PREPARATION AND CHARACTERIZATION OF POLY(VINYL ALCOHOL)/CHITOSAN BIO-NANOCOMPOSITES REINFORCED WITH CELLULOSE NANOCRYSTALS, CELLULOSE NANOCRYSTALS/ZINC OXIDE AND CELLULOSE NANOCRYSTALS/ZINC OXIDE-SILVER NANOPARTICLES

SUSSAN AZIZY

FS 2014 21
PREPARATION AND CHARACTERIZATION OF POLY(VINYL ALCOHOL)/CHITOSAN BIO-NANOCOMPOSITES REINFORCED WITH CELLULOSE NANOCRYSTALS, CELLULOSE NANOCRYSTALS/ZINC OXIDE AND CELLULOSE NANOCRYSTALS/ZINC OXIDE-SILVER NANOPARTICLES

By

SUSSAN AZIZY

Thesis Submitted to the School of Graduates Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Doctor of Philosophy

June 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
Fulfilment of the requirement for the degree Doctor of Philosophy

PREPARATION AND CHARACTERIZATION OF POLY(VINYL ALCOHOL)/CHITOSAN BIO-NANOCOMPOSITES REINFORCED WITH CELLULOSE NANOCRYSTALS, CELLULOSE NANOCRYSTALS/ZINC OXIDE AND CELLULOSE NANOCRYSTALS/ZINC OXIDE-SILVER NANOPARTICLES

By

SUSSAN AZIZY

June 2014

Chairman: Professor Mansor Bin Ahmad, PhD

Faculty: Science

Polymer nanocomposites are materials composed of polymer matrices and nano-sized fillers with enhanced physical and chemical properties in comparison with the pure polymers or conventional composites. Strong research attempts have been focused on the use of bio-polymers because of increasing environmental concerns of using petroleum base polymers. The present research aims to study the influence of cellulose nanocrystals (CNCs), cellulose nanocrystals/zinc oxide nanoparticles (CNCs/ZnO-NPs) and cellulose nanocrystals/zinc oxide-silver nanoparticles (CNCs/ZnO-Ag-NPs) on the properties of poly(vinyl alcohol)/chitosan (PVA/CTS), an important bio-polymer blend.

Cellulose nanocrystal was extracted by acid-catalyzed hydrolysis of cotton cellulose. ZnO-NPs and ZnO-Ag-NPs were prepared in suspension of CNCs as a stabilizer via a co-precipitation method. The samples were characterized using Fourier transform infrared (FTIR), energy dispersive x-ray spectroscopy (EDS), ultraviolet-visible (UV-vis), x-ray diffraction (XRD), transmission electron microscope (TEM), field emission scanning electron microscope (FESEM), thermogravimetric analysis (TGA) and antimicrobial tests. According to the XRD and TEM results, polygonal structured ZnO nanocrystallites with a mean size of less than 30 nm were formed. The prepared ZnO-Ag nanocrystallites were spherical with a mean size diameters in a 12–35 nm range.
The bio-nanocomposites were prepared by mixing various percentages of nano-sized fillers and PVA/CTS blends in the ratio of 3:1. The properties of the prepared bio-nanocomposites were studied by XRD, TEM, TGA, UV-vis, barrier, tensile and antimicrobial tests. The PVA/CTS/CNCs bio-nanocomposites with low percentage of the CNCs (1.0 wt%) exhibits maximum mechanical, thermal, and barrier properties.

The PVA/CTS/CNCs/ZnO 5.0 wt% bio-nanocomposite exhibits the maximum tensile, and barrier properties. TGA results show that the maximum thermal decomposition of the PVA/CTS increases by about 34 °C at 1.0 wt%. The UV–visible spectrophotometric study shows that the bio-nanocomposites display an excellent performance of absorbing UV light. The antimicrobial tests reveal a favorable antibacterial effect for those PVA/CTS blend films filled with the high levels of CNCs/ZnO-NPs content.

