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Reflux method was used to prepare MoV oxide catalysts for one controlled sample 

where no additional species was added, then EDTA, hexane, hydrazine sulphate and 

urea as organic species were added during the synthesis procedure for another 4 

samples. The catalysts obtained based on different calcination environment 

conditions and temperatures have been compared in order to determine their 

influence on the physicochemical properties of the catalyst. The precursors were 

characterised using thermogravimetry analysis (TGA) and x-ray diffraction (XRD), 

and the calcined samples were characterised using XRD, scanning electron 

microscopy (SEM) and BET surface area measurements (SBET). 

 

It has been found that the organic-metal salt complexes facilitate well dispersed, 

organised structure and high SBET MoV oxide based formation. This is only true for 

hydrazine sulphate- and urea- metal salt complexes with SBET of 5.5 and 10.9 m2g-1 

respectively, as EDTA- and hexane- metal salt complexes lead to aggregated and 

low SBET oxide formation with the SBET of 0.1 and 1.8 m2g-1 respectively.  
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Catalytic test of the MoV oxide, MoVTe oxide and MoVTeNb oxide shows notable 

effects of the addition of tellurium and niobium to the molybdenum vanadate matrix. 

It is found that MoV oxide is sufficiently active for propane selective oxidation to 

acrylic acid with high conversion percentage of 45 to 62%. When tellurium is added 

the catalytic activity remains almost constant but the selectivity decreases from 31% 

to 7%. However, niobium is found to increase the catalyst stability in high heat pre-

treatment whereby the quaternary oxides showed better selectivity than the ternary 

oxides and increases from 7% to 32%. Niobium has a significant role in the insertion 

of oxygen into the hydrocarbon intermediate, although the metal itself is not part of 

the crystal system. Thus niobium is needed for the selectivity of the reaction. In 

overall, the MoV and MoVTeNb is active and selective when bear the mixture of 

orthorhombic structure where molybdenum is part of the lattice and a phase where 

vanadium is present.  
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Kaedah refluks telah digunakan untuk menyediakan mangkin berasaskan MoV 

oksida untuk satu sample kawalan di mana tiada spesis organik ditambah, kemudian 

EDTA, heksana, hidrazin sulfat dan urea sebagai spesis organik yang ditambah 

sewaktu prosedur sintesis bagi 4 lagi sampel berasingan. Mangkin yang terhasil 

yang berasaskan keadaan sekeliling dan suhu pengkalsinan yang berbeza telah 

dibandingkan untuk mengetahui pengaruhnya terhadap sifat fizikal dan sifat kimia 

mangkin tersebut. Pelopor-pelopor telah dicirikan dengan menggunakan Analisis 

Thermogravimetry dan Pembelauan Sinar-X, dan sampel terkalsin dicirikan 

menggunakan Pembelauan Sinar-X, Mikroskopi Pengimbasan Elektron dan 

pengukuran luas permukaan dengan menggunakan kaedah BET.  

 

Didapati bahawa kompleks garam organik-logam memudahkan pembentukan 

berasaskan MoV oksida yang mempunyai penyebaran yang sekata, struktur  yang 

tersusun dan luas permukaan yang tinggi. Ini hanya benar bagi kompleks garam 

hidrazin sulfat-logam dan urea-logam dengan SBET 5.5 dan 10.9 m2g-1 masing-

masing, kerana kompleks garam EDTA-logam dan heksana-logam terarah kepada 
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pembentukan oksida terkelompok dan mempunyai luas permukaan yang rendah 

dengan SBET 0.1 dan 1.8 m2g-1 masing-masing.  

 

Ujian pemangkinan oksida-oksida MoV, MoVTe dan MoVTeNb menunjukkan 

dengan jelas kesan penambahan telurium dan niobium pada matrik molibdenum 

vanadat. Adalah didapati bahawa MoV oksida adalah cukup aktif untuk 

pengoksidaan propana secara terpilih terhadap asid akrilik dengan peratus 

pertukaran dalam julat 45 ke 62%. Apabila telurium ditambahkan, aktiviti mangkin 

hampir malar tetapi sifat kepilihan terhadap asid akrilik menurun daripada 31% ke 

7%. Walau bagaimanapun, niobium didapati meningkatkan kestabilan mangkin 

dalam pengkalsinan suhu tinggi di mana oksida kuaternari menunjukkan kepilihan 

yang lebih tinggi daripada oksida ternari dengan peningkatan daripada 7% ke 32%. 

