ELUCIDATING PATHOGENIC DETERMINANTS IN STENOTROPHOMONAS MALTOPHILIA PATHOGENESIS

RENJAN THOMAS

FPSK(p) 2014 4
ELUCIDATING PATHOGENIC DETERMINANTS IN
STENOTROPHOMONAS MALTOPHILIA PATHOGENESIS

By

RENJAN THOMAS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in fulfilment of the requirements for the Degree of Doctoral of Philosophy

2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated

In the name of

St. Gregorious Thirumeni of Parumala.
ELUCIDATING PATHOGENIC DETERMINANTS IN
STENOTROPHOMONAS MALTOPHILIA PATHOGENESIS

By

RENJAN THOMAS

2014

Chairperson: Associate Professor Vasanthakumari Neela, Ph.D

Faculty: Medicine and Health Sciences

Stenotrophomonas maltophilia, Gram negative bacteria has been known to be an
environmental microbe with numerous biotechnological applications. They are
ubiquitously found in nature. In recent times, this bacterium has been documented to
be one of the leading nosocomial pathogen next to Pseudomonas aeruginosa. Owing
to the high incident rate in hospital setup, they have been ranked as an opportunistic
pathogen and have been associated with bacteremic infection and pneumonia, both
with high rate of mortality in immunocompromised patients. Mortality rate has been
found to be high with patients who have a history of prolonged hospitalization,
malignancy, neutropenia, immune suppression, breakdown of muco-cutaneous
defence barriers (e.g., following catheterization, artificial implantation, tracheotomy,
or peritoneal dialysis), exposure to broad spectrum antibiotics and those requiring
mechanical ventilation.

Their intrinsic/acquired resistance to most antibiotics and their ability to colonize
surfaces of medical devices makes S. maltophilia a potentially dangerous pathogen.
Treatment of S. maltophilia infections is also complicated by the fact that isolates are
inherently resistant to many of the currently available broad-spectrum agent
including carbapenems. Whether S. maltophilia clinical isolates are colonizers or true
pathogens is still controversial.

Despite the increase in the spectrum of clinical syndromes associated with
S. maltophilia, very little is known about the extracellular enzymes profiles which
may have potential roles in pathogenesis especially among clinical isolates
associated with infections. In this study, we screened and compared an array of
extracellular enzymes in S. maltophilia collected from invasive and non-invasive
clinical specimens by substrate plate assays. We also grouped the isolates as device
related and non-device related and compared the enzyme profile. Our study showed
all clinical isolates produced substantial levels of biochemical enzyme assayed.
However, lecithinase and heparinase were significantly associated with isolates of
invasive origin. In contrast, device related and non-device related did not show any
major significant difference. These data suggest that clinical isolates of *S. maltophilia* are a reservoir for pathogenic potential enzymes.

The pathogenic potential of *S. maltophilia* strains isolated from clinical samples were screened for a panel of putative virulent genes such as putative lipase, putative iron complex outer membrane [ICOM], putative siderophore, *lux R*, *toxA*, *piliZ* and *tatD* which were fished out from closely related *P. aeruginosa* genome. The results showed that among the 108 isolates, 57.4%, 10.1%, 0.92%, 57.4% and 74% of the isolates harboured ICOM (n = 62), siderophore (n = 11), *luxR* (n = 1), Lipase (n = 62) and *tatD* (n = 80) harboured these genes. *ToxA* and *piliz* were not found in these clinical isolates. Relative quantification of these putative virulent genes showed ICOM, *tatD* and lipase genes to be overexpressed compared to others. Environmental strain *S. maltophilia* LMG 959 lacked these putative virulent genes.

The role of *S. maltophilia* on macrophages was studied to determine the inflammatory response and to study the phagocytic ability of this bacterium on RAW 264.7 macrophages. Both invasive and non-invasive isolates of *S. maltophilia* were able to enter the macrophage cells. Greater internalization ability was observed by clinical isolates of *S. maltophilia* in comparison to that of the environmental strain. *S. maltophilia* LMG959 (p < 0.05). Although all isolates of *S. maltophilia* gained entry, only the clinical isolates were able to replicate within the macrophages. Environmental strain was unable to replicate within the macrophage. The ability of clinical isolates of *S. maltophilia* to enter and survive the macrophages indicates its resistance to host defence system. Clinical isolates of *S. maltophilia* induced an amplified level of activation within macrophages which triggered immune response compared to environmental strains, as revealed by increased nitric oxide production and CD40 expression. Intracellular survivability of *S. maltophilia* was also ascertained by the presence of several bacteria which were observed as membrane bound. This intracellular phase during infection could play a prominent role in immune evasion and its pathogenicity.

