PARTIAL PURIFICATION AND CHARACTERIZATION OF A MONOTERPENE SYNTHASE EXTRACTED FROM YOUNG LEAVES OF MICHELLIA ALBA

By

LEE YUAN CHERN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

February 2006

Abstarct of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement of the degree of Master of Science

PARTIAL PURIFICATION AND CHARACTERIZATION OF A MONOTERPENE SYNTHASE EXTRACTED FROM YOUNG LEAVES OF MICHELLIA ALBA

By

LEE YUAN CHERN

February 2006

Chairman : Associate Professor Radzali Muse, PhD

Faculty : Biotechnology and Biomolecular Sciences

This study was conducted to partially purify linalool synthase from the young leaves of *Michellia alba* (Cempaka Putih) from the Magnoliaceae family. The technique used to determine the amount of linalool produced from enzyme activity was the combination of solid-phase microextraction (SPME) and gas chromatography with flame-ionization detecter (GCFID) technique. The substrate used for this enzyme activity assay was geranylpyrophosphate (GPP). Optimal conditions such as temperature and incubation time for SPME technique were also determined. The linalool synthase exhibited a strict requirement for a divalent metal cofactor with a preference for Mg²⁺, Mn²⁺ and K⁺ ions. The optimal pH and temperature of the enzyme was 6.0 and 30°C respectively. The enzyme was inhibited by 1,2-Di(2-aminoethoxy)ethane-N,N,N'N'-tetra-acetic acids (EGTA). Three steps of partial purification of enzyme were carried out, including the crude extraction of young

leaves, ultra centrifugation and Mono-Q anion exchange chromatography. The partially purified linalool synthase was characterized and studied for its enzyme kinetic properties. The linalool synthase has a K_m of 83μ M for substrate GPP. The SPME-GCFID technique was later proved to be reliable and sensitive in determination of monoterpene products.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENULENAN SEPARA DAN PENGKAJIAN SIFAT SATU MONOTERPENE SINTASE DARIPADA DAUN MUDA *MICHELLIA ALBA*

Oleh

LEE YUAN CHERN

Februari 2006

Pengerusi : Profesor Madya Radzali Muse, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Kerja penyelidikan ini telah dijalankan bagi penulenan separa satu enzim , iaitu Linalool Sintase daripada daun muda *Michellia alba* (cempaka putih) daripada famili Magnoliaceae. Satu teknik hasil gabungan antara teknik 'Solid-phase microextraction' (SPME) dan 'gas chromatography with flame ionization detecter' (GCFID) telah digunakan untuk mengkaji jumlah linalool yang dihasilkan daripada aktiviti enzim tertentu. Substrat yang telah digunakan untuk aktiviti enzim ini adalah geranil pirofosfat (GPP). Keadaan optimum suhu dan masa pengeraman untuk kaedah SPME juga telah dikaji. Linalool sintase memerlukan ion Mg²⁺, Mn²⁺ dan K⁺ sebagai kofaktor kation dwivalent. pH dan suhu optimum bagi aktiviti enzim adalah 6.0 dan 30°C masing-masing. Enzim ini juga didapati direncat oleh 1,2-Di(2-aminoethoxy)ethane-N,N,N'N'-tetra-acetic acids (EGTA). Tiga langkah penulenan telah dijalankan, iaitu ekstrak kasar, pengemparan-ultra dan kromatografi pertukaran anion 'Mono-Q' anion. Sifat-sifat dan kajian kinetik enzim yang separa tulen itu juga

telah dikaji. Enzim ini mempunyai nilai $K_m 83\mu M$ untuk substrat GPP. Teknik SPME-GCFID kemudiannya telah dibukti sensitif dan berguna di dalam menentukan produk monoterpene yang dihasilkan.

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor, Assoc. Prof. Dr Radzali Muse as well as my co-supervisors, Prof. Dr Mohd. Arif Syed, Assoc. Prof. Dr Mohd. Aspollah Sukari and Dr Mohd. Yunus Shukor for their invaluable guidance, encouragement, help and patience that lead to the completion of this project.

I wish to thank Ministry of Science, Environment and Innovation (MOSTI) for the IRPA grant awarded and Universiti Putra Malaysia for the laboratory and library facilities provided throughout the whole project.

I also wish to express my sincere appreciation and gratitude to the staff of department of Biochemistry for their kind assistance and guidance.

Special thanks are also extended to my colleagues in the Laboratory of Secondary Product Research for their invaluable helps and co-operation during this interesting study.

Last but not least, sincere gratitude to my family for their love, supports and helps throughout the project.

