera reactivity with purified protein 52

4.4 Conclusion 53

5 IMMUNOPROTEOMIC ANALYSIS OF CANDIDA PARAPSILOSIS AND CANDIDA TROPICALIS
5.1 Introduction 54
5.2 Methodology
5.2.1 Preparation of immune sera 55
5.2.2 Protein sample preparation 55
5.2.3 Determination of protein concentration 56
5.2.4 SDS-PAGE and Western blotting 56
5.2.5 Two-dimensional gel electrophoresis 57
5.2.6 2-DE Western blotting 58
5.2.7 In-gel digestion 58
5.2.8 Mass spectrometry analysis 58
5.2.9 Database search 59
5.2.10 In silico analysis 59
5.3 Results and Discussion
5.3.1 Generation of antisera against *C. parapsilosis* and *C. tropicalis* 60
5.3.2 Determination of protein concentration 60
5.3.3 Optimization of protein sample preparation 61
5.3.4 Optimization of 1-DE immunoblots 63
5.3.5 2-DE optimization 66
5.3.6 2-DE profiles of *C. parapsilosis* and *C. tropicalis* 72
5.3.7 Identification of immunoreactive proteins from *C. parapsilosis* and *C. tropicalis* 74
5.3.8 In silico analysis 85
5.3.9 Common immunoreactive proteins 88
5.3.10 *C. parapsilosis*-specific immunoreactive proteins 91
5.3.11 *C. tropicalis*-specific immunoreactive proteins 93
5.4 Conclusion 97

