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A wide variety of applications are available for gas separation, including physical 

and chemical adsorption. Currently, membrane processes are considered as 

promising technology for gas separation because of its simplicity, i.e. no absorbent, 

which has to be regenerated, low capital cost, less space requirement, environmental 

friendliness, and low energy consumption. There are several applications for gas 

separation membranes such as hydrogen/carbon dioxide separation, oxygen/nitrogen 

separation, carbon dioxide/methane separation, natural gas separation, vapor/vapor 

separation, and dehydration of air. Since, CO2 possesses the most greenhouse effect, 

CO2 removal is more attractive among other gas separation processes by polymeric 

membrane. Furthermore, CO2 removal can be taken into account for natural gas 

upgrading and enhanced oil recovery.               

 

In this study, flat sheet membranes were prepared by wet/wet phase inversion 

technique. The membranes were prepared by contacting wet polymer film with two 

non-solvent baths in the series. The first coagulation bath which was containing 

different alcohols such as ethanol, propanol and isopropanol was employed to obtain 

a concentrated layer of polymer at the interface. This step makes the ultra-thin 

surface layer. The purpose of second bath (distillate water) is the actual coagulation 

and formation of the final film. In order to investigate the morphology of the 

membranes and evaluate nanoparticles distribution and agglomeration in polymer 

matrix, cross section micrographs were taken with scanning electron microscopy. 

Variations in surface roughness parameters of prepared membranes were studied by 

atomic force microscopy. The chemical interaction concerning polysulfone as base 

polymer and other fillers was evaluated by Fourier transform-infrared spectroscopy. 

Energy dispersive X-ray analysis was also conducted to confirm dispersion of 

nanoparticles on the surface layer of prepared membrane. Thermal gravimetric 

analysis was conducted for identification of any variations in thermal properties of 
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membranes before and after cross-linking with a heating rate of 10 °C/min from 

room temperature up to 700 °C.                                                                             

 

In this research five different membranes have been prepared and characterized for 

CO2/CH4 separation including polysulfone/polyvinylpyrrolidone (PSf/PVP) blend 

membranes, symmetric and asymmetric pure PSf membranes, PSf/zinc oxide (ZnO) 

nanoparticle mixed matrix membranes, PSf/titanium dioxide (TiO2) mixed matrix 

membranes and novel PSf/chitosan composite membrane. Since, pure PSf 

membranes have numerous macro-voids at its structure, both CO2 and CH4 

molecules can pass through the membrane easily. Nonporous fillers (ZnO and TiO2) 

can improve the separation properties of the resultant mixed matrix membranes by 

decreasing the diffusion of larger molecules. Moreover, the hydroxyl functional 

groups on the surface of these nanomaterials (polar surface, which is resulted from 

ZnO and TiO2 interactions with water molecules) may interact with CO2 by 

hydrogen bonding and thus improve the penetrant solubility in the resulting mixed 

matrix membranes. In the case of polysulfone chitosan composite membrane, since 

pure PSf membrane has very thin active layer which is not able to separate CO2 from 

CH4, chitosan was applied as a top layer. Chitosan was able to improve the 

membrane performance because of its OH functional groups which interact with CO2 

and improve CO2 permeability through the membrane. Also, the SEM photographs 

demonstrated a dense top layer of chitosan formed in PSf/chitosan composite 

membrane improving the resistance of membrane against larger molecules (CH4) and 

enhance the separation performance of membrane. 

 

Accordingly, PSf/PVP 10 wt.%, PSf/TiO2 3 wt.% and PSf/Chitosan 30µm were able 

to separate CO2 from CH4 completely. Furthermore, PSf/PVP 10wt.% which has 70 

GPU CO2 permeability at 3 bar feed pressure has the highest performance (high gas 

permeance and selectivity) among the prepared membranes. 

 

            

 

 

 

 

 

 

 

© C
OPYRIG

HT U
PM



iii 
 

Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi 

keperluan untuk ijazah Doktor Falsafah  

 

PENYEDIAAN DAN PENGKELASAN MEMBRAN POLISULFON BAGI 

PEMISAHAN KARBON DIOKSIDA DAN METANA  
 

Oleh 

POURYA MORADIHAMEDANI 

Julai  2014 

 

Pengerusi : Nor Azowa Ibrahim, PhD 

Fakulti  : Sains 

 

Pelbagai aplikasi yang meluas terdapat bagi pemisahan gas, termasuklah penjerapan 

fizikal dan kimia. Kini, proses membran telah dikenalpasti  sebagai satu teknologi 

yang menyakinkan bagi pemisahan gas disebabkan keringkasannya, i.e. tiada 

penyerap yang mana perlu dijana semula, kos modal yang rendah, keperluan ruang 

yang sedikit, mesra alam dan penggunaan tenaga yang rendah. Terdapat beberapa 

aplikasi bagi pemisahan gas membran seperti pemisahan hidrogen, pemisahan 

oksigen/nitrogen, pemisahan karbon dioksida/metana, pemisahan gas asli, pemisahan 

wap/wap dan dehidrasi udara. Oleh kerana CO2  adalah memberi kesan kepada 

rumah hijau yang paling signifikan, mengeluarkannya adalah sangat penting 

berbanding kepada proses pemisahan gas yang lain dengan membran polimerik. 