The PVA/CTS/CNCs/ZnO-Ag 5.0 wt% bio-nanocomposite shows the maximum tensile, thermal and barrier properties. The UV–visible measurements showed that the bio-nanocomposites display prefect absorption in the range of 300-700 nm. The all bio-nanocomposites show antibacterial power, with the maximum effect in the 7.0 wt% of CNCs/ZnO-Ag-NPs loading.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN POLI(VINIL ALKOHOL)/KITOSAN BIO-NANOKOMPOSIT DIPERKUKUH DENGAN SELULOSA NANOKRISTAL, SELULOSA NANOKRISTAL/ZINK OKSIDA DAN SELULOSA NANOKRISTAL/ZINK OKSIDA-PERAK NANOPARTIKEL

Oleh

SUSSAN AZIZY

Jun 2014

Pengerusi: Profesor Mansor Bin Ahmad, PhD
Fakulti: Sains

Nanokomposit polimer adalah bahan terdiri daripada matrik polimer dan pengisi bersaiz nano dengan sifat-sifat fizikal dan kimia yang dipertingkatkan berbanding dengan polimer tulen atau komposit konvensional. Dipertingkatkan. Sebaliknya, dalam bidang polimer, sebahagian besar penyelidikan tertumpu kepada polimer terbiodegradasikan disebabkan kebimbangan alam sekitar menggunakan polimer asas petroleum yang semakin meningkat. Penggunaan bio-polimer telah menjadi tumpuan utama usaha penyelidikan kerana peningkatkan kebimbangan alam sekitar terhadap penggunaan polimer berasaskan petroleum. Kajian ini bertujuan untuk mengkaji pengaruh nanokristal selulosa (CNCs), nanokristal selulosa/nanozarah zink oksida (CNCs/ZnO-NPs) dan nanokristal selulosa/nanozarah zink oksida-Perak (CNCs/ZnO-Ag-NPs) terhadap sifat-sifat poli(vinil alkohol)/kitosan (PVA/CTS), satu adunan penting bio-polimer.

Selulosa nanokristal telah diekstrak keluar daripada selulosa kapas melalui hidrolisis bermangkinkan asid. ZnO-NPs dan ZnO-Ag-NPs telah disediakan dalam ampaiina CNCs sebagai penstabil melalui kaedah ko-mendakan. Sampel yang telah disediakan disifatkan menggunakan gelma Fourier inframerah (FTIR), spektroskopi tenaga serakan x-ray (EDS), spektroskopi ultraungu/nampak (UV-vis), pembelauan sinar x-ray (XRD), mikroskop elektron transmisi (TEM), bidang pelepasan imbasan elektron mikroskop (FESEM), termogravimetri (TGA) dan antimikrob ujian. Menurut keputusan XRD dan TEM, ZnO nanokristal yang berstruktur polygonal dengan saiz purata kurang daripada
30 nm telah dibentuk. Pembentukan ZnO-Ag nanokristal adalah bulat dengan saiz purata diameter dalam julat 12-35 nm.

Bio-nanokomposit telah disediakan dengan mencampurkan pelbagai peratusan pengisi bersaiz nano dalam campuran PVA/CTS dengan nisbah 3:1. Sifat-sifat bio-nanokomposit kemudian dikaji dengan ujian XRD, TEM, TGA, UV-nampak, halangan, tegangan dan antimikrobial. PVA/CTS/CNCs bio-nanokomposit dengan peratusan CNCs yang rendah (1.0 wt%) mempamerkan sifat mekanikal, terma, dan penghalang yang maksimum.

PVA/CTS/CNCs/ZnO 5.0 wt% bio-nanokomposit mempamerkan sifat tegangan dan halangan yang maksimum. Keputusan TGA menunjukkan bahawa penguraian terma maksimum bagi PVA/CTS meningkat kira-kira 34 °C pada 1.0 wt%. Kajian spektrofotometrik UV-nampak menunjukkan bahawa bio-nanokomposit memaparkan prestasi cemerlang dalam penyerapan cahaya UV. Tambahan pula, ujian antimikrobial menunjukkan bahawa kesan antibakteria yang baik boleh dicapai pada PVA/CTS filem dengan kandungan CNCs/ZnO-NPs yang tinggi.

PVA/CTS/CNCs/ZnO-Ag 5.0 wt% bio-nanokomposit mempamerkan sifat tegangan, terma dan halangan yang maksimum. Pengukuran penyerapan UV menunjukkan bahawa bio-nanokomposit memaparkan penyerapan sempurna dalam julat 300-700 nm. Selain itu, kesemua bio-nanokomposit menunjukkan kuasa antibakteria, dengan kesan maksimum pada 7.0 wt% CNCs/ZnO-Ag-NPs.
ACKNOWLEDGEMENTS

Praise and gratitude be to ALLAH, almighty, without whose gracious help it would have been impossible to accomplish this work.

