PHOTODEGRADATION- ADSORPTION OF ORGANIC DYES USING IMMobilIZED CHITOSAN SUPPORTED TITANIUM DIOXIDE PHOTOCATALYST

LEE KONG HUI

FS 2007 43
PHOTODEGRADATION- ADSORPTION OF ORGANIC DYES USING IMMOBILIZED CHITOSAN SUPPORTED TITANIUM DIOXIDE PHOTOCATALYST

LEE KONG HUI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2007
PHOTODEGRADATION- ADSORPTION OF ORGANIC DYES USING IMMOBILIZED CHITOSAN SUPPORTED TITANIUM DIOXIDE PHOTOCATALYST

By

LEE KONG HUI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the degree of Doctor of Philosophy

June 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Theory of Semiconductor 5
1.2 Properties of TiO₂ as Semiconductor
 1.2.1 Structural properties 9
 1.2.2 Optical properties 13
 1.2.3 Electrical properties 15
1.3 Photodegradation on Semiconductor
 1.3.1 Electrons and holes 17
1.4 Role of Oxygen 19
1.5 Properties of Chitosan
 1.5.1 Adsorption properties 23
 1.5.2 Adhesion properties 24
1.6 Glass as Support for TiO₂-Chitosan 24
1.8 Properties of Dyes 27
1.9 Objectives 31

2 LITERATURE REVIEW

2.1 Effect of TiO₂ in the Treatment of Pollutants 33
2.2 Kinetics Studies on Photocatalytic Degradation 34
2.3 Utilization of Light Irradiation for TiO₂ Particles Excitation 35
2.4 Effect of Adsorbent as a Support for TiO₂ Photocatalysts 38
2.5 Application of TiO₂ Thin Film in Enhancing the Photodegradation Efficiency 39
2.6 Chitosan as an Adsorbent 40
2.7 Effect of Using Co-adsorbent in Photodegradation Process 41
3 MATERIALS AND METHODOLOGY

3.1 Precursor Materials Used in the Preparation of Titanium Dioxide Slurry 43
3.2 Preparation of Titanium Dioxide Slurry in Chitosan 44
3.3 Preparation of Titanium Dioxide Coated on Glass (TiO₂-Chitosan/Glass) 44
3.4 TiO₂-Chitosan/Glass Characterization 46
 3.4.1 Scanning Electron Microscope fitted with energy dispersive X-ray Spectrometer (SEM-EDX) analysis 46
 3.4.2 X-ray diffraction (XRD) analysis 47
 3.4.3 Fourier Transform-Infrared (FT-IR) Analysis 49
 3.4.4 Surface Area and Porosity Analysis (ASAP) 50
 3.4.5 Thermal Property Analysis (Thermogravimetric / Scanning Differential Thermogravimetric Analysis – TG/SDTA) 51
3.5 Preparation of Dyes Solution 52
3.6 Determination of Wavelength at Maximum Absorption (λ_{max}) and Construction of Standard Calibration Curve for Dyes 53
3.7 Analysis of Intermediates 54
 3.7.1 Total Organic Carbon Analysis (TOC) 54
 3.7.2 Gas Chromatography-Mass Spectrometry (GC/MS) with Direct Insertion-Mass Spectrometry (DI/MS) analysis 56
3.8 Photodegradation and Adsorption of Methyl Orange (An Anionic Dye of the Azo Series) 57
 3.8.1 Effect of TiO₂ : Chitosan ratio 57
 3.8.2 Effect of photocatalyst loading (Sol dip-coating repetition) 59
 3.8.3 Effect of different initial concentration 59
 3.8.4 Effect of light intensity 60
 3.8.5 Effect of using different light source 61
 3.8.6 Effect of solution temperature 62
 3.8.7 Effect of solution pH 62
3.9 Photodegradation and Adsorption of Methylene Blue, MB (a Cationic dye) 64
3.10 Photodegradation and Adsorption of Mixed Dye, MD (a mixture of MO and MB) 64
3.11 Photodegradation and adsorption of Model Pollutants Applying Optimum Experimental Condition 65