Tambahan lagi, pembuangan CO2 boleh diambil kira bagi penambahsuaian gas asli 

dan menambah pemulihan minyak. Dalam kajian ini, membran kepingan rata telah 

disediakan dengan teknik inversi fasa basah/basah, di mana membran telah 

disediakan dengan menyentuhkan filem polimer basah dengan dua rendaman tanpa 

pelarut dalam turutan. Bagi rendaman penggumpalan yang pertama, yang 

mengandungi pelbagai alkohol seperti ethanol, propanol dan isopropanol telah 

digunakan untuk mendapatkan kepingan polimer pekat yang sangat nipis pada 

permukaan. Tujuan bagi rendaman kedua (air suling) sebenarnya adalah 

penggumpalan dan pembentukan filem yang terakhir. Bagi kajian morphologi 

membran dan taburan nano partikel serta penggumpalan dalam  matrik polimer, 

mikrograf keratan rentsa telah diambil dengan mengimbas menggunaken elektron 

mikroskop. Variasi dalam parameter kekasaran permukaan bagi membran tersedia 

telah dikaji dengan mikroskopi tenaga atomik. Interaksi kimia autara polisulfon 

sebagai polimer asas dan pengisi yang lain telah dinilai dengan spektroskopi infra 

merah pengubah Fourier. Analisis tenaga menyebar X-ray telah dijalankan bagi 

mengesahkan penyebaran bagi partikel nano ke atas permukaan lapisan membran 

yang telah disediakan. Analisis terma gravimetrik telah dijalankan bagi 

mengenalpasti sebarang variasi dalam sifat thermal membran sebelum dan selepas 

rangkaian terbenluk dengan kadar pemanasan bagi 10 °C/min daripada suhu bilik 

kepada 700 °C.  
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Dalam kajian ini, lima membran berbeza telah disediakan dan dikelaskan kepada 

pemisahan kepada CO2/CH4  termasuklah campuran membran 

Polisulfon/polivinilpirrolidon (PSf/PVP), simetri dan assimetri tulen membran  PSf, 

campuran nano partikel matriks membran PSf/zink oksida (ZnO), PSf/titanium 

dioksida (TiO2) bercampur membran matrik dan novel komposit membran 

PSf/chitosan. Oleh kerana, membran PSf tulen mempunyai banyak lubang makro 

pada struktur, kedua-dua CO2 dan molekul CH4 boleh melalui membran dengan 

mudah. Pengisi tidak telap (ZnO dan TiO2) boleh meningkatkan sifat-sifat pemisahan 

membran paduan matriks bercampur dengan mengurangkan resapan molekul yang 

lebih besar. Selain itu, kumpulan hidroksil berfungsi pada permukaan nanobahan ini 

(permukaan kutub, yang menyebabkan dari ZnO dan TiO2 interaksi dengan molekul 

air) juga berinteraksi secaia ikatan hidrogen dengan gas CO2 dan dengan itu 

meningkatkan kelarutan bahan penusuk dalam membran matriks campuran. Bagi kes 

polysulfon kitosan membran komposit, oleh kerana membran PSf tulen mempunyai 

lapisan aktif yang sangat nipis maka tidak dapat memisahkan CO2 daripada CH4, 

oleh itu kitosan telah digunakan sebagai lapisan atas. Chitosan dapat meningkatkan 

prestasi membran kerana kumpulan berfungsi OH berinteraksi dengan gas CO2 dan 

meningkatkan ketelapan CO2 melalui membran. Selain itu, gambar-gambar SEM 

menunjukkan lapisan tebal kitosan ditubuhkan pada PSf/membran komposit kitosan 

meningkatkan rintangan membran terhadap molekul yang lebih besar (CH4) dan 

meningkatkan prestasi pemisahan membran. 