I would like to express my sincere gratitude to my supervisor Prof. Dr. Mansor Bin Ahmad, who taught me not only analytical and polymer chemistry, but also about patience and perseverance. Thanks for all your time and advises. As such, I want to express gratitude to members of supervisory committee, Prof. Dr. Mohd Zobir Hussein and Dr. Nor Azowa Ibrahim for their guidance and constant support through the research. I admire their devotion to science.

I also thank to polymer research group, who shared with me not only their knowledge, also the laboratory space.

In addition, I am also very grateful to my family, especially my husband for everything. In gratitude, finally I want to express to all the staff and lecturer of Department of Chemistry, Faculty of Science and Universiti Putra Malaysia that gave me the opportunity to study. I will fondly remember your support, knowledge, assistance, advice, and teaching. I thank the administrators, the Dean and staffs of the chemistry department for the assistance provided throughout the duration of my study at UPM.
I certify that an Examination Committee has met on 17 June 2014 to conduct the final examination of Sussan Azizy on his Degree of Doctor of Philosophy thesis entitled “Preparation and Characterization of Poly(Vinyl Alcohol)/Chitosan Bio-nanocomposites Reinforced with Cellulose Nanocrystals, Cellulose Nanocrystals/Zinc Oxide And Cellulose Nanocrystals/Zinc Oxide-Silver Nanoparticles” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the Doctor of Philosophy.

Members of Examination Committee were as follows:

Mahiran Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohamad Zaki Ab. Rahman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Tan Wee Tee, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Sabu Thomas, PhD
Professor
Mahatma Gandhi University
India
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 June 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory committee were as follow:

Mansor Bin Ahmad, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Mohd Zobir Hussein, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Nor Azowa Ibrahim, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 June 2014
DECLARATION

Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ______________________

Name and Matric No.: _____________________________
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________ Signature: ____________________
Name of Chairman of Supervisory Committee: ____________________

Signature: ____________________ Signature: ____________________
Name of Member of Supervisory Committee: ____________________

Signature: ____________________ Signature: ____________________
Name of Member of Supervisory Committee: ____________________

xi
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1

1 INTRODUCTION 1

1.1 General Background of Research 1

1.2 Problem Statement 3

1.3 Objectives 4

CHAPTER 2

2 LITERATURE REVIEW 5

2.1 Biodegradable Polymer 5

2.2 Chitosan 5

2.3 Poly(vinyl alcohol) 7

2.4 Poly(vinyl alcohol)/Chitosan Blends 7

2.5 Cellulose 7

2.6 Nano sized Cellulose 9

2.6.1 Microfibrillated Cellulose 9

2.6.2 Cellulose Nanocrystals 9

2.7 Polymer Nanocomposites 11

2.8 Polymer Bio-nanocomposites 12

2.9 Polymer Bio-nanocomposite Based on CNCs 12
2.9.1 Mechanical Properties of CNCs/Polymer Bio-nanocomposites 13
2.9.2 Thermal Properties of CNCs/Polymer Bio-nanocomposites 14
2.9.3 Barrier Properties of CNCs/Polymer Bio-nanocomposites 15

2.10 Processing Methods of CNCs/Polymer Bio-nanocomposites 16
2.10.1 Casting-Evaporation Processing 16
2.10.2 Extrusion 18
2.10.3 Sol-gel Processing 18
2.10.4 Electrospinning 18

2.11 Nanoparticles 18
2.12 Polymer-Supported Inorganic Nanoparticles 20
2.13 Zinc oxide Nanoparticle 21
 2.13.1 Antibacterial Activities of ZnO Nanoparticles 22
 2.13.2 UV Absorbers of ZnO Nanoparticles 22
2.14 Zinc oxide–Silver Hetero-structure 23
2.15 Polymer Nanocomposites Based on Inorganic Nanoparticles 23
2.16 Polymer Nanocomposites Based on Zinc oxide Nanoparticles 25
2.17 Polymer Nanocomposites Based on Zinc oxide-Silver Nanoparticles 25
2.18 Polymer Nanocomposites Based on CNCs /Inorganic Nanoparticles 26