4 RESULTS AND DISCUSSION

4.1 Surface Morphology of TiO₂-Chitosan Coated on Glass photocatalyst (TiO₂-Chitosan/Glass) 66
4.2 XRD Characterization of TiO₂ Compound 71
 4.2.1 Crystallite phase determination of TiO₂ compound 71
 4.2.2 Crystallite size of Anatase phase TiO₂ 74
4.3 Fourier Transform-Infrared (FT-IR) Analysis for TiO₂, Chitosan, and TiO₂-Chitosan/Glass Photocatalyst 76
4.4 Surface Area and Porosity Analysis (ASAP) 80
4.5 Thermal Property Analysis of the Precursor Materials and TiO₂-Chitosan Catalyst

4.6 Preliminary Tests and Control

4.6.1 Consistency of TiO₂-Chitosan catalyst loading

4.6.2 Adhesion stability of the coated TiO₂-Chitosan catalyst film

4.6.3 Determination of wavelength at maximum absorption (λ_{max}) and construction of standard calibration curve for dyes concentration detection

4.6.4 Preliminary test (control test)

4.7 Effect of TiO₂ Degussa P 25 : Chitosan Ratio

4.8 Effect of TiO₂-Chitosan Catalyst Loading (Sol Dip-coating Repetition)

4.8.1 First order kinetics

4.8.2 Pseudo-second kinetics order

4.9 Effect of Different Initial Concentration

4.10 Effect of Light intensity

4.11 Effect of Using Different Light Source

4.12 Effect of Solution Temperature

4.13 Effect of Solution pH

4.14 Photodegradation and Adsorption of Methylene Blue (a Cationic dye)

4.15 Photodegradation of Mixed Dyes

4.16 Photodegradation of Model Pollutants Applying Optimum Experimental Condition

4.17 Qualitative Analysis and the Determination of Photodegradation-Adsorption Reactions Pathways

4.17.1 Total Organic Carbon (TOC) Analysis for MO

4.17.2 Total Organic Carbon (TOC) Analysis for MB

4.17.3 GC/MS with DI/MS Analysis for MO

4.17.4 GC/MS with DI/MS Analysis for MB

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

BIBLIOGRAPHY

APPENDICES

BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Crystallographic properties of anatase, rutile and brookite (Wold, 1993)</td>
</tr>
<tr>
<td>1.3</td>
<td>Properties of Methyl Orange (Zollinger, 1987, 2003)</td>
</tr>
<tr>
<td>4.1</td>
<td>Atomic mass ratio of titanium to oxygen of ca. 1:2 to the nearest moles ratio</td>
</tr>
<tr>
<td>4.2</td>
<td>Characteristics of BET surface area and average pore diameter adsorption of N₂(g) on the used precursor materials and dried catalysts with different TiO₂ Degussa P 25 ratio</td>
</tr>
<tr>
<td>4.3</td>
<td>Amount of TiO₂-Chitosan catalyst coated on the glass plates with different dip-coating repetition</td>
</tr>
<tr>
<td>4.4</td>
<td>Standard deviation value and mean amount of TiO₂-Chitosan catalyst coated on the glass plates with different dip-coating repetition</td>
</tr>
<tr>
<td>4.5</td>
<td>Photodegradation-adsorption removal of MO applying different ratio of TiO₂ : Chitosan (Concentration of dye = 20 ppm)</td>
</tr>
<tr>
<td>4.6</td>
<td>The apparent rate constant, k_app, half life, t₁/₂, and removal efficiency values for the adsorption of MO with different dip-coating repetition</td>
</tr>
<tr>
<td>4.7</td>
<td>The apparent rate constant, k_app, half life, t₁/₂, and removal efficiency values for the total removal of MO with different dip-coating repetition</td>
</tr>
<tr>
<td>4.8</td>
<td>The apparent rate constant, k_app, values for the photodegradation-adsorption of MO with different dip-coating repetition</td>
</tr>
<tr>
<td>4.9</td>
<td>The apparent rate constant, k_app, half life, t₁/₂, and removal efficiency values for the adsorption of MO with different initial concentration</td>
</tr>
<tr>
<td>4.10</td>
<td>The apparent rate constant, k_app, half life, t₁/₂, and removal efficiency values for the total / photodegradation removal of MO with different initial concentration</td>
</tr>
<tr>
<td>4.11</td>
<td>The apparent rate constant, k_app, half life, t₁/₂, and removal efficiency values for the removal of MO applying different light intensity (Concentration of dye = 20 ppm)</td>
</tr>
</tbody>
</table>
4.12 The apparent rate constant, k_{app}, half life, $t_{1/2}$, and removal efficiency values for the removal of MO under different light source irradiation