 

Oleh itu, PSf/PVP 10 wt.%, PSf/TiO2 3 wt.%  dan  PSf/Chitosan 30µm mampu untuk 

memisahkan  sepenuhnya CO2 daripada CH4. Tambahan lagi, PSf/PVP 10wt.% yang 

mempunyai 70 GPU CO2 kebolehtelapan pada 3 bar kawalan tekanan pada prestasi 

yang tertinggi (gas yang tinggi telapan dan pemilihan) dikalangan membran tersedia.  
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CHAPTER 1 

                                                    INTRODUCTION 

1.1 Background of the Study 

Membrane process technology has a promising future in the petrochemical, refining, 

and natural gas industries. One important part of separation is the purification of CH4 

from CO2. There are more than 20 trillion standard cubic feet of natural gas produced 

in the USA yearly, and nearly 20% of that gas requires major treatment. CO2 

separation is a significant industrial procedure because around 70% of natural gas 

containing CO2. Present pipeline specifications of US command that CO2 content be 

less than 2%. In higher contents, it leads to corrosion of pipeline and reduces the 

natural gas calorific value. Conventional techniques for CO2 separation are based on 

reversible absorption, such as amine scrubbing, but these methods are high energy 

demanding and cause environmental concerns. The advantages of gas separation by 

membrane technology over traditional methods include ease of function, low-energy 

required, and environmental friendliness. Table 1-1 presents established applications 

in the field of gas separation by membrane technology (Baker., 2011). However, low 

gas permeance and selectivity of present commercial polymeric membranes are 

important concern of this technology to process large volumes of gas. Any 

improvement in membrane separation efficiency could lead to important financial 

savings and further applications of membrane systems in gas separation. Even with 

decades of research on this subject, today there are less than 10 various types of 

polymers applied for commercial gas separation. 

With the intention of being commercially competitive, new membrane materials 

must provide considerable improvements in CO2 permeance and CO2/CH4 selectivity 

compared to existing techniques. Sophisticated membranes must have brilliant 

thermal and chemical stability, resistance to aging and plasticization (for polymeric 

membranes), low capital cost, and ease of scale-up and less apace requirement. 

Current membrane systems for CO2/CH4 separation can be divided into three 

categories: polymeric, composite and mixed matrix membranes.. Polymeric 

membranes include membranes composed of polymers and polymer blends. 

Composite membrane includes two different layers (support and surface layer) which 

each one prepared by different polymers. Support layer usually does not provide any 

resistance for gas as permeate. While, the surface layer is responsible for separation 

of gases and just allow to a specific molecule of gas to pass through itself. Mixed 

matrix membranes include organic–inorganic that consist of an inorganic phase 

integrated into a continuous polymer matrix (Baker., 2011).  

 

Organic polymers are the most extensively used materials in preparation of 

membrane for gas separation. Polymers can be divided into two main categories; 

those functioning above their glass transition temperature (rubbery polymers) and 

those working below their glass transition temperature (glassy polymers). Glassy 

polymers are able to effectively separate molecules based on small differences in 

molecular dimensions. They are innately more size and shape selective than rubbery 

polymers and therefore better suited for CO2 separation.         
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     Table 1-1: Gas membrane applications and suppliers. 

Gas separation Application Suppliers 

O2/N2 

 

 

 

 

 

 

 

H2/Hydrocarbons 

 

 

 

H2/CO 

 

H2/N2 

 

CO2/Hydrocarbons 

 

 

 

 

H2S/Hydrocarbons 

 

 

H2O/Hydrocarbons 

 

 

H2O/Air 

 

 

Hydrocarbons/Air 

 

 

Hydro carbons from 

process streams 

Nitrogen generation 

Oxygen enrichment 

 

 

 

 

 

 

Refinery hydrogen 

 

 

 

Syngas ratio adjustment 

 

Ammonia purge gas 

 

Acid gas treating 

Enhanced oil recovery 

Landfill gas upgrading 

 

 

Sour gas treating 

 

 

Natural gas dehydration 

 

 

Air dehydration 

 

 

Pollution control 

Hydrocarbon recovery 

 

Organic solvent recovery 

Monomer recovery 

A/G technology 

Permea  

Generon 

IMS  

Medal  

Aquilo  

Ube 

 

Air products 

Air liquid 

Praxair 

 

as above 

 

as above 

 

Kvaerner  

Air products 

Ube 

 

As above 

 

 

Kvaerner 

Air products 

 

Air products 

Ube 

 

MTR, GMT, 

NKK 

 

 

MTR, GMT, 

SIHI 

 

                     

1 Barrer = 1 × 10-10 [
𝑐𝑚3 𝑐𝑚

𝑐𝑚2 𝑠 𝑐𝑚 ℎ𝑔 
] = 3.35 × 10-10 [

𝑚𝑜𝑙

𝑚2 𝑠 𝑃𝑎
] 