In conclusion, *S. maltophilia* has all the essential qualities to be termed as a serious nosocomial pathogen with the presence of these virulence factors such as the extracellular enzymes and the gene products which could have a deleterious effect owing to the fact that the virulent determinants act in combination. Evading host defences and having intracellular survival ability makes this bacterium a potent and serious nosocomial pathogen.
PENGENALPASTIAN PENENTU KEPATOGENAN YANG TERLIBAT DALAM PATOGENESIS *STENOTROPHOMONAS MALTOPHILIA*

Oleh

RENJAN THOMAS

2014

Pengerusi: Profesor Madya Vasantha Kumari Neela, PhD

Fakulti: Perubatan dan Sains Kesihatan

Meskipun terdapat peningkatan di dalam spektrum yang melibatkan sindrom klinikal dengan *S. maltophilia*, amat sedikit pengetahuan tentang profil – profil enzim luar sel yang berkemungkinan mempunyai potensi di dalam penglibatannya dalam patogenesis terutama sekali pemencilan yang diperolehi daripada jangkitan-jangkitan yang berhubung kait dengan kes klinikal. Di dalam kajian ini, satu siri pelbagai enzim-luar sel yang terdapat pada *S. maltophilia* yang dikumpulkan daripada spesimen klinikal invasif dan bukan invasif disaringkan dengan asai ‘substrate plate’. Semua pemencilan klinikal menghasilkan tahap – tahap asai biokimia enzim yang mempunyai kesan negatif. Walau bagaimanapun, enzim lesiitinase dan heparinase memainkan peranan yang penting di dalam pemencilan secara invasif. Apabila pemencilan – pemencilan ini diklasifikasikan sebagai berkaitan dengan peralatan dan bukan berkaitan dengan peralatan, ia tidak menunjukkan

v
sebarang perbezaan signifikasi yang major di dalam profil-profil enzim. Kesemua data ini mencadangkan bahawa pemencilan secara klinik akan *S. maltophilia* adalah lombong untuk mendapatkan enzim – enzim yang mempunyai potensi untuk menunjukkan ciri-ciri patogenik.

ACKNOWLEDGEMENTS

I have had a wonderful and overwhelming experience throughout my PhD. The journey of my doctoral degree has shown me the real learning experience. I am indebted to many people for making the time working on my Ph.D. an unforgettable experience.

First of all, I am deeply grateful to my supervisor Dr. Vasanthakumari Neela. It was truly a pleasure to work with you. Your support has been very instrumental and you have always shown me kindness and prompted me learn things the hard way. Your technical and editorial advice was essential to the completion of this dissertation and you have taught me valuable lessons and insights on the workings of academic research in general. Your critical comments and constructive suggestions on my papers have encouraged me to think more critically and creatively. You have been very patient and encouraging in times of new ideas and difficulties and have always listened to my ideas and discussions and gave me critical views. The balance that you bring about in research and personal pursuits is admirable.

I would like to thank Dr. Sharmili Vidyadaran, my co-supervisor. I am indebted to you for your valuable inputs and technical ideas. You had always been a support system for me. Thank you for keeping me sane. I would like to express my gratitude to Dr. Rukman Awang Hamat as well. Thank you for the unlimited help, patience, encouragement, guidance and support that you have showed towards me. I would also like to thank Dr. Abhimanyu Veerakumarasivam for his invaluable advice, encouragement and support that he has offered me. I truly thank Dr. Ngah Zasmy for granting me the permission to use the tissue culture facility in his laboratory. I also take this opportunity to express a deep sense of gratitude to Dr. Rukmini Govekar and Dr. Kalai for their constant care and encouragements.

I would like to thank Anthony uncle, Mr. Yusop, Mr. Zainal, Ms. Nor Hanim, Mrs. Siti Farah and Mrs. Fariza for their technical assistance. I would also like to thank Mr. Khairul for helping me with Fluorescence microscopy and Mrs. Amina Jusoh for her assistance in Transmission Electron Microscopy. I owe special thanks to Daneetha and Kaausalya for helping me with the final printing and binding of the thesis. A special note of thanks to Vinothini, Chandra, Shakira, Hanani, Mohammad Babaei and others who not only were wonderful colleagues but were caring and loving friends. I would like to express a special note of thanks to Mr. Ahmed for his generous help.