4.13 Temperature dependence of apparent rate constant, k_{app}, half life, $t_{1/2}$, and removal efficiency values for the removal of MO due to adsorption process

4.14 Temperature dependence of apparent rate constant, k_{app}, half life, $t_{1/2}$, and removal efficiency values for the total / photodegradation removal of MO

4.15 pH dependence of apparent rate constant, k_{app}, correlation factor, R^2, and removal efficiency values for the adsorption process of MO

4.16 pH dependence of apparent rate constant, k_{app}, correlation factor, R^2, and removal efficiency values for the total / photodegradation removal of MO

4.17 pH dependence of apparent rate constant, k_{app}, half life, $t_{1/2}$, and removal efficiency values for the removal of MB due to adsorption process

4.18 pH dependence of apparent rate constant, k_{app}, half life, $t_{1/2}$, and removal efficiency values for the total / photodegradation removal of MB

4.19 pH dependence of MO and MB removal in mixed dyes due to adsorption process

4.20 pH dependence for the total / photodegradation removal of MO and MB in mixed dyes

4.21 Apparent rate constant, k_{app}, half life, $t_{1/2}$, and removal efficiency values for the removal of MO and MB under optimum condition (500 ml, 20 ppm)

4.22 Initial “parent molecule” of MO and its intermediate compounds identified from the DI/MS analysis at different interval times

4.23 Initial “parent molecule” of MB and its respective by-products identified from the DI/MS analysis at different interval times
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The energy gap (E_g) difference between the metal, insulator and Semiconductor</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>The energy diagram for a semiconductor, showing the band gap energy (Nogueira and Wilson, 1993)</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Change in the electronic structure of a semiconductor compound as the number N of monomeric units present increase from unity to clusters of more than 2000 (Mills and Hunte, 1997)</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Structure of anatase TiO_2, titanium dark, oxygen light (Shriver et al., 1990)</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Structure of rutile TiO_2, titanium dark, oxygen light (Shriver et al., 1990)</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Formation of surface hydroxyls (OH) on the anatase TiO_2 surface (Shriver et al., 1990)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>a) An uncovered surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Coordination of Ti^{4+} ions by water molecules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) The formation of surface hydroxyl ions by proton transfer from water to O_2^2 ions</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>Band structure of (a) indirect transition (b) direct transition (Lewis and Rosenbluth, 1989; Shriver et al., 1990)</td>
<td>15</td>
</tr>
<tr>
<td>1.8</td>
<td>Energy diagram for a dark and irradiated semiconductor (Atkins, 1995)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>(E^o) = Fermi level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(pE_{F^o}) = Quasi Fermi level for holes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(nE_{F^o}) = Quasi Fermi level for electron</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>Energy working scheme for a redox process (Shriver et al., 1990)</td>
<td>16</td>
</tr>
<tr>
<td>1.10</td>
<td>Illustration of the major processes occurring on a semiconductor particle following electronic excitation (Mills and Hunte, 1997)</td>
<td>18</td>
</tr>
<tr>
<td>1.11</td>
<td>Schematic representation for deacetylation of chitin to produce chitosan (Yoshizuka et al., 2000 and Prado et al., 2004)</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Scanning Electron Microscope - LEO 1455 VPSEM instrumental set-up for surface morphology analysis</td>
<td>46</td>
</tr>
</tbody>
</table>
3.2 Energy dispersive X-ray Spectrometer-Oxford INCA EDX instrumental set-up for samples compound quantification

3.3 XRD-6000 instrumental set-up for XRD analysis

3.4 Perkin Elmer Spectrum BX FT-IR instrumental set-up for chemical compound substituents and functional groups analysis

3.5 Micromeritics ASAP 2000 accelerated surface area and porosimetry system analytical instrument

3.6 Mettler Toledo TG/SDTA analytical instrument

3.7 Perkin Elmer Lambda 20 UV/Vis Spectrometer for wavelength at maximum absorption (λ_{max}) and samples concentration determination