1 GPU = 1 × 10-6 [
𝑐𝑚3 𝑐𝑚

𝑐𝑚2 𝑠 𝑐𝑚 ℎ𝑔 
] 
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The easiest model applied to clarify and predict gas permeation through non-porous 

membranes is defined as the solution-diffusion model. Based on this mechanism, the 

permeants dissolve into the polymer matrix at the upstream face (high pressure), 

afterward diffuse through the polymer film and lastly desorb from the downstream 

side. Gases with a larger molecular diameter diffuse slower across the prepared 

membrane. It is further assumed that sorption and desorption at the interfaces is fast 

compared to the diffusion rate in the polymer. The gas phase on the high and low 

pressure side is in equilibrium with the polymer interface. The combination of 

Henry’s law (solubility) and Fick’s law (diffusion) leads the to the equation 

 

                           J = 
𝐷 𝑆 ∆𝑝

𝑙
                                     (1.1)  

 

which can be simplified to 

                   J = 
𝑝 ∆𝑝

𝑙
                                        (1.2) 

 

where D is the diffusion coefficient of the gas in the polymer, S is the gas solubility, 

Δp is the pressure difference between the high and low pressure side, l is the 

membrane thickness and P is the permeability coefficient. As can be seen from (1) 

and (2) the permeability coefficient P is the product of D (a kinetic term) and S (a 

thermodynamic term). 

 

                           P = D S                                             (1.3)                                        

The selectivity of a polymer to gas A relative to another gas B can be expressed in 

terms of an ideal selectivity αAB defined by the relation 

                   αAB = 
𝑃𝐴

𝑃𝐵
 = (

𝐷𝐴

𝐷𝐵
) 

𝑆𝐴

𝑆𝐵
                    (1.4)                             

1.2 Research approach 

Today’s industrial production and infrastructure in the world are based on fossil fuel 

use, which is related directly to the generation of energy. Thus, it is believed that the 

combustion of fossil fuels and other human activities are the reasons for the 

increased concentration of greenhouse gases all over the world. Carbon dioxide 

(CO2) is one of the largest contributors to global warming. Therefore, its capture 

from different sources such as power stations, oil refineries and large cement works 

is very important. Another separation problem is the presence of CO2 in natural gas, 

where it causes reduction of the heating value and waste of pipeline capacity. 

According to these problems which mentioned above, in this study we focused on 

preparation of polysulfone based membrane for separation of CO2 from CH4. 

 

Polysulfone (PSf) is selected for gas separation due to satisfactory gas permeance 

and acceptable selectivity. PSF is an amorphous thermoplastic polymer with glass 

transition temperature of 190 °C. This is a flame retardant polymer, possesses high 

mechanical, thermal and oxidative stability and is soluble in common organic 

solvents. Preparation of PSf membranes by phase inversion is a well-known process. 
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Moreover, its relative low cost established PSf as the polymer in choice for 

fabrication of membranes. In this research, the solvents are different organic non-

aqueous solutions such as NMP, DMAc, DMF, THF and CHCL3. Solvents were used 

to dissolve PSf beads and prepare casting solutions. Whereas, non-solvents are 

aqueous solutions such as distilled water, EtOH, PrOH, IPA and BuOH. The main 

role of non-solvent is phase inversion of wet film from liquid to solid. Accordingly, 

non-solvents act as coagulators. 

 

In this study we investigated the performance and morphology of pure PSf 

membrane, PSf/polyvinylpyrrolidone (PVP) blend membrane, PSf/ZnO and 

PSf/TiO2 mixed matrix membrane and PSf/chitosan composite membrane. 

Therefore, three different types of membrane were studied in this research such as: 

polymeric membrane, mixed matrix membrane and composite membrane. All 

prepared membranes in this research were applied for separation of CO2 from CH4. 

Different effective variables were investigated in this study such as: polymer 

concentration, thickness of membrane, type of solvent, type of coagulation bath, type 

of nanoparticles which were used for preparation of mixed matrix membranes, 

concentration of additive in blend membranes, thickness of active layer and 

concentration of coating solution in composite membranes. Moreover, the methods 

of membrane preparation were aimed to reach full separation of CO2 from CH4.   

This investigation has been motivated in improving the gas transport properties of 

polymeric membranes by a combination of nanoparticles such as ZnO and TiO2. In 

this approach, using properties of both the organic and inorganic phase, a membrane 

with good permeability, selectivity, mechanical strength, and thermal, chemical 

stability and processibility can be prepared. 