I would like to thank those closest to me, whose presence helped make the completion of my work possible. These include Jafar Khan, my best friend for the past 13 years. Truly blessed to have you in my life and my appreciation to you is far beyond words. I owe a very important debt to Kavita. Although she passed away, fond memories of hers still remains with me. I would also like to thank my friends Nikesh and Mahesh for being my support system. I also thank Vasan. S, Dr Fairus, S. Saravanan, Dr. Ravi, Ms. Seetha and all my Malaysian friends for being there for me and making me feel at home.
I am forever indebted to my parents and my brother, for their unconditional love, support, and trust on me and the sacrifice they have endured for me to make a better future. The distance between us made things difficult but your prolonged and consistent belief in me marked the difference. I am grateful to you in giving me the opportunity to walk my own path.

Finally, and most importantly, I would like to thank Mr. Thayalan Aridas for his support, encouragement and patience that made me a better person and have helped me throughout this PhD journey. I could not have accomplished anything without your support. Thank you for being there for me. Last but not least would like to thank Parumala Thirumeni and God the Almighty for giving me a chance to excel and complete this work successfully.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.
The members of the Supervisory Committee were as follows:

Vasanthakumari Neela, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Sharmili Vidyadaran, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Rukman Awang Hamat, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and the copyright of thesis are fully owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the university Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: Date:

Name and Matric no: RENJAN THOMAS, GS24573
Declaration by Members of Supervisory Committee

This is to conform that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2002 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of
Supervisory Committee: Dr. Vasanthakumari Neela
Name of Member of Supervisory Committee: Dr. Sharmili Vidyadaran

Signature: ___________________________
Name of Member of Supervisory Committee: Dr. Rukman Awang Hamat
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPYRIGHT</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION 1

2. LITERATURE REVIEW 3
 2.1 History of *Stenotrophomonas maltophilia* 3
 2.2 Microbiology of *Stenotrophomonas maltophilia* 3
 2.3 Genetics of *Stenotrophomonas maltophilia* 6
 2.4 Virulence and pathogenesis of *Stenotrophomonas maltophilia* 7
 2.4.1 Adherence 7
 2.4.2 Biofilm 9
 2.4.3 Flagella and Pili / Fimbriae 10
 2.4.4 Lipopolysaccharide 11
 2.4.5 Diffusible Signal Factors 12
 2.4.6 Extracellular Enzymes 12
 2.4.7 Pigments 13
 2.4.8 Secretion System 13
 2.5 Clinical Manifestations of *Stenotrophomonas maltophilia* 14
 2.6 Host immune response towards *Stenotrophomonas maltophilia* 15
 2.7 *S. maltophilia* ability to invade macrophages and epithelial cells 16
 2.8 Macrophages:Introduction 17
 2.8.1 Origin of macrophage 17
 2.8.2 Macrophages Functions 18
 2.8.3 Nitric Oxide (NO) 18
 2.8.4 CD 40: Immunological significance 18

3. EXTRACELLULAR ENZYME PROFILING OF *STENOTROPHOMONAS MALTOPHILIA ISOLATED FROM CLINICAL SAMPLES* 20
 3.1 Introduction 20
 3.2 Materials and methods 21
 3.2.1 Bacterial isolates 21
3.2.2 Enzymes assays
 3.2.2.1 DNase test
 3.2.2.1.1 DNase toluidine blue (TBO) Assay
 3.2.2.1.2 Modified DNase tube test
 3.2.2.2 Gelatinase assay
 3.2.2.3 Hemolysis
 3.2.2.4 Heparinase assay
 3.2.2.5 Hyaluronidase assay
 3.2.2.6 Lecithinase assay
 3.2.2.7 Lipase assay
 3.2.2.8 Proteinase assay
3.2.3 Pigment assay
3.2.4 Biofilm production assay
3.2.5 Motility assay
3.3 Results
3.4 Discussion

4. PREVELANCE OF PUTATIVE VIRULENT GENES IN
STENOTROPHOMONAS MALTOPHILIA INFECTION

4.1 Introduction
4.2 Material and methods
 4.2.1 Bacterial sources
 4.2.2 DNA extraction
 4.2.3 PCR analysis of virulence associated genes
 4.2.4 Gel Electrophoresis
 4.2.5 Preliminary gene expression of virulent putative genes
4.3 Results
4.4 Discussion