3.8 SGE ANATOC Series II Total Organic Carbon Analyzer with ANATOC Series II Autoinjection System and ANATOC Autosampler machine

3.9 Shimadzu Lab Solutions GCMS-QP5050A with Shimadzu GC-17A Direct Insertion-Mass Spectrometry (DI/MS) single compound injection probe system

3.10 Experimental set-up of the photodegradation-adsorption process. (a) O\textsubscript{2} and bubbling effect, (b) Quartz glass housing, (c) White fluorescent light source, (d) TiO\textsubscript{2}-Chitosan/Glass photocatalyst, (e) Sampling outlet, (f) Reactor tank, and (g) Model pollutant (MO)

4.1 SEM micrographs of the raw material used to prepare TiO\textsubscript{2}-Chitosan/Glass photocatalyst, X 20,000 (a) chitosan and (b) Degussa P 25 TiO\textsubscript{2}

4.2 SEM-EDX micrographs of TiO\textsubscript{2}-Chitosan/Glass with different photocatalyst loading, X 20,000 (a) 1 layer, (b) 2 layers, (c) 3 layers, (d) 4 layers, (e) 5 layers, and (f) 4 layers/25.0 g of TiO\textsubscript{2} Degussa P-25

4.3 The EDX analysis confirming atomic mass ratio of titanium to oxygen of ca. 1:2 for 4 dip-coated photocatalyst (2.5 g chitosan : 2.5 g TiO\textsubscript{2} Degussa P-25)
4.4 X-ray diffraction patterns of TiO₂-Chitosan/Glass (2.5 g chitosan : 2.5 g TiO₂ Degussa P 25) with different photocatalyst loading (1 to 6 dip-coating layers) dried at 100 °C

4.5 X-ray diffraction patterns of TiO₂-Chitosan/Glass (2.5 g chitosan : 25.0 g TiO₂ Degussa P 25) with different photocatalyst loading (1 to 6 dip-coating layers) dried at 100 °C

4.6 Crystallite size of anatase TiO₂ crystalline in 2.5 g chitosan : 2.5 g TiO₂ Degussa P 25 photocatalyst with different photocatalyst loading (1 to 6 dip-coating layers)

4.7 Crystallite size of anatase TiO₂ crystalline in 2.5 g chitosan : 25.0 g TiO₂ photocatalyst with different photocatalyst loading (1 to 6 dip-coating layers)

4.8 The FT-IR spectra of chitosan, TiO₂, and dried TiO₂-Chitosan catalyst (100 °C)

4.9 TG/SDTA curves of precursor TiO₂ Degussa P 25 powder

4.10 TG/SDTA curves of raw chitosan

4.11 TG/SDTA curves of the prepared TiO₂-Chitosan catalyst (2.5 g of chitosan : 2.5 g of TiO₂ Degussa P 25)

4.12 A plot of mean mass of TiO₂-Chitosan catalyst for 5 samples versus number of dip-coating repetition

4.13 A plot of Absorbance/A vs Wavelength/nm for λₘₐₓ of MO at natural pH, pH 2-4 and pH 10-12

4.14 Standard calibration curves for MO (a) λₘₐₓ = 464.0 nm (b) λₘₐₓ = 500.5 nm

4.15 A plot of Absorbance/A vs Wavelength/nm for λₘₐₓ of MB at natural pH, pH 2-4 and pH 10-12

4.16 Standard calibration curves for MB established based on λₘₐₓ = 664.0 nm

4.17 Model pollutants stability against light photolysis, initial dye concentration ≈ 10 ppm at natural pH and temperature