6 CLONING AND EXPRESSION OF PROTEIN ANTIGENS IN ESCHERICHIA COLI
6.1 Introduction 98
6.2 Methodology
6.2.1 Bacterial strains 99
6.2.2 Design of PCR primers 99
6.2.3 Genomic DNA isolation 99
6.2.4 Polymerase chain reaction 99
6.2.5 Cloning 100
6.2.6 Transformation of *E. coli* TOP10 competent cells 100
6.2.7 Analysis of transformants 100
6.2.8 Transformation of *E. coli* strain LMG194 competent cells 101
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Summary of recombinant SS protein purification from P. pastoris</td>
<td>52</td>
</tr>
<tr>
<td>5.1 Identification of immunogenic proteins of C. parapsilosis by mass spectrometry</td>
<td>82</td>
</tr>
<tr>
<td>5.2 Identification of immunogenic proteins of C. tropicalis by mass spectrometry</td>
<td>84</td>
</tr>
<tr>
<td>5.3 Bioinformatic analysis of the identified proteins</td>
<td>87</td>
</tr>
<tr>
<td>6.1 Primers used for PCR amplification</td>
<td>103</td>
</tr>
<tr>
<td>6.2 Summary of recombinant cpIdh2p protein purification</td>
<td>113</td>
</tr>
<tr>
<td>6.3 Summary of recombinant ctIdh2p protein purification</td>
<td>113</td>
</tr>
<tr>
<td>6.4 Summary of recombinant ctKgd2p protein purification</td>
<td>114</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Model of Candida cell wall</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical workflow of gel-based proteomic analysis</td>
</tr>
<tr>
<td>3.1</td>
<td>Appearance of Candida colonies on CHROMagar Candida agar plate</td>
</tr>
<tr>
<td>3.2</td>
<td>Enumeration of viable Candida from kidneys of infected mice at 20 days post-challenge</td>
</tr>
<tr>
<td>3.3</td>
<td>Representative agarose gel electrophoresis of PCR products for confirmation of the Candida species using ITS primers</td>
</tr>
<tr>
<td>3.4</td>
<td>Representative gross pathology of mice kidneys</td>
</tr>
<tr>
<td>3.5</td>
<td>Representative H&E-stained kidney sections from control and infected mice</td>
</tr>
<tr>
<td>3.6</td>
<td>Representative PAS-stained kidney sections from control and infected mice</td>
</tr>
<tr>
<td>4.1</td>
<td>Agarose gel electrophoresis of PCR products using different MgCl₂ concentrations</td>
</tr>
<tr>
<td>4.2</td>
<td>Agarose gel electrophoresis of PCR products using different annealing temperatures</td>
</tr>
<tr>
<td>4.3</td>
<td>Agarose gel electrophoresis of EcoRI and XbaI restriction enzyme digestion products</td>
</tr>
<tr>
<td>4.4</td>
<td>Construction of recombinant plasmid pPICZB-ERG9</td>
</tr>
<tr>
<td>4.5</td>
<td>Agarose gel electrophoresis of colony PCR products</td>
</tr>
<tr>
<td>4.6</td>
<td>Agarose gel electrophoresis of SacI restriction enzyme digestion products</td>
</tr>
<tr>
<td>4.7</td>
<td>Agarose gel electrophoresis of PCR products for confirmation of the Pichia integrants</td>
</tr>
<tr>
<td>4.8</td>
<td>Screening of the Mut phenotype</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of induction time on protein expression</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of methanol concentrations on protein expression</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of medium composition on protein expression</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of Mut phenotype on protein expression</td>
</tr>
<tr>
<td>4.13</td>
<td>Purification of recombinant SS</td>
</tr>
<tr>
<td>4.14</td>
<td>Western blot analysis of the purified protein using mice sera</td>
</tr>
<tr>
<td>5.1</td>
<td>Representative standard curve for RC DC protein assay using BSA as standard</td>
</tr>
<tr>
<td>5.2</td>
<td>SDS-PAGE gel of different protein extracts from C. parapsilosis</td>
</tr>
<tr>
<td>5.3</td>
<td>SDS-PAGE gel of different protein extracts from C. tropicalis</td>
</tr>
<tr>
<td>5.4</td>
<td>SDS-PAGE gel of cell wall proteins from C. parapsilosis and C. tropicalis</td>
</tr>
<tr>
<td>5.5</td>
<td>Visualization of total proteins on PVDF by Ponceau S staining</td>
</tr>
<tr>
<td>5.6</td>
<td>Optimization of antibody dilutions for C. parapsilosis</td>
</tr>
<tr>
<td>5.7</td>
<td>Optimization of antibody dilutions for C. tropicalis</td>
</tr>
<tr>
<td>5.8</td>
<td>2-DE protein profiles of C. tropicalis separated using 7 cm IPG strips</td>
</tr>
<tr>
<td>5.9</td>
<td>2-DE protein profile of cell wall proteins-enriched fraction from C. tropicalis after TCA precipitation</td>
</tr>
<tr>
<td>5.10</td>
<td>2-DE protein profiles of cell wall proteins-enriched fractions from C. tropicalis using different rehydration buffers</td>
</tr>
</tbody>
</table>
5.11 2-DE protein profiles of cell wall proteins-enriched fractions from *C. tropicalis* using commercial and in-house buffer 70
5.12 2-DE protein profiles of cell wall proteins-enriched fractions from *C. parapsilosis* using different gradients of 7 cm IPG strips and different protein stains 71
5.13 2-DE protein profiles of cell wall proteins-enriched fractions from *C. tropicalis* using different gradients of 7 cm IPG strips and different protein stains 71
5.14 2-DE protein profiles of *C. parapsilosis* and *C. tropicalis* using 13 cm IPG strips 73
5.15 2-DE immunoblots of *C. parapsilosis* 75
5.16 2-DE immunoblots of *C. tropicalis* 76
5.17 Selection of *C. parapsilosis* protein spots for protein identification 77
5.18 Selection of *C. tropicalis* protein spots for protein identification 77
5.19 Schematic representation of protein identification of *C. parapsilosis* protein spot no. 3 by mass spectrometry analysis 79
5.20 Schematic representation of protein identification of *C. tropicalis* protein spot no. 32 by mass spectrometry analysis 80
6.1 Agarose gel electrophoresis of PCR amplification of cpIDH2 gene at different annealing temperatures 104
6.2 Agarose gel electrophoresis of PCR amplification of ctIDH2 gene at different annealing temperatures 104
6.3 Agarose gel electrophoresis of PCR amplification of ctKGD2 gene at different annealing temperatures 104
6.4 Map of pBAD-TOPO® expression vector used for protein expression 105
6.5 Agarose gel electrophoresis of PCR products for *E. coli*-pBAD-cpIDH2 transformants 106
6.6 Agarose gel electrophoresis of PCR products for *E. coli*-pBAD-ctIDH2 transformants 106
6.7 Agarose gel electrophoresis of PCR products for *E. coli*-pBAD-ctKGD2 transformants 106
6.8 SDS–PAGE and Western blot analysis of the effect of arabinose concentrations on protein expression from *E. coli* TOP10-pBAD-cpIDH2 recombinant clones 108
6.9 SDS–PAGE and Western blot analysis of the effect of arabinose concentrations on protein expression from *E. coli* TOP10-pBAD-ctIDH2 recombinant clones 109
6.10 SDS–PAGE and Western blot analysis of the effect of arabinose concentrations on protein expression from *E. coli* TOP10-pBAD-ctKGD2 recombinant clones 109
6.11 SDS–PAGE and Western blot analysis of the effect of arabinose concentrations on protein expression from *E. coli* LMG194-pBAD-cpIDH2 recombinant clones 110
6.12 SDS–PAGE and Western blot analysis of the effect of arabinose concentrations on protein expression from *E. coli* LMG194-pBAD-ctIDH2 recombinant clones 111
6.13 SDS–PAGE and Western blot analysis of the effect of arabinose concentrations on protein expression from *E. coli* LMG194-pBAD-ctKGD2 recombinant clones 111
6.14 Analysis of protein fractions obtained from purification of recombinant cpIdh2p protein by affinity chromatography 112
6.15 Analysis of protein fractions obtained from purification of recombinant ctIdh2p protein by affinity chromatography 113
6.16 Analysis of protein fractions obtained from purification of recombinant ctKgd2p protein by affinity chromatography 114
6.17 Immunoblots of purified cpIdh2p protein with pooled mice sera 115
6.18 Immunoblots of purified ctIdh2p protein with pooled mice sera 115
6.19 Immunoblots of purified ctKgd2p protein with pooled mice sera 116
LIST OF ABBREVIATIONS