5. INTRACELLULAR SURVIVAL OF STENOTROPHOMONAS
MALTOPHILIA IN RAW 264.7 MACROPHAGES

5.1 Introduction
5.2 Material and methods
 5.2.1 Bacterial strains, cell lines and reagent
 5.2.2 Gentamicin protection assay
 5.2.3 Assay for intracellular replication
 5.2.3.1 Confirmation of bacterial replication in RAW 264.7 macrophages microscopically
 5.2.4 Griess assay for the detection of nitric oxide (NO)
 5.2.5 Immunophenotyping to evaluate CD40 expression in peripheral macrophages induced by test strains
5.2.6 Statistical analysis
5.3 Results
 5.3.1 S. maltophilia internalization of cultured RAW 264.7 cell lines
 5.3.2 S. maltophilia survival within RAW macrophages
 5.3.3 Griess assay for the detection of nitric oxide (NO)
 5.3.4 CD 40 expression by immunophenotyping
5.3.5 *S. maltophilia* proliferation in macrophages

5.3.5.1 Presence of intracellular *S. maltophilia* as observed by Transmission Electron Microscopy

5.3.5.2 Fluorescence staining assay reveals Intracellular localisation of *S. maltophilia*

5.3.5.2.1 Intracellular localization of test bacteria on macrophages using acridine orange-crystal violet stain

5.3.5.2.2 Viable internalized bacteria demonstrated by **Bac**light LIVE/DEAD staining

5.4 Discussion

6. SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Biochemical Features of S. maltophilia</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of Macrophages</td>
</tr>
<tr>
<td>3.1</td>
<td>Oligonucleotide primers used for species specific PCR</td>
</tr>
<tr>
<td>3.2</td>
<td>Different hydrolytic enzyme assay using plate method</td>
</tr>
<tr>
<td>3.3</td>
<td>Enzymatic profile for clinical isolates from different site</td>
</tr>
<tr>
<td>3.4</td>
<td>Production of melanin, biofilm and motility profile of clinical isolates of S. maltophilia</td>
</tr>
<tr>
<td>3.5</td>
<td>Enzymatic profile for clinical isolates of S. maltophilia</td>
</tr>
<tr>
<td>3.6</td>
<td>Production of melanin, biofilm and motility profile of Clinical isolates of S. maltophilia</td>
</tr>
<tr>
<td>4.1</td>
<td>Putative virulent genes and primers used</td>
</tr>
<tr>
<td>4.2</td>
<td>PCR programming</td>
</tr>
<tr>
<td>4.3</td>
<td>Virulent gene profile in S. maltophilia clinical isolates</td>
</tr>
<tr>
<td>4.4</td>
<td>Virulent gene accession number submitted to NCBI</td>
</tr>
<tr>
<td>4.5</td>
<td>Relative expression of putative virulence genes</td>
</tr>
<tr>
<td>5.1</td>
<td>Invasiveness of test bacteria</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>S. maltophilia isolated in pure culture</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Genome maps of S. maltophilia R551-3 and K279a</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Scanning electron micrographs of S. maltophilia adhering to plastic</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Scanning electron micrograph depicting 24 hours-biofilm formation By S. maltophilia (clinical isolate OBGTC9) on IB3 cell monolayer</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Scanning electron micrograph showing presence of flagella in S. maltophilia SMDP92</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>High-resolution scanning electron microscopy</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Transmission electron micrographs of epithelial respiratory cells exposed to S. maltophilia</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Enzymatic profile of S. maltophilia</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Representative results for the amplification of putative Iron complex outer membrane gene having a band at 246 bp</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Representative results for the amplification of putative DNase related tatD gene having a band at 409 bp</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Representative results for the amplification of putative Siderophore gene having a band at 460 bp</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Representative results for the amplification of putative luxR gene having a band at 288 bp</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Representative results for the amplification of putative lipase gene having a band at 234 bp</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Standard curve depicting the slope</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>Chemical reactions involved in the measurement of Nitric oxide using the Griess reagent system</td>
<td>47</td>
</tr>
<tr>
<td>5.2</td>
<td>Internalization of test bacteria on RAW 264.7 cells</td>
<td>49</td>
</tr>
<tr>
<td>5.3</td>
<td>Gentamicin protection assay</td>
<td>51</td>
</tr>
</tbody>
</table>
5.4 Invasive and non-invasive strains of *S. maltophilia* induces RAW 264.7 macrophages to produce nitric oxide (NO) 52