4.18 Adsorption of MO using photocatalyst prepared by using different ratio of TiO₂ : Chitosan (500 ml MO solution at 20 ppm)
4.19 Photodegradation of MO using photocatalyst prepared by using different ratio of TiO₂ : Chitosan (500 mL MO solution at 20 ppm)
4.20 Effect of dip-coating repetition on the adsorption removal of 500 mL, 20 ppm MO
4.21 Effect of dip-coating repetition on the photodegradation removal of 500 mL, 20 ppm MO
4.22 Photodegradation-adsorption removal distribution of MO according to different dip-coating repetition
4.23 (a) Adsorption and (b) photodegradation removal kinetics of MO using photocatalyst with different dip-coating repetition (500 mL, 20 ppm)
4.24 Pseudo second kinetic order removal of MO using photocatalyst with different dip-coating repetition (a) Adsorption and (b) photodegradation, inset (1 layer)
4.25 Graph 1 - C/Co vs Time, t/min for the (a) adsorption and (b) total/photodegradation removal of MO at different initial concentration
4.26 Graph ln C/Co vs Time, t/min for the effect of different initial concentration (a) adsorption and (b) total/photodegradation removal of MO
4.27 Graph 1 - C/Co vs Time, t/min for MO removal for the effect of light Intensity (500 mL, 20 ppm)
4.28 Graph ln C/Co vs Time, t/min for MO removal for the effect of light intensity fitting pseudo-first kinetic order model (500 mL, 20 ppm)
4.29 Graph 1 - C/Co vs Time, t/min for MO removal for experiments run under different light source irradiation (500 mL, 20 ppm)
4.30 Graph ln C/Co vs Time, t/min for MO removal for experiments run under different light source irradiation fitting pseudo first kinetic order (500 mL, 20 ppm)
4.31 Temperature dependence of MO removal (a) adsorption and (b) total/photodegradation removal process (500 mL, 20 ppm)
4.32 Graph ln C/Co vs Time, t/min indicating the temperature dependence of MO removal due to (a) adsorption and (b) total/photodegradation removal process fitting pseudo-first kinetic order model (500 mL, 20 ppm)
4.33 Graph ln C/Co vs Time, t/min indicating the pH dependence of MO
removal due to (a) adsorption and (b) total / photodegradation removal process fitting pseudo-first kinetic order model (500 mL, 20 ppm)

4.34 pH dependence of MO removal due to adsorption process (500 mL, 20 ppm) 152

4.35 pH dependence for the adsorption removal of MO closely fitting pseudo-second kinetic order model (500 mL, 20 ppm) 153

4.36 pH dependence for the total / photodegradation removal of MO (500 mL, 20 ppm) 158

4.37 pH dependence for the total / photodegradation removal of MO closely fitting pseudo-second kinetic order model (500 mL, 20 ppm) 159

4.38 pH dependence of MB removal due to adsorption process (500 mL, 20 ppm) 163

4.39 Graph ln C/Co Vs Time, t/min showing the pH dependence of MB removal due to adsorption process fitting pseudo-first kinetic order model (500 mL, 20 ppm) 164

4.40 pH dependence for the total / photodegradation removal of MB (500 mL, 20 ppm) 167

4.41 Graph ln C/Co Vs Time, t/min for the total / photodegradation removal of MB showing pH dependence mechanism closely follow pseudo-first kinetic order model (500 mL, 20 ppm) 168

4.42 Adsorption removal of MO in mixed dyes in different solution pH medium (500 mL, 20 ppm) 173

4.43 Adsorption removal of MB in mixed dyes in different solution pH medium (500 mL, 20 ppm) 174

4.44 Total / photodegradation removal of MO in mixed dyes in different solution pH medium (500 mL, 20 ppm) 176

4.45 Total / photodegradation removal of MB in mixed dyes in different solution pH medium (500 mL, 20 ppm) 177

4.46 Graphs 1 - C/Co vs Time, t/min showing comparison for the combined photodegradation-adsorption removal of MO and MB: pH 4.0 – 6.0 Dark (MO adsorption process), pH 4.0 – 6.0 UV (MO photodegradation process), pH 10.0 – 12.0 Dark (MB adsorption process), pH 10.0 – 12.0 UV (MB photodegradation process), 500 mL, 20 ppm 182
4.47 Graphs ln C/Co versus Time, t/min following pseudo first kinetic order model for the combined photodegradation-adsorption removal of MO and MB: pH 4.0 – 6.0 Dark (MO adsorption process), pH 4.0 – 6.0 UV (MO photodegradation process), pH 10.0 – 12.0 Dark (MB adsorption process), pH 10.0 – 12.0 UV (MB photodegradation process), 500 mL, 20 ppm

4.48 Disappearance of total organic carbon and colour for MO versus Time, t/min for both of the photodegradation and adsorption processes

4.49 Temporal changes of the intermediates produced during the photodegradation-adsorption removal of MO under optimum condition