3 MATERIALS AND METHOD 27
3.1 Materials 27
3.2 Extraction of Cellulose Nanocrystals by Acid Hydrolysis 27
3.3 Preparation of CNCs/ZnO Nanocomposites 27
3.4 Preparation of CNCs/ZnO-Ag Nanocomposites 28
3.5 Preparation of PVA/CTS Blend 28
3.6 Preparation of PVA/CTS/CNCs Bio-Nanocomposites 29
3.7 Preparation of PVA/CTS/CNCs/ZnO Bio-Nanocomposites 29
3.8 Characterization of Nanomaterials 29
 3.8.1 X-ray Diffraction 29
 3.8.2 Fourier Transform Infra-Red Spectroscopy 30
 3.8.3 Thermogravimetric Analysis 30
3.8.4 Field Emission Scanning Electron Microscopy 30
3.8.5 Transmission Electron Microscopy 30
3.8.6 Energy Dispersive X-ray Spectroscopy 31
3.8.7 Tensile Properties Measurement 31
3.8.8 UV-Vis Absorption Measurements 31
3.8.9 Antibacterial Measurements 32
3.8.10 Oxygen Transmission Measurements 32

4 RESULTS AND DISCUSSION 33
4.1 Extraction and Characterization of CNCs 33
 4.1.1 Extraction of CNCs 33
 4.1.2 Characterization of CNCs 34
4.2 Preparation and Characterization of CNCs/ZnO Nanocomposites 41
 4.2.1 Preparation of CNCs/ZnO Nanocomposites 41
 4.2.2 Characterization of CNCs/ZnO Nanocomposites 41
4.3 Preparation and Characterization of CNCs/ZnO-Ag Nanocomposites 51
 4.3.1 Preparation of CNCs/ZnO-Ag Nanocomposites 51
 4.3.2 Characterization of CNCs/ZnO-Ag Nanocomposites 51
4.4 Characterization of PVA/CTS/CNCs Bio-nanocomposites 63
 4.4.1 X-ray Diffraction 63
 4.4.2 Transmission Electron Microscopy 64
 4.4.3 Tensile Properties 66
 4.4.4 Thermogravimetric Analysis 68
 4.4.5 Oxygen Transmission Measurement 70
4.5 Characterization of PVA/CTS/CNCs/ZnO Bio-nanocomposites 72
 4.5.1 X-ray Diffraction 72
 4.5.2 Transmission Electron Microscopy 73
 4.5.3 Tensile Properties 76
 4.5.4 Thermogravimetric Analysis 78
 4.5.5 Oxygen Transmission Measurement 80
 4.5.6 UV-Vis Absorption 81

xiv
<table>
<thead>
<tr>
<th>Chapter Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.7</td>
<td>Antibacterial Activity</td>
<td>83</td>
</tr>
<tr>
<td>4.6</td>
<td>Characterization of PVA/CTS/CNCs/ZnO-Ag Bio-nanocomposites</td>
<td>85</td>
</tr>
<tr>
<td>4.6.1</td>
<td>X-ray Diffraction</td>
<td>85</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Transmission Electron Microscopy</td>
<td>86</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Tensile Properties</td>
<td>89</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Thermogravimetric Analysis</td>
<td>91</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Oxygen Transmission Measurement</td>
<td>93</td>
</tr>
<tr>
<td>4.6.6</td>
<td>UV-Vis Absorption</td>
<td>94</td>
</tr>
<tr>
<td>4.6.7</td>
<td>Antibacterial Activity</td>
<td>96</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 99

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Conclusions</td>
<td>99</td>
</tr>
<tr>
<td>5.2</td>
<td>Recommendations for Further Study</td>
<td>101</td>
</tr>
</tbody>
</table>