Niobium mempunyai peranan yang penting dalam penyisipan oksigen ke dalam 

bahan perantaraan hidrokarbon, walaupun logam itu sendiri bukan sebahagian 

daripada sistem kekisi. Maka, niobium adalah diperlukan untuk tindak balas yang 

memilih. Secara keseluruhannya, MoV dan MoVTeNb adalah aktif dan mempunyai 

keupayaan kepilihan yang tinggi apabila ia mempunyai campuran fasa berstruktur 

ortorombik dengan molibdenum sebahagian daripada kekisinya dan satu fasa dengan 

kehadiran vanadium.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction to Catalyst 

 

Catalytic processes have already been applied for a long period of time but it was 

not until 1836 when Berzelius introduced the term ‘catalysis’ (Bond, 1987). He 

derived it from the Greek words kata, which stands for down, and lysein, which 

means to split or break. Later, in 1895, William Ostwald was the first to write down 

the definition of a catalyst as such: ‘A catalyst is a substance that changes the rate of 

a chemical reaction without itself appearing in the products’. It is important to note 

that a catalyst does not influence the thermodynamic equilibrium of reactants and 

products. Therefore, the current definition is slightly better, though close to 

Ostwald’s description: ‘A catalyst is a substance that increases the rate of approach 

to thermodynamic equilibrium of a chemical reaction without being substantially 

consumed (Clarendon Press). 

 

1.2 Heterogeneous catalyst 

 

A heterogeneous catalyst presents in a different phase from the reactant. A 

heterogeneous catalyst is commonly a solid and it usually functions by promoting a 

reaction on its surface. One or more of the reactant molecules are adsorbed onto the 

surface of the catalyst where an interaction with the surface increases their reactivity 

Heterogeneous catalysts are extensively used in many commercial processes. 

Industrial processes such as ammonia synthesis, petroleum refining and 



petrochemical production are achieved by the use of heterogeneous catalysts. The 

advantages of a heterogeneous catalyst is that it has extremely high selectivity which 

yields a single product, so extra steps and costs are not needed to separate the 

products from the catalyst. 

 

According to the Maxwell-Boltzmann distribution, only those particles represented 

by the area to the right of the activation energy in Figure 1.1 (a) will react when they 

collide (Brady et al., 2000). To increase the rate of a reaction, the number of 

successful collisions must be increased. One possible way of doing this is to provide 

an alternative way for the reaction to happen which has lower activation energy as in 

Figure 1.1 (b). This can be done by a suitable catalyst. 
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Figure 1.1: Maxwell-Boltzmann distribution (Brady et al., 2000) 

 

A catalyst provides an alternative route for the reaction. That alternative route has 

lower activation energy. This is shown on the following energy profile in Figure 1.2.  
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Figure 1.2: Comparison of activation energy (Brady et al., 2000) 

 

1.3 Molybdenum Vanadium Oxide Based Material 

 

When mixing molybdenum and vanadium together, mixed phases or a single phase 

may form. Molybdenum vanadium binary oxide occurs in many types of crystal 

structures.  Some of these common structures are the orthorhombic structure with 

the chemical formula Mo4V6O25, the monoclinic structure with the chemical 

formulas Mo056V1.44O5, MoV2O8 and V3.6Mo2.4O16, the anorthic structure with the 

chemical formula V0.95Mo0.97O5, the hexagonal structure with the chemical formula 

(V0.12Mo0.88)O2.94 and the tetragonal structure with the chemical formula VOMoO4,  

These various structures has various usage and applications (Tichy, 1997). 

 
 
1.4 Uses of Molybdenum Vanadium Oxide 

 

Recently, an attempt has been made to produce thin films from MoV oxide. Molar 

ratio of Mo:V > 1 is suitable for this application. A study of optical properties of the 

films revealed that the oxides were optically homogeneous. These homogeneous thin 
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films are useful because of the possibility of integration into micro-electronic 

circuitry and its application in electrochromic devices. MoV oxide shows many 

advantages as a thin film optical coating because the optical absorption band is close 

to the sensitivity of the human eye (Al-Kuhaili et al., 2004 and Gesheva et al., 

2006). 