4.50 Disappearance of total organic carbon and colour for MB versus Time, t/min for both of the photodegradation and adsorption processes

4.51 Temporal changes of the intermediates produced during the photodegradation-adsorption removal of MB under optimum condition

4.52 (a) DI/MS chromatogram monitored in full scan corresponding to MO and its intermediates detection at time, t = 0 minute, three intermediate compounds were identified (peak 1, 2 and 3)

4.52 (b) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, t = 0 minute as referred to peak number 1

4.52 (c) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, t = 0 minute as referred to peak number 2

4.52 (d) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, t = 0 minute as referred to peak number 3

4.53 (a) DI/MS chromatogram monitored in full scan corresponding to MO and its intermediates detection at time, t = 60 minutes, four intermediate compounds were identified (peak 1, 2, 3 and 4)

4.53 (b) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, t = 60 minutes as referred to peak number 1
4.53 (c) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, $t = 60$ minutes as referred to peak number 2

4.53 (d) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, $t = 60$ minutes as referred to peak number 3

4.53 (e) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, $t = 60$ minutes as referred to peak number 4

4.54 (a) DI/MS chromatogram monitored in full scan corresponding to MO and its intermediates detection at time, $t = 120$ minutes, only one intermediate compounds was identified (peak 1)

4.54 (b) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, $t = 120$ minutes as referred to peak number 1

4.55 (a) DI/MS chromatogram monitored in full scan corresponding to MO and its intermediates detection at time, $t = 240$ minutes, four intermediate compounds were identified (peak 1, 2, 3 and 4)

4.55 (b) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, $t = 240$ minutes as referred to peak number 1

4.55 (c) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, $t = 240$ minutes as referred to peak number 2

4.55 (d) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, $t = 240$ minutes as referred to peak number 3

4.55 (e) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, $t = 240$ minutes as referred to peak number 4

4.56 (a) DI/MS chromatogram monitored in full scan corresponding to MO and its intermediates detection at time, $t = 360$ minutes, two intermediate compounds were identified (peak 1 and 2)
4.56 (b) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, t = 360 minutes as referred to peak number 1

4.56 (c) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, t = 360 minutes as referred to peak number 2

4.57 (a) DI/MS chromatogram monitored in full scan corresponding to MB and its intermediates detection at time, t = 0 minute, two intermediate compounds were identified (peak 1 and 2)

4.57 (b) DI/MS spectrum monitored in full scan corresponding to MO and its intermediates detection at time, t = 0 minute as referred to peak number 1

4.57 (c) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, t = 0 minute as referred to peak number 2

4.58 (a) DI/MS chromatogram monitored in full scan corresponding to MB and its intermediates detection at time, t = 60 minutes, two intermediate compounds were identified (peak 1 and 2)

4.58 (b) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, t = 60 minutes as referred to peak number 1

4.58 (c) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, t = 60 minutes as referred to peak number 2

4.59 (a) DI/MS chromatogram monitored in full scan corresponding to MB and its intermediates detection at time, t = 120 minutes, two intermediate compounds were identified (peak 1 and 2)

4.59 (b) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, t = 120 minutes as referred to peak number 1

4.59 (c) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, t = 120 minutes as referred to peak number 2
4.60 (a) DI/MS chromatogram monitored in full scan corresponding to MB and its intermediates detection at time, \(t = 240 \) minutes, two intermediate compounds were identified (peak 1 and 2)

4.60 (b) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, \(t = 240 \) minutes as referred to peak number 1

4.60 (c) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, \(t = 240 \) minutes as referred to peak number 2

4.61 (a) DI/MS chromatogram monitored in full scan corresponding to MB and its intermediates detection at time, \(t = 360 \) minutes, two intermediate compounds were identified (peak 1 and 2)

4.61 (b) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, \(t = 360 \) minutes as referred to peak number 1