REFERENCES 102

BIODATA OF STUDENT 132

LIST OF PUBLICATIONS 133
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Thermal data of CNCs and original cellulose</td>
<td>39</td>
</tr>
<tr>
<td>4-2</td>
<td>UV-absorbance data of CNCs/ZnO nanocomposites</td>
<td>47</td>
</tr>
<tr>
<td>4-3</td>
<td>Thermal data of CNCs and CNCs/ZnO nanocomposites</td>
<td>49</td>
</tr>
<tr>
<td>4-4</td>
<td>Inhibition zone data of CNCs/ZnO, CNCs and ZnO free-CNCs</td>
<td>50</td>
</tr>
<tr>
<td>4-5</td>
<td>UV-vis Absorbance data of C/Z-A samples</td>
<td>59</td>
</tr>
<tr>
<td>4-6</td>
<td>Thermal data of and CNCs and CNCs/ZnO-Ag nanocomposites</td>
<td>61</td>
</tr>
<tr>
<td>4-7</td>
<td>Inhibition zone data of CNCs/ZnO-Ag-NPs and ZnO-Ag</td>
<td>62</td>
</tr>
<tr>
<td>4-8</td>
<td>Results from tensile test of PVA/CTS and its CNCs BNCs</td>
<td>68</td>
</tr>
<tr>
<td>4-9</td>
<td>Thermal data of PVA/CTS blend and its CNCs BNCs</td>
<td>70</td>
</tr>
<tr>
<td>4-10</td>
<td>OT values of PVA/CTS blend and its CNCs BNCs films</td>
<td>71</td>
</tr>
<tr>
<td>4-11</td>
<td>Results from tensile test of PVA/CTS and its CNCs/ZnO BNCs</td>
<td>78</td>
</tr>
<tr>
<td>4-12</td>
<td>Thermal data of PVA/CTS blend and its CNCs/ZnO BNCs</td>
<td>80</td>
</tr>
<tr>
<td>4-13</td>
<td>OT data of PVA/CTS blend and its CNCs/ZnO BNCs</td>
<td>81</td>
</tr>
<tr>
<td>4-14</td>
<td>UV absorbance and transmittance values of PVA/CTS blend and its CNCs/ZnO BNCs</td>
<td>83</td>
</tr>
<tr>
<td>4-15</td>
<td>Inhibition zone data of PVA/CTS blend and its CNCs/ZnO BNCs</td>
<td>84</td>
</tr>
<tr>
<td>4-16</td>
<td>Results from tensile test of PVA/CTS and PVA/CTS/CNCs/ZnO-Ag BNCs</td>
<td>91</td>
</tr>
<tr>
<td>4-17</td>
<td>Thermal data of PVA/CTS blend and its CNCs/ZnO-Ag BNCs</td>
<td>93</td>
</tr>
<tr>
<td>4-18</td>
<td>OT data of PVA/CTS blend and its CNCs/ZnO-Ag BNCs</td>
<td>94</td>
</tr>
<tr>
<td>4-19</td>
<td>UV absorbance and transmittance values of PVA/CTS blend and its CNCs/ZnO-Ag BNCs</td>
<td>96</td>
</tr>
<tr>
<td>4-20</td>
<td>Inhibition zone data of PVA/CTS blend and its CNCs/ZnO-Ag BNCs</td>
<td>97</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1.</td>
<td>6</td>
</tr>
<tr>
<td>Synthetic Scheme of Chitosan from Chitin</td>
<td></td>
</tr>
<tr>
<td>2-2.</td>
<td>8</td>
</tr>
<tr>
<td>The Basic Chemical Structure of Cellulose</td>
<td></td>
</tr>
<tr>
<td>2-3.</td>
<td>8</td>
</tr>
<tr>
<td>Crystalline and Amorphous Regions in Cellulose Fibers</td>
<td></td>
</tr>
<tr>
<td>2-4.</td>
<td>11</td>
</tr>
<tr>
<td>The Extraction of CNCs Using Sulfuric Acid</td>
<td></td>
</tr>
<tr>
<td>2-5.</td>
<td>19</td>
</tr>
<tr>
<td>Top-down and Bottom-up Strategies</td>
<td></td>
</tr>
<tr>
<td>2-6.</td>
<td>21</td>
</tr>
<tr>
<td>Packing Diagram of ZnO</td>
<td></td>
</tr>
<tr>
<td>2-7.</td>
<td>24</td>
</tr>
<tr>
<td>Illustration of in Situ Preparation Process of PNCs</td>
<td></td>
</tr>
<tr>
<td>4-1.</td>
<td>33</td>
</tr>
<tr>
<td>Acid Hydrolysis Mechanism (a) and Esterification of CNCs (b)</td>
<td></td>
</tr>
<tr>
<td>4-2.</td>
<td>35</td>
</tr>
<tr>
<td>FTIR Spectra of Original Cellulose (a) and CNCs (b)</td>
<td></td>
</tr>
<tr>
<td>4-3.</td>
<td>35</td>
</tr>
<tr>
<td>EDS Spectra of Original Cellulose (a) and CNCs (b)</td>
<td></td>
</tr>
<tr>
<td>4-4.</td>
<td>36</td>
</tr>
<tr>
<td>TEM Images of CNCs</td>
<td></td>
</tr>
<tr>
<td>4-5.</td>
<td>37</td>
</tr>
<tr>
<td>X-ray Spectra of Original Cellulose (a) and CNCs (b)</td>
<td></td>
</tr>
<tr>
<td>4-6.</td>
<td>38</td>
</tr>
<tr>
<td>FESEM Image of CNC</td>
<td></td>
</tr>
<tr>
<td>4-7.</td>
<td>39</td>
</tr>
<tr>
<td>TGA (a) and DTG (b) Thermograms of Original Cellulose (1) and CNCs (2)</td>
<td></td>
</tr>
<tr>
<td>4-8.</td>
<td>40</td>
</tr>
<tr>
<td>Inhibition Zones of CNCs against Gram-positive (a) and Gram-negative (b) Bacteria</td>
<td></td>
</tr>
<tr>
<td>4-9.</td>
<td>42</td>
</tr>
<tr>
<td>FTIR Spectra of CNCs and the CNCs/ZnO Nanocomposites</td>
<td></td>
</tr>
<tr>
<td>4-10.</td>
<td>43</td>
</tr>
<tr>
<td>TEM Images of CNCs/ZnO Nanocomposites (a-d)</td>
<td></td>
</tr>
<tr>
<td>4-11.</td>
<td>44</td>
</tr>
<tr>
<td>XRD Spectra of CNCs and CNCs/ZnO Nanocomposites</td>
<td></td>
</tr>
<tr>
<td>4-12.</td>
<td>45</td>
</tr>
<tr>
<td>FESEM Images of CNCs/ZnO Nanocomposites (a-d)</td>
<td></td>
</tr>
<tr>
<td>4-13.</td>
<td>46</td>
</tr>
<tr>
<td>UV-Absorbance of CNCs and CNCs/ZnO Nanocomposites</td>
<td></td>
</tr>
<tr>
<td>4-14.</td>
<td>47</td>
</tr>
<tr>
<td>TGA Thermograms of CNCs and CNCs/ZnO Nanocomposites</td>
<td></td>
</tr>
<tr>
<td>4-15.</td>
<td>48</td>
</tr>
<tr>
<td>DTG Thermograms of CNCs and CNCs/ZnO Nanocomposites</td>
<td></td>
</tr>
<tr>
<td>4-16.</td>
<td>50</td>
</tr>
<tr>
<td>Inhibition Zone of CNCs/ZnO samples and ZnO against Gram-positive (a) and Gram-negative (b) Bacteria</td>
<td></td>
</tr>
<tr>
<td>4-17.</td>
<td>52</td>
</tr>
<tr>
<td>FTIR Spectra of CNCs and CNCs/ZnO-Ag Nanocomposites</td>
<td></td>
</tr>
<tr>
<td>4-18.</td>
<td>55</td>
</tr>
<tr>
<td>TEM images of C/Z-A1 (a-a'), C/Z-A2 (b-b'), C/Z-A3(c-c'), C/Z-A4(d-d') and C/Z-A5(e-e')</td>
<td></td>
</tr>
</tbody>
</table>