I certify that an Examination Committee has met on 6th February 2006 to conduct the final examination of Lee Yuan Chern on his Master of Science thesis entitled "Partial Purification and Characterization of a Monoterpene Synthase Extracted from Young Leaves of *Michellia alba*" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Nor Aripin Shamaan, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Maziah Mahmood, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Johari Ramli, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Roohaidah Othman, PhD

Associate Professor Faculty of Science Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia Date: This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follow :

Radzali Muse, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Mohd. Arif Syed, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Mohd. Aspollah Sukari, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Mohd. Yunus Shukor, Lecturer

Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

LEE YUAN CHERN

Date:

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi

CHAPTER

1	INTE	RODUCTION	1	
2	LITERATURE REVIEW			
	2.1	Michelia alba	4	
	2.2	Monoterpene	5	
		2.2.1 Linalool	6	
		2.2.2 Storage of monoterpenes in plant	6	
		2.2.3 Monoterpene biosynthesis	8	
		2.2.3.1 Alternative termination chemistries of monoterpene synthase	11	
		2.2.4 Symmetrical monoterpenoid	12	
		2.2.5 Importance and functions of monoterpene	13	
	2.3	Monoterpene synthases	16	
	2.0	2.3.1 Studies on monoterpene synthases	16	
		2.3.2 Monoterpene synthase from divergent	10	
		plant sources	19	
		(gymnosperms and angiosperms)	-	
		2.3.3 Locations of monoterpene synthases in plant	20	
	2.4			
		2.4.1 Studies on geranyl pyrophosphate synthase	23 24	
	2.5	Solid phase microextraction (SPME)	25	
		2.5.1 Applications of SPME	26	
	2.6	Enzyme purification	27	
		2.6.1 Cell disintegration and crude extraction	27	
		2.6.1.1 Plant cells disintegration	28	
		2.6.2 Centrifugation	28	
		2.6.3 Dialysis	29	

	2.6.4	Removal of	of phenolic compounds	30
		2.6.4.1	Phenolic compounds	30
		2.6.4.2	Importance of removal of phenolic compounds	30
		2.6.4.3	Methods of removal of phenolic	31
		2.0.4.3	compounds	51
2.7	High p	erformance	e liquid chromatography (HPLC)	33
	2.7.1	General pr	rinciples	33
2.8	Gas ch	romatograp	bhy	35
				27
		S AND ME	THODS	37
3.1	Materi		• •	37
	3.1.1	Plant mate		37
	3.1.2			37
	3.1.3	Solid phas and fibre	e microextraction (SPME) device	38
	3.1.4		natography with flame ionization	38
	215	detector (C	,	
	3.1.5		ormance liquid chromatography	20
		(HPLC)		38
2.2	N.C. (1		o-Q exchange chromatography	20
3.2	Metho			39
	3.2.1		ract preparation	39
	3.2.2		nount assay (Bradford method)	40
	3.2.3		E-GCFID technique for linalool	
		analysis		41
	3.2.4		ampling temperature for SPME	41
	3.2.5	*	ampling time for SPME	42
	3.2.6		mount standard curve	42
			Linalool synthase activities assay	42
	3.2.7	Linalool s	ynthase partial purification	43
	3.2.8	Partial cha	racterization of linalool synthase from	45
		Michelia a	<i>alba</i> leaves	
		3.2.8.1	Optimum incubation temperature for linalool synthase activities	45
		3.2.8.2	Optimum pH for linalool synthase	46
		3.2.8.3	activities Effect of bivalent and monovalent	46
			cati on linalool synthase activities	
		3.2.8.4	Effect of inhibitors (EGTA and EDTA on linalool synthase activities	47
		3.2.8.5	Effect of different substrates on	
		5.2.0.0	linalool	47
			synthase activities	• /
		3.2.8.6	Effect of substrate concentration on	48
		5.2.0.0	reaction velocity	10

3

	AND DISCU	
	Soluble protein amount assay Optimization of solid phase microextraction (SPME)	
4.2 Op 4.2		
4.2		mpling temperature for SPME
	1	mpling time for SPME of linalool synthase from the leaves
	Michelia alba	i of infatool synthase from the leaves
-	1 Linalool as	
4.3		ification of linalool synthase from
4.3	<i>Michelia a</i>	
	4.3.2.1	Crude extraction
	4.3.2.1	Ultracentrifugation
	4.3.2.2	Dialysis
	4.3.2.3	Removal of phenolic compounds by
	4.3.2.4	Sephadex G-200 column
	4.3.2.5	Mono-Q anionexchange
	4.3.2.3	chromatography
4.4 Ch	racterization	f linalool synthase from
	<i>helia alba</i> leaf	
4.4		ncubation temperature for linalool
1.	synthase ad	1
4.4	~	of the for linal of synthase activities
4.4		ivalent and monovalent cation
		synthase activities
4.4		hibitors (EGTA and EDTA) on
		nthase activities
4.4		ifferent substrates for linalool
	synthase a	
4.4	•	ubstrate concentration on velocity
	reaction	
4.4		ifferent incubation time

Effect of different incubation time

48

3.2.8.7

4

REFERENCES	75
APPENDICES	83
BIODATA OF THE AUTHOR	93
PUBLICATIONS	94