4.61 (c) DI/MS spectrum monitored in full scan corresponding to MB and its intermediates detection at time, \(t = 360 \) minutes as referred to peak number 2
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASAP</td>
<td>Analysis of Surface Area and Porosity</td>
</tr>
<tr>
<td>b</td>
<td>constant related to the energy of sorption</td>
</tr>
<tr>
<td>C_0</td>
<td>initial concentration of dye in solution</td>
</tr>
<tr>
<td>cb</td>
<td>conduction band</td>
</tr>
<tr>
<td>C_e</td>
<td>equilibrium concentration of dye</td>
</tr>
<tr>
<td>C_t</td>
<td>dye concentration in solution at time t</td>
</tr>
<tr>
<td>DI/MS</td>
<td>Direct Insertion / Mass Spectroscopy</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>GC/MS</td>
<td>Gas Chromatography / Mass Spectroscopy</td>
</tr>
<tr>
<td>k</td>
<td>initial sorption rate</td>
</tr>
<tr>
<td>k_{app}</td>
<td>apparent rate constant</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>MB</td>
<td>Methylene blue</td>
</tr>
<tr>
<td>MD</td>
<td>Mixed dyes</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre</td>
</tr>
<tr>
<td>MO</td>
<td>Methyl orange</td>
</tr>
<tr>
<td>M_w</td>
<td>molecular weight</td>
</tr>
<tr>
<td>q_e</td>
<td>amount of dye adsorbed on the surface of the sorbent at equilibrium</td>
</tr>
<tr>
<td>q_t</td>
<td>amount of dye adsorbed on the surface of time t</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>R^2</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>SEM-EDX</td>
<td>Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>half life</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>UV/vis</td>
<td>Ultra violet/visible spectrometer analysis</td>
</tr>
<tr>
<td>vb</td>
<td>valence band</td>
</tr>
<tr>
<td>vs</td>
<td>versus</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffractometry</td>
</tr>
</tbody>
</table>
The combination effect of photodegradation-adsorption using the immobilized TiO$_2$ and chitosan supported on glass (TiO$_2$-Chitosan/Glass) under the illumination of light with suitable energy (hv > E$_{bg}$) as a new method for the treatment or pre-treatment of dye-containing wastewater has been studied. The prepared photocatalyst was characterized by scanning electron microscopy, X-ray microanalysis, X-ray diffraction analysis, Fourier transform infrared spectroscopy, surface area and porosimetry analysis and thermogravimetric analysis.

Methyl orange (an anionic dye of the monoazo series) removal was studied based on the effect of TiO$_2$: Chitosan ratio, photocatalyst loading, initial concentration, light intensity, different light source, temperature and pH. Comparison was also made to dyes with different characteristics, namely methylene blue (a cationic dye) and mixed dyes (a mixture of methyl orange and methylene blue). Methyl orange removal was optimum when the experiment was run using 5 pieces of 4 dip-coated TiO$_2$-Chitosan/Glass (45 mm X 80 mm X 2 mm) and 500
ml of 20 ppm methyl orange solution at 40 °C under the illumination of a 230 V near UV lamp for 6 hours.

About 87.0 % of 20 ppm methyl orange can be removed successfully with approximately 9.2 % removal efficiency attributable to photodegradation process and another 77.8 % attributable to adsorption process. Comparatively, approximately 93.8 % or 18.51 ppm of methylene blue can be removed by applying the same condition with approximately 43.7 % removal efficiency attributable to photodegradation process and another 50.1 % attributable to adsorption process.

The solution pH was found to have a significant and yet complex effect. Solutions with pH 4.0 – 6.0 and 10.0 – 12.0 were found to be the optimum range for methyl orange and methylene blue respectively. In view of the electrostatic attraction between the catalyst and substrates, the ionic characteristic of the dyes is suggested to play an important and selective role in both the photodegradation and adsorption processes. The adsorption of model pollutant solutes on the prepared TiO₂-Chitosan photocatalyst surface leads to the effective photodegradation process.

Removal rate of methyl orange and methylene blue were studied based on the integrated form of Langmuir-Hinshelwood kinetic equations. The photodegradation-adsorption process obeys first order kinetics for the first 60 minutes. After that, it was most likely to be affected by the solution pH and the nature of the photocatalyst. This is obvious based on the effect of pH for
MO and MB removal, in which the obtained data cannot fit nicely into the kinetic model or its linearized form.