5.5 Bacterial induction of CD40 surface markers 53

5.6 Transmission electron micrograph of macrophages containing *S. maltophilia* 55

5.7 Intracellular localization of test bacteria on macrophages using acridine orange-crystal violet stain 57

5.8 Intracellular viability of test bacterium upon co-culture with macrophages 58

5.9 Species specific –PCR for *S. maltophilia* 59
LIST OF ABBREVIATIONS

AM Alveolar macrophages
AMP Adenosine monophosphate
APC Antigen presenting cells
ATCC American type culture collection
BCCM Belgian Co-ordinated Collections of Microorganisms
BEC Bladder epithelial cells
BSA Bovine serum albumin
CA Community acquired
CD40 Cluster of differentiation 40
CF Cystic fibrosis
CRP Cyclic AMP receptor protein
CSF Cerebrospinal fluid
DMEM Dulbecco’s modified eagle medium
DNA Deoxyribonucleic acid
DSF Diffusible signal factor
EDTA Ethylene diaminetetra acetic acid
EPS Exopolysaccharide
FACS Fluorescence activated cell sorting
HA Hospital acquired
HCA Healthcare associated
HIV Human immunodeficiency virus
ICOM Iron complex outer membrane protein
IFA Immunofluorescence assay
IL10 Interleukin 10
IL-1β Interleukin -1beta
IL8 Interleukin 8
iNOS inducible nitric oxide synthase
LB Luria bertani
LPS Lipopolysaccharide
MAMP Microbe associated molecular patterns
MDR Multiple drug resistant
MHA Muller hinton agar
MOI Multiplicity of infection
NED N-1-naphthyl ethylenediamine Dihydrochloride
NET Neutrophil extracellular traps
NGM Nematode growth hormone
NO Nitric oxide
OD Optical density
ORF Open reading frame
PBS Phosphate buffer saline
PCR Polymerase chain reaction
PL Polysaccharide lyase
PRR Pattern recognition receptors
QS Quorum sensing
rRNA Ribosomal ribonucleic acid
RTI Respiratory tract infection
SMF-1 S. maltophilia fimbriae 1
SS-PCR Species specific polymerase
chain reaction
T2S Type II secretion system
TEM Transmission electron microscopy
TLR Toll like receptor
TNF-α Tumor necrosis factor alpha
tRNA Transfer ribonucleic acid
UV Ultraviolet
CHAPTER 1

INTRODUCTION

Stenotrophomonas maltophilia is an emerging nosocomial, Gram-negative and multiple-drug-resistant (MDR) pathogen. This non-fermenting, bacilli has undergone numerous taxonomic changes over the time (Palleroni and Bradbury 1993). This bacterium has been associated with serious infections in humans (Sader, Jones et al. 2005; Crossman, Gould et al. 2008) and widely known to be an important nosocomial pathogen in immunosuppressed patients (Almeida, Rubio et al. 2007).

Ubiquitous in nature, *S. maltophilia* are found in a variety of microenvironments and geographical regions and occupies distinct ecological niches such as water, vegetables and soil. Owing to the fact that *S. maltophilia* are environmental bacteria and they inherit the multiple-drug-resistant (MDR) property, these microbes have also been isolated from aqueous sources within and outside the clinical setup. In the environment, it has been isolated from soil (Minkwitz and Berg 2001), plant roots (Berg 2009), animals (Hejnár, Kolář et al. 2010), and invertebrates (Petridou, Filioussis et al. 2010). In hospitals, isolation of *S. maltophilia* has been reported from hospital instruments such as ventilators (Kollef, Silver et al. 1995), central venous catheters (Muder, Harris et al. 1996), arterial pressure monitors, dialysis equipment (Flaherty, Garcia-Houchins et al. 1993), endoscopes (Kovaleva, Degener et al. 2010), hospital suction tubing (Yorioka, Oie et al. 2010), ice machines (Denton and Kerr 1998), tap water (Cervia, Farber et al. 2010), sinks (Brooke, Vo et al. 2008) and disinfectants (Mukhopadhyay, Bhargava et al. 2003). They have also been isolated from surfaces of materials used in intravenous cannulae, prosthetic devices and nebulizers (Denton, Rajgopal et al. 2003).