xvii
4-19. EDS Spectra of C/Z-A₃ Nanocomposites at Circles Marked (a) A, (b) B, (c) C from Figure 4.20 (c′)
4-20. XRD Patterns of CNCS and CNCS/ZnO-Ag Nanocomposites
4-21. FESEM Images of CNCS/ZnO-Ag Nanocomposites (a-e)
4-22. UV-vis Absorbance Spectra of CNCS and C/Z-A Nanocomposites
4-23. TGA Thermograms of CNCS and CNCS/ZnO-Ag Nanocomposites
4-24. DTG Thermograms of CNCS/ZnO-Ag Nanocomposites and CNCS
4-25. Inhibition Zones of C/Z-A Samples and ZnO-Ag against Gram-positive (a) and Gram-negative (b) Bacteria
4-26. XRD Pattern of CNCS, PVA/CTS Blend and Its CNCs BNCs
4-27. High Magnification TEM Images of PVA/CTS/CNCS BNCs with 0.5 (a), 1.0 (b), 3.0 (c), and 5.0 (d) wt% CNCs Contents
4-28. Low Magnification TEM Image of PVA/CTS/CNCS BNCs with 0.5 wt% CNCs Content
4-29. Tensile Strength and Modulus of PVA/CTS with Different Contents of CNCS
4-30. Elongation at Break of PVA/CTS with Different Contents of CNCS
4-31. TGA Thermograms of PVA/CTS (a) and 0.50(b), 1.0(c), 3.0(d) and 5.0wt% (e) CNCS BNCs
4-32. DTG Thermograms of PVA/CTS (a) and 0.50(b), 1.0(c), 3.0(d) and 5.0wt% (e) CNCS BNCs
4-33. OT plot of PVA/CTS and Its CNCs BNCs Films
4-34. XRD Pattern of CNCS/ZnO, PVA/CTS Blend and Its CNCS/ZnO BNCs
4-35. High Magnification TEM Images of PVA/CTS/CNCS/ZnO BNCs with 1.0(a), 3.0(b), 5.0(c) and 7.0(d) wt% CNCS/ZnO-NPs Contents
4-36. Low Magnification TEM Image of PVA/CTS/CNCS/ZnO BNCs with 7.0wt% CNCS/ZnO-NPs Content
4-37. Tensile Strength and Modulus of PVA/CTS with Different Contents of CNCS/ZnO-NPs
4-38. Elongation at Break of PVA/CTS with Different Contents of CNCS/ZnO-NPs
4-39. TGA Thermograms of the PVA/CTS blend and Its CNCS/ZnO BNCs
4-40. DTG Thermograms of the PVA/CTS blend and Its CNCS/ZnO BNCs
4-41. OT Plot of PVA/CTS Blend and Its CNCS/ZnO BNCs
4-42. UV Absorbance Spectra of PVA/CTS(a), CNCS/ZnO(b) and 1.0(c), 3.0(d), 82 5.0(e), and 7.0(f) wt% CNCS/ZnO BNCs
4-43. Inhibition Zones of PVA/CTS Blend and Its CNCs/ZnO BNCs against Gram-positive (a) and Gram-negative (b) Bacteria