Although Total Organic Carbon (TOC) and Gas Chromatography-Mass Spectrometry (GS/MS) coupled with Direct Insertion-Mass Spectrometry (DI/MS) analyses had confirmed the successful break up of methyl orange and methylene blue ‘parent molecule’, successful destruction of methylene blue aromatic rings is quite difficult to achieve. Nevertheless, the combined photodegradation-adsorption system still appears to be an efficient accelerated removal process of organic pollutants from waste water.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

FOTODEGRADASI-JERAPAN PEWARNA ORGANIK MENGGUNAKAN KITOSAN TERDOKONG PEMANGKIN CAHAYA TITANIUM DIOKSIDA

Oleh

LEE KONG HUI

Jun 2007

Pengerusi : Profesor Zulkarnain Zainal, PhD

Fakulti : Sains

Gabungan kesan fotodegradasi-jerapan menggunakan TiO$_2$ dan kitosan terdokong di atas kepingan kaca (TiO$_2$-Kitosan/Kaca) di bawah penyiniran cahaya dengan tenaga yang sesuai ($h\nu > E_{bg}$) sebagai satu kaedah baru perawatan dan pra-perawatan air tercemar yang mengandungi bahan pewarna telah dikaji. pencirian bahan pemangkin yang disediakan dilakukan melalui mikroskopi pengimbasan elektron, mikroanalisis sinar-X, analisis pembelauan sinar-X, spektroskopi inframerah transformasi Fourier, analisis luas permukaan dan keliangan dan analisis termogravimetri.

Penyingkiran metil jingga (sejenis pewarna anion daripada siri monoazo) telah diselidiki berdasarkan kepada kesan nisbah TiO$_2$:Kitosan, jumlah bahan pemangkin yang didokongkan, kepekatan larutan, keamatan cahaya, sumber cahaya yang berbeza, suhu larutan, dan pH. Perbandingan juga dilakukan dengan pewarna yang mempunyai sifat yang berbeza, iaitu metilina biru (pewarna kation) dan pewarna campuran (campuran metil jingga dan metilina biru). Penyingkiran optimum metil jingga dicapai apabila eksperimen dijalankan dengan menggunakan 5 keping pemangkin TiO$_2$-Kitosan/Kaca (45 mm X 80 mm X 2 mm) yang
dicelupkan sebanyak 4 kali dengan kepekatan larutan awal metil jingga 20 ppm pada suhu 40 °C di bawah sinaran cahaya hampir UV 230 V selama 6 jam.

Lebih kurang 87.0 % daripada 20 ppm metil jingga berjaya disingkirkan dengan sejumlah 9.2 % kesan penyingkiran dihasilkan oleh proses fotodegradasi, manakala 77.8 % adalah sumbangan daripada proses jerapan. Secara perbandingannya, lebih kurang 93.8 % atau 18.51 ppm metilina biru juga boleh disingkirkan dengan menggunakan kaedah yang sama dengan sejumlah 43.7 % kesan penyingkiran dihasilkan oleh proses fotodegradasi, manakala 50.1 % yang lain disumbangkan oleh proses jerapan.

Keadaan pH larutan telah dikenalpasti mempunyai kesan yang ketara dan kompleks. Larutan dengan pH 4.0 – 6.0 dan 10.0 – 12.0 telah dikenalpasti sebagai julat pH optimum untuk metil jingga dan metilina biru. Berlandaskan kepada teori tarikan elektrostatik yang wujud di antara pemangkin dan substrat, sifat ionik bahan pewarna dicadangkan berkemungkinan memainkan peranan pilihan yang penting dalam kedua-dua proses fotodegradasi dan jerapan. Jerapan bahan substrat di atas permukaan bahan fotomangkin TiO₂-Kitosan akan membawa kepada proses fotodegradasi yang berkesan.

penyingkiran metil jingga dan metilina biru, di mana data yang diperoleh tidak dapat
dipadankan kepada model kinetik atau bentuknya yang terubahsuai.

Sungguhpun analisis Jumlah Karbon Organik (TOC) dan Kromatografi Gas-Spektrometri
Jisim (GC/MS) yang dilengkapkan dengan Selitan Terus-Spektrometri Jisim (DI/MS) telah
mengesahkan pemecahan ‘molekul sumber’ metil jingga dan metilina biru, akan tetapi
pemecahan gelang aromatik metilina biru adalah sukar dicapai. Walau bagaimanapun,
gabungan sistem fotodegradasi-jerapan ini masih merupakan proses penyingkiran pantas
bahan pencemar organik dalam air yang berkesan.