 

The effect of the inorganic dispersed phase on the mixed matrix membrane 

properties is related to its chemical structure, surface chemistry and the type of 

particles. The inorganic materials used for MMMs can be classified into porous and 

nonporous types. The effect of porous fillers on the mixed matrix membrane is               

different from nonporous inorganic fillers and can be related to their structure and 

their pore size. Generally, porous fillers act as molecular sieving agents in the 

polymer matrix and separate gas molecules by their shape or size. Due to their 

concise apertures, porous inorganic particles have usually high permeability and 

selectivity which is above the Robeson upper bound. Therefore when these highly 

selective porous fillers are added to the polymer matrix, they selectively allow the 

desired component to pass through the pores and thus a mixed matrix membrane, 

whose selectivity is higher than that of the neat polymeric membrane, can be 

obtained (Aroon et al., 2010).   

 

In contrast, nonporous material fillers (ZnO and TiO2) can improve the separation 

properties of the resultant mixed matrix membranes by decreasing the diffusion of 

larger molecules. Moreover, the hydroxyl functional groups on the surface of these 

nanomaterials (polar surface which is resulted from ZnO and TiO2 interaction with 

water molecules) also interact with CO2 and thus improve the penetrant solubility in 

the resulting mixed matrix membranes. In addition, nano-scale inorganic materials 

may disrupt the polymer chain packing and increase the free volume between 

polymer chains and thus increase gas diffusion (Aroon et al., 2010).  
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Customary polymeric membranes operated for CO2 removal are prepared from a 

single polymer, such as cellulose acetate, cellulose triacetate or polyimide. These 

traditional membranes have a significant problem regarding to the trade-off 

relationship between permeability and selectivity suggested by Robeson (Cai et al., 

2008), which signifies that a high permeability rate as well as high selectivity are 

hardly achieved at the same time (Cai et al., 2008). Luckily, the upper bound 

between permeability and selectivity might be improved by composite membranes, 

because they usually have both high permeability and selectivity (Kim et al., 2004). 

Composite membranes are usually considered as a type of polymeric membrane for 

gas separation which is fabricated from thin selective surface layers on the porous 

support layer. The combination of top and support layers reduces the thickness of the 

final prepared membrane without affecting the membrane mechanical strength 

(Madaeni et al., 2013). There are several factors which affect the composite 

membrane performance during the gas separation process including support top layer 

component, coating methods, and preparation conditions. In composite membrane, 

the porosity of support layer should be high to avoid additional mass transfer 

resistance against the permeate components. Moreover, the active layer should 

provide the selectivity for the desired gas (Madaeni et al., 2013). Since chitosan has 

OH functional group in its structure, can have interaction with CO2 and improve the 

CO2 permeability through the membrane. Chitosan which is the second most 

plentiful biopolymer in nature is a linear polymer primarily of glucosamine. This 

polymer is the N-deacetylated product of chitin, a natural polymer that can be 

extracted from outer shells of crustaceans which has been considered as one of the 

most promising materials due to its biodegradability, biocompatibility and non-

toxicity (Tsai et al., 2006, Chen et al., 2007, Kumar et al., 2004, Padaki et al., 2012).

  

1.3 Objectives 

Since pore size, thickness of top layer and thickness of membrane are the most important 

parameters for gas separation, in this study we aimed to prepare PSf based membranes 

with proper characteristics for gas separation. In this regards, PVP and two different 

nanoparticles such as ZnO and TiO2 were added to the casting solution separately. 

Furthermore, chitosan was applied as a top layer for preparation of PSf composite 

membrane.  The main objectives of this research are: 

1. To prepare PSf/PVP blend membrane and study the effect of addition of PVP 

with different concentrations to the casting solution on membrane morphology and 

performance. 

2. To fabricate high selective symmetric and asymmetric pure PSf membrane 

and investigate the influence of type of solvent and non-solvent (coagulation bath) on 

structure and gas separation properties of prepared membranes. 

3. Preparation and characterization of novel polysulfone/zinc oxide (PSf/ZnO) 

mixed matrix membranes (MMMs) with different ZnO loadings for high selective 

CO2/CH4 separation.  

4. To fabricate polysulfone (PSf)-based mixed matrix membranes (MMMs) 

with the incorporation of titanium dioxide (TiO2) nanoparticles for separation of CO2 

from CH4. 

5. To study the influence of membrane preparation parameters on structural 

morphology and performance of polysulfone (PSf)/chitosan composite membrane for 

gas separation. Asymmetric PSf flat sheet membranes were composed by phase 

inversion method and used as supports. PSf composite membranes were fabricated 
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by coating chitosan as selective layer on the top surface of support by film casting 

and dip-coating techniques.   
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