4-44. XRD Pattern of CNCs/ZnO-Ag, PVA/CTS Blend and Its CNCs/ZnO-Ag BNCs

4-45. High Magnification TEM Images of PVA/CTS/CNCs/ZnO-Ag-NPs BNCs with 1.0(a), 3.0(b), 5.0(c) and 7.0(d) wt% CNCs/ZnO-Ag-NPs Contents

4-46. Low Magnification TEM Image of PVA/CTS/CNCs/ZnO-Ag BNCs with 7.0wt% CNCs/ZnO-Ag-NPs Content

4-47. Tensile Strength and Modulus of PVA/CTS with Different Contents of CNCs/ZnO-Ag

4-48. Elongation at Break of PVA/CTS with Different Contents of CNCs/ZnO-Ag

4-49. TGA Thermograms of the PVA/CTS blend and Its CNCs/ZnO-Ag BNCs

4-50. DTG Thermograms of the PVA/CTS blend and Its CNCs/ZnO-Ag BNCs

4-51. OT Plot of the PVA/CTS Blend and Its CNCs/ZnO-Ag BNCs

4-52. UV Absorbance Spectra of the PVA/CTS (a), CNCs/ZnO-Ag NPs(b) and 1.0(c), 3.0(d), 5.0(e) and 7.0(f) wt% CNCs/ZnO-Ag BNCs