 

Besides the production of thin films, molybdenum has also been tested extensively 

as possible alternatives to replace toxic chromate as coatings for aluminium alloys. 

Due to strong oxidising power and stability of their reduction products, molybdenum 

seems to be a promising alternative to chromating. Moreover, such molybdenum 

based coating showed corrosion resistance (Hamdy, 2006). 

 

Hanlon et al., 2003 reported the usage of MoV oxides as coatings on glass. A water 

soluble molybdenum compound added to the aqueous sol of V2O5 was used to 

produce such coatings. Materials where molybdenum is present showed higher 

conductivity than V2O5 thin films as the film changes from semiconductor to metal 

behaviour. Practical applications of these MoV oxides as coatings on glass include 

energy-efficient windows and optical switching. 

 

Recently, the interest in amperometric glucose biosensor based on a surface treated 

inorganic metal oxide as an immobilisation matrix has arisen among researchers. 

Vanadium pentoxide has long been used for designing a glucose biosensor. Titanium 

dioxide and zinc oxide films have also been applied for such purposes. However, 

application of the above-mentioned ceramic was often limited by their brittleness. 

Efforts have been made to seek new materials, which could overcome the cracking. 
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Binary metal oxide such as MoV oxides has been proposed to be tested to replace 

these ceramics. Such research is only at preliminary levels (Azah et al., 2006 and 

Azizul et al., 2006).  

 

MoV oxides based materials can also be used as catalysts for oxidation of alkanes 

and alkenes. MoVNb mixed oxide catalyst is used to catalyse ethane to ethene 

(Osawa et al., 2000). Matar, 1989 reported the usage of MoVSb as a catalyst for the 

oxidation of propene to acrolein. Recent researches show that binary MoV oxide, 

ternary MoVTe oxide and quaternary MoVTeNb oxide are all high potential 

catalysts for the oxidation of propane to acrylic acid (Ueda et al., 2004).  

 

In this study, the usage of the MoV oxide based materials, as catalysts for propane 

oxidation are particularly the main interest. Studies of these materials synthesised 

via several methods have been carried out by many researchers.  

 

1.5 Selective Oxidation Reaction 

 

The selective oxidation of light alkanes to produce the mono- or dialkene 

compounds has been performed for close to one hundred years and has commonly 

been achieved either by dehydrogenation or by oxidative dehydrogenation. Common 

oxide catalysed selective oxidation reactions are shown in Table 1.1 (Matar et al., 

1989). 

 

In standard dehydrogenation processes, the hydrocarbon feedstock is heated, in the 

absence of air, and introduced to the catalysts to produce the alkene and hydrogen 
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gas. In oxidative dehydrogenation, the alkanes are introduced to the catalyst in the 

presence of air, or a limited supply of oxygen, where it reacts to form alkene and 

water (Kung, 1986). Oxidation of hydrocarbon molecules proceeds as a multi-step 

process, consisting of consecutive abstractions of hydrogen atoms and addition of 

oxygen atoms (Horrath, 2002). 

 

Table 1.1: Common oxide catalysed selective oxidation reactions (Matar et al., 
1989) 

Reactions Catalyst (s) 

Ethylbenzene → Styrene Fe-Cr-K-O 

Isopentane, Isopentene → Isoprene Sn-Sb-O 

Butane, Butene → Butadiene Promoted V-O 

Methanol → Formaldehyde Fe-Mo-O, MoO3 

Butane, Butene → Maleic Anhydride V-P-O 

Propene → Acrolein Bi-Mo-O 

Propene and NH3 → Acetonitrile Bi-Mo-O, U-Sb-O, Fe-Sb-O, Bi- 

Propene → Acrolein , Acrylic acid, 
Acetaldehyde 

 

Co-Mo-Te-O, Sb-V-Mo-O 

Benzene → Malic Anhydride V-P-O, V-Sb-P-O 

O-sylene, Naphthalene → Phthalic 
Anhydride 

 