Although not a primary pathogen, *S. maltophilia* has emerged as an opportunistic nosocomial (hospital-acquired) microorganism. Most commonly *S. maltophilia* infections are associated with respiratory tract infections like pneumonia (Sefcick, Tait et al. 1999) and acute exacerbations of chronic obstructive pulmonary disease [COPD] (Nseir, Di Pompeo et al. 2006), bactereemia (Lai, Chi et al. 2004), biliary sepsis (Papadakis, Vartivarian et al. 1995), infections of the bones and joints, urinary tract, soft tissues (Sakhnini, Weissmann et al. 2002; Landrum, Conger et al. 2005; Bin Abdulhak, Zimmerman et al. 2009), endophthalmitis (Akçakaya, Sargın et al. 2011), eye infections, keratitis, scleritis, dacryocystitis (Mauger, Kuennen et al. 2010; Lin, Ma et al. 2011; Wladis 2011), endocarditis (Takigawa, Noda et al. 2007) and meningitis (Rojas, Garcia et al. 2009). Hospital-acquired infection of *S. maltophilia* has been increasing among immunocompromised population with high rates of mortality ranging from 20 to 70% (Farrell, Sader et al. 2010). Prolonged hospitalization, chemoprophylaxis, heart surgery (Del Toro, Rodriguez-Bano et al. 2006; Paez and Costa 2008) and burns (Tsai, Chen et al. 2006) are major risk factors involved in *S. maltophilia* colonization/infection. High rates of isolation in immunocompromised patients, increasing multidrug resistant strains, and lack of controlled clinical treatment trials makes this bacterium a cause of serious concern (Rolston, Kontoyiannis et al. 2005; Nicodemo and Paez 2007; Safdar and Rolston 2007).
Whether *S. maltophilia* is a colonizer or true pathogen is still unanswered and critical as isolation of pure *S. maltophilia* from lungs of pneumonic patients is difficult (Pathmanathan and Waterer 2005). Production of several extracellular enzymes that includes DNase, RNase, fibrinolysin, lipases, lecithinases, hyaluronidases, proteases and elastases associated with virulence has been reported in *S. maltophilia* infection and pathogenesis (Denton and Kerr 1998; Crossman, Gould et al. 2008). Adherence to biotic and abiotic surfaces, biofilm forming ability, antibiotic resistance to a whole wide group of antibiotics, presence of outer- membrane lipopolysaccharide and resistance to complement mediated killing are other properties that qualifies *S. maltophilia* as a pathogen to initiate and establish infection (Looney, Narita et al. 2009). Besides, studies have shown that *S. maltophilia* has immunostimulatory property to induce tumor necrosis factor alpha (TNF-α) which contributes significantly to airway inflammation (Waters, Gomez et al. 2007), the actual information pertaining to the immune response between host and this bacteria is still lacking. Regardless the association of *S. maltophilia* with several serious illnesses and presence of virulence factors that aids in damaging the host tissues making the host permissive for infection the pathogenicity potential or virulence property is not clearly understood.

In conclusion there is an immediate need to study and characterize the importance of virulence factors involved in the pathogenesis of *S. maltophilia* which is emerging as a significant nosocomial pathogen. In this context, the present study employing clinical isolates of *S. maltophilia* was undertaken to identify and screen isolates for their ability to produce different virulence factors or gene products. Their capability to elicit an immune response was studied.

The specific objectives pertaining to this study are as follows:

1. To determine the extracellular enzyme profiling of *S. maltophilia* isolated from clinical samples.
2. To investigate the prevalence of putative virulent genes in *S. maltophilia* infection.
3. To study the intracellular ability of *S. maltophilia* on RAW 264.7 macrophages and immune response *in vitro*.

Thesis Organization

This study was organized into 6 chapters. The chapters are formatted according to the style 2 of the Guide to Thesis Preparation April 2009, School Of Graduate Studies, Universiti Putra Malaysia. Chapters 1 and 2 are identified as introduction and literature review, respectively. Chapters 3 to 5 are identified as research chapters and study stands on its own. Chapter 6 is identified as summary, conclusions and recommendations.
REFERENCES

Bellinger-Kawahara, C. and M. A. Horwitz (1990). "Complement component C3 fixes selectively to the major outer membrane protein (MOMP) of Legionella

genes in *Stenotrophomonas maltophilia.*" *Journal of Bacteriology* **188**(8): 3116-3120.

Sassera, D., I. Leardini, et al. (2013). "Draft genome sequence of Stenotrophomonas maltophilia strain EPM1, found in association with a culture of the human parasite Giardia duodenalis." Genome Announcements 1(2).

strains from seven hospitals in Rio de Janeiro, Brazil." Journal of Applied Microbiology 96(5): 1143-1150.

Zhang, L., M. Morrison, et al. (2013). "Genome sequence of Stenotrophomonas maltophilia strain AU12-09, isolated from an intravascular catheter." Genome Announcements 1(3).