2-DE Two-dimensional gel electrophoresis
ATCC American Type Culture Collection
BLAST Basic Local Alignment Search Tool
bp Base pair
BSA Bovine serum albumin
CHAPS 3-\[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate
CFU Colony forming unit
CWP Cell wall protein
Da Dalton
DNA Deoxyribonucleic acid
dNTP Deoxynucleotide triphosphate
DTT Dithiothreitol
EDTA Ethylenediaminetetraacetic acid
ESI Electrospray ionization
H&E Hematoxylin and eosin
HRP Horseradish peroxidase
IEF Isoelectric focusing
IgG Immunoglobin G
IPG Immobiline pH gradient
ITS Internal transcribed spacer
LB Luria-Bertani
MALDI Matrix assisted laser desorption ionization
MS Mass spectrometry
Mr Molecular mass
NCBI National Center for Biotechnology Information
OD Optical density
PAGE Polyacrylamide gel electrophoresis
PAS Periodic acid schiff
PBS Phosphate-buffered saline
PCR Polymerase chain reaction
pI Isoelectric point
PMSF Phenylmethylsulfonyl fluoride
PVDF Polyvinylidene fluoride
SDA Saboraoud dextrose agar
SDB Saboraoud dextrose broth
SDS Sodium dodecyl sulfate
\textit{Taq} \textit{Thermus aquaticus}
TBP Tributylphosphine
TBS Tris-buffered saline
TCA Trichloroacetic acid
TOF Time-of-flight
YPD Yeast Extract-Peptone-Dextrose
CHAPTER 1

INTRODUCTION

Candida species are commensal fungi in healthy individuals but are capable of causing opportunistic human infection and disseminating to deep tissues in susceptible populations. Hospitalized patients with immune deficiency or on prolonged antibiotics treatment or those receiving intravenous devices are particularly at risk for the potentially fatal systemic candidiasis (Chowta *et al.*, 2007). To date, systemic candidiasis is the leading fungal bloodstream infection and its incidence has continued to increase over the past few decades (Falagas *et al.*, 2010). Besides, the fact that systemic candidiasis is often associated with substantial morbidity and with attributable mortality of up to 45% also draw considerable concern (Eggimann *et al.*, 2003). To worsen the situation, effective and sensitive diagnosis for systemic candidiasis is still lacking. Moreover, antifungal treatment has been frequently delayed due to difficult diagnosis and severe side effects have been reported following usage of the antifungal drugs (Pappas *et al.*, 2009).

There are numerous efforts being carried out in the past to improve or complement diagnosis by blood culture method, which is the current gold standard for diagnosing systemic candidiasis. Regarding this, non-culture methods based on the detection of various fungal components have shown encouraging performances (Ahmad and Khan, 2012). Among these methods, detection assays based on antibody recognition against defined recombinant antigens have shown promising results in providing early diagnosis and even in identifying culture-negative cases (Clancy *et al.*, 2008).

Biomarker is any molecules that may reflect a particular biological condition. As such, measurement of biomarkers can be exploited as diagnostic or predictor tool in clinical laboratories. Proteins are the final cellular products that carry out numerous biological functions as well as participate in the disease processes. Hence, identification of protein biomarkers has come to the forefront as a possible solution for current problems associated with delayed or non-specific diagnosis of candidiasis. The discovery of protein biomarkers is hoped to aid in detecting patients with infection for early initiation of antifungal therapy to achieve favorable clinical outcome. Nowadays, this endeavor is greatly facilitated by the availability of proteomic technology that offer powerful tool for global profiling of protein expression and identification of disease associated protein biomarkers. In fact, through proteomic analyses, several protein biomarkers have been identified for *Candida* and tested clinically. In a recent analysis, serum IgG antibody reactivity to Met6p, Hsp90p, Pgk1p, Ssb1p and Gap1p were found to be appealing as potential prognostic predictors for patients with systemic candidiasis (Pitarch *et al.*, 2011).