Promoted V-O 

Methane → Methanol, Formaldehyde Mo-O, V-O 

Ethylene → Ethylene Oxide Fe-Mo-O, promoted Ag 
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1.6 Molybdenum Vanadium Oxide for the Oxidation of Propane 

 

The potential use of alkanes as a source of the corresponding alkenes or their 

derivatives is increasing year by year. Alkanes are generally less reactive than 

alkenes because the molecules have only saturated C-H bonds. Although alkanes are 

poorly reactive resources because there are no lone pairs of electrons, no empty 

orbital and little polarity of the C-H bonds, interest in alkanes to replace alkenes as a 

source increases as it is highly abundant. In order to utilise the less reactive 

molecules, selective oxidation of alkanes has been widely investigated and many 

types of catalysts have been developed for this process (Oshihara et al., 2001).  

 

However, still, a great deal of research has to be done in order to achieve selective 

functionalisation of light alkanes, particularly by catalytic selective oxidation. The 

catalytic selective oxidation of light alkanes is still very difficult because the 

reactions are usually accompanied by many undesirable side-reactions as a result of 

low reactivity of the reactant (Ueda et al., 2002). 

 

Recently, a one-step oxidation of propane to acrylic acid was found possible. The 

oxidation of propane to acrylic acid using molecular oxygen as an oxidant has 

attracted much attention in industries for fundamental, academic and economical 

reasons.  

 

Acrylic acid (Figure 1.3), CH2=CHCOOH is a colourless liquid or solid that is used 

in the manufacturing of plastics, bondings and hydrogels used for contact lenses.  
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Synonyms for acrylic acid are acroleic acid, ethylenecarboxylic acid, propene acid, 

propenoic acid, 2-propenoic acid and vinylformic acid (Mamedov and Cortes, 1995).  

 

 

OH 

H2C 

O 
 

Figure 1.3: Structure of acrylic acid (Mamedov and Cortes, 1995) 

 

As mentioned earlier, alkanes are more abundant compared to alkenes. Therefore, 

the high abundance of propane in natural gas lowers its price compared to propene. 

In the past, production of acrylic acid involves a two step process, which is the 

oxidation of propene to acrolein followed by the oxidation of acrolein to acrylic 

acid.  The steps can be presented as below.  

 

Step 1: 

H2C=CH-CH3  + O2   H2C=CH-CHO     +    H2O 

∆H = - 81.4 kcal mol-1 

Step 2: 

H2C=CH-CHO + 0.5 O2    H2C=CH-COOH 
Catalyst 

Catalyst 

Equation 1.1 

Equation 1.2 ∆H = - 60.7 kcal mol-1 

 

For the oxidation of propane to acrylic acid in a single step, the process is still under 

heavy investigation. The one-step oxidation of propane in gas phase with molecular 

oxygen to acrylic acid follows equation below: 
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C3H8 + 2O2    CH2=CH-COOH (g)    +   2H2O 

Δ

 

ecently, Mitsubishi Chemicals claimed their patents that MoVTeNb oxide system 

herefore, when left uncontrolled at temperatures sufficient to activate propane, all 

he oxidation of propane can take place via many different pathways, as illustrated 

in Figure. 1.4.  

 H = - 171 kcal mol-1 

Catalyst 

Equation 1.3 

R

showed extremely high activity for the ammoxidation of propane and high 

selectivity to acrylic acid. The monophasic MoVM (where M=Al, Cr, Fe, Ga, Bi, Te 

and Sb) mixed oxides has been synthesised by hydrothermal method using the 

Anderson-type heteropolymolybdates as the precursor for building an organised 

structure. Structural arrangement of active sites is considered to be quite important 

to achieve selective oxidation. Selective oxidation pathway from alkanes to the 

desired oxygenates may consist of many reaction steps, for example, 

dehydrogenation, oxygen insertion, hydration and so on. These reactions should 

occur quickly and sequentially to avoid undesired oxidation to COx because 

intermediate products are generally more reactive than saturated hydrocarbon (Ueda 

et al., 2004). 

 

T

its partial oxidation products can easily be further oxidised to carbon oxides while 

releasing large quantities of heat. As a result, without proper catalysts, propane is 

either unreacted, or totally oxidised to COx while generating large quantity of heat 

(Ai, 1986).  

 

T
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