It is fascinating that many *Candida* species are capable of switching from commensal organisms into harmful pathogens. To be a successful pathogen, *Candida* expresses numerous virulence factors that are tightly regulated throughout the course of
infection. It has been recognized that attachment of *Candida* to various host components is an important step to initiate infection, which is mediated by the expression of surface molecules known as adhesins (Sundstrom, 2002). As the infection progresses, *Candida* produces and releases hydrolytic enzymes such as secreted aspartyl proteinases to invade host tissues and contribute to the development of disseminated infection (Naglik *et al*., 2003). To persist inside the host, *Candida* adopts different strategies to overcome host immune attack (Jiménez-López and Lorenz, 2013). Besides, several lines of evidence also suggest that morphological transition from yeast to filamentous form is an important pathogenic trait (Lo *et al*., 1997; Phan *et al*., 2000; Kumamoto and Vinces, 2005). Nevertheless, our current understanding on virulence factors for *Candida* is still imperfect and is predominantly derived from studies on *Candida albicans*.

As the predominant *Candida* species, *Candida albicans* has become the major subject of study in different areas of research. Little attention has been paid to other *Candida* species and knowledge on their pathogenesis and protein biomarkers are still elusive. Furthermore, different *Candida* species are also known to differ considerably from each other in terms of their virulence attributes. On top of that, non-"albicans" *Candida* species especially *Candida parapsilosis* and *Candida tropicalis* are emerging recently as important pathogens in Malaysia and in several other countries that definitely deserve the research focus (Nucci and Colombo, 2007; Pfaller and Diekema, 2007; Rahman *et al*., 2008; Hamid *et al*., 2012). Thus, this project was conducted to shed light on *C. parapsilosis* and *C. tropicalis* as two increasingly prevalent pathogens that have not been widely studied before. The entire project encompasses several chapters and is detailed as below.

Mouse model of systemic candidiasis represents a valuable model that can recapitulate human infection. The first part of this study was carried out with the goal to investigate the pathogenicity of *C. parapsilosis* and *C. tropicalis* in a mouse model of systemic candidiasis. The pathological consequences following inoculation of the two *Candida* species were assessed and compared.

On the other hand, a previous study by our group has demonstrated that squalene synthase was a novel protein antigen that is involved in eliciting immune response in a mouse model of systemic *C. tropicalis* infection. Hence, the second part of this project was undertaken to express squalene synthase as recombinant protein in *Pichia pastoris* and to investigate its reactivity with immune sera from infected mice.

Exploration of *Candida* proteome is fundamental to understand the complex host-pathogen interaction at protein level in order to discover protein molecules that are important for pathogenesis. Besides, knowledge on protein antigens that participate in the disease process is useful to facilitate the identification of diagnostic markers and drug targets. So far, relatively little is known about the antigenic profiles and protein biomarkers of *C. parapsilosis* and *C. tropicalis* despite their growing importance. Thus, the third part of this work was performed with the aim of finding immunogenic proteins of *C. parapsilosis* and *C. tropicalis* as potential biomarkers by
using serological proteome analysis. Samples enriched with cell wall proteins from *C. parapsilosis* and *C. tropicalis* were resolved by two-dimensional electrophoresis followed by immunoblotting using antisera from infected mice to profile their antigenic components.

Subsequently, the last part of this study was carried out to further characterize the newly found antigenic proteins. The selected immunogenic proteins were cloned and expressed in *Escherichia coli* to explore their antigenicity.

The general objective of this study was to discover immunogenic proteins of *C. parapsilosis* and *C. tropicalis* as potential biomarker candidates.

The specific objectives of this study were:
1) to study the relative pathogenicity of *C. parapsilosis* and *C. tropicalis* in a mouse model of systemic candidiasis
2) to clone, express and purify squalene synthase in *Pichia pastoris* expression system and evaluate its serological reactivity
3) to screen and identify antigenic proteins of *C. parapsilosis* and *C. tropicalis* by using immunoproteomics
4) to generate recombinant proteins of selected antigens in *Escherichia coli* expression system and analyze their antigenicity
REFERENCES

enolase and fructose–bisphosphate aldolase for candidemia. BMC Infect Dis, 13, 253.

similarities in structure, function, and regulation. Mol Cell Biol, 13, 2706–2717.

Walsh, T. J., Hathorn, J. W., Sobel, J. D., Merz, W. G., Sanchez, V., Maret, S. M., Buckley, H. R., Pfaller, M. A., Schaufele, R., Sliva, C., Navarro, E., Lecciones,