4-53. Inhibition Zone of CNCs/ZnO-Ag BNCs against Gram-positive (a) and Gram-negative (b) Bacteria
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCNC</td>
<td>Bacterial cellulose nanocrystal</td>
</tr>
<tr>
<td>BNCs</td>
<td>Bio-nanocomposites</td>
</tr>
<tr>
<td>CAB</td>
<td>Cellulose acetate butyrate</td>
</tr>
<tr>
<td>CCNs</td>
<td>Carboxylate cellulose nanocrystals</td>
</tr>
<tr>
<td>CNCs</td>
<td>Cellulose nanocrystals</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethyl cellulose</td>
</tr>
<tr>
<td>Cs</td>
<td>Chitosan</td>
</tr>
<tr>
<td>C/Z</td>
<td>Cellulose nanocrystals/zinc oxide</td>
</tr>
<tr>
<td>C/Z-A</td>
<td>Cellulose nanocrystals/zinc oxide-silver</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>e–h</td>
<td>Electron-hole</td>
</tr>
<tr>
<td>fcc</td>
<td>Face-center-cubic</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscope</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>GPS</td>
<td>Glycerol plasticized-pea starch</td>
</tr>
<tr>
<td>HMDSO</td>
<td>Hexamethyl disiloxane</td>
</tr>
<tr>
<td>INPs</td>
<td>Inorganic nanoparticles</td>
</tr>
<tr>
<td>LDH</td>
<td>Layered double hydroxide</td>
</tr>
<tr>
<td>MFC</td>
<td>Microfibrillated cellulose</td>
</tr>
<tr>
<td>MMT</td>
<td>Montmorillonite</td>
</tr>
<tr>
<td>NCF</td>
<td>Nano-Cellulose fibers</td>
</tr>
<tr>
<td>OT</td>
<td>Oxygen transmission</td>
</tr>
<tr>
<td>PA6</td>
<td>Polyamide6</td>
</tr>
<tr>
<td>PANI</td>
<td>Polyaniline</td>
</tr>
<tr>
<td>PBNCs</td>
<td>Polymer Bio-nanocomposites</td>
</tr>
<tr>
<td>PCL</td>
<td>Poly(3-caprolactone)</td>
</tr>
<tr>
<td>PEO</td>
<td>Polyethylene oxide</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene terephthalate</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly(ethylene glycol)</td>
</tr>
<tr>
<td>PHB</td>
<td>Poly(hydroxybutyrate)</td>
</tr>
<tr>
<td>PGA</td>
<td>Poly(glycolic acid)</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid)</td>
</tr>
<tr>
<td>PLLA</td>
<td>Poly(L-lactide)</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly(methyl methacrylate)</td>
</tr>
<tr>
<td>PNC</td>
<td>Polymer Nanocomposites</td>
</tr>
<tr>
<td>POE</td>
<td>Polyoxyethylene</td>
</tr>
<tr>
<td>Poly(S-co-BuA)</td>
<td>Poly butyl acrylate co-styrene</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>PUA</td>
<td>Polyurethane acrylate</td>
</tr>
<tr>
<td>PVA</td>
<td>Poly(vinyl alcohol)</td>
</tr>
<tr>
<td>PVAc</td>
<td>Poly(vinyl acetate)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface plasmon resonance</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting point temperature</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Maximum degradation temperature</td>
</tr>
<tr>
<td>T_{onset}</td>
<td>Onset temperature</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>TMC</td>
<td>Trimesoylchloride</td>
</tr>
<tr>
<td>TPS</td>
<td>Thermoplastic starch</td>
</tr>
<tr>
<td>UHMWPE</td>
<td>Ultra-high molecular weight polyethylene</td>
</tr>
<tr>
<td>UVA</td>
<td>Ultraviolet-A</td>
</tr>
<tr>
<td>WPU</td>
<td>Waterborne polyurethane</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Background of Research

In recent times, using petroleum based plastics has been under attack due to absence of recycling facilities or infrastructure, non-recyclability, non-renewability, non-biodegradability or using toxic additives (Tang and Alavi, 2011). As in 2005, in the USA, 28.9 million tons of plastics packaging was made and only about 5.7% of plastic waste was recycled, 94.3% was dumped in landfill and discarded or combusted into the environment (Marsh and Bugusu, 2007). Recent trends show steady growing interest in the use of biodegradable plastics with increasing accessibility of appropriate materials and owing to social and governmental pressure (Rasato, 2009).

Bio-based polymers often show greater biodegradability and biocompatibility, profiting various applications ranging from packaging to medical devices. However, some factors such as poor mechanical properties, relatively sensitivity to water (Debeaufort et al., 1998), high gas permeability behaviors (Koh et al., 2008) and low heat distortion temperature (Ray and Bousmina, 2005) limit their industrial applications (Zhou and Xanthos, 2009). Therefore, in order to improve and/or control properties of these polymer several methods, such as copolymerization, chain extending or blending these polymers together have been applied by researchers (Kylmä et al., 2001). The use of nano-sized reinforcements to these polymers may open new possibilities for improving not only the chemical and physical properties but also the cost-price-efficiency (Sorrentino et al., 2007).

Polymer nanocomposites are new materials composed of polymers and nano scale inorganic/organic fillers (Gorrasi et al., 2008; Peponi et al., 2009). Nanocomposites can be classified based on the dimensionality of the nano-sized fillers, one can distinguish isodimensional nanoparticles when the all three dimensions are in the nanometer scale, nanotubes or whiskers when two dimensions are on the nanometer range and the third is micrometre, and, lastly, layered minerals, existing in the form of plates of one to a few nanometers thick and hundreds to thousands nanometers in two others dimensions (Alexandre, 2000).
To obtain nanocomposites with acceptable properties, the homogeneous distribution of fillers in the polymer matrices is necessary. The size of fillers and the fillers-matrices interactions are the main parameters affecting the nanocomposite properties (Bianco et al., 2009; Armentano et al., 2009). Advantages of nanocomposites are claimed to be large reinforcement at very small nano-sized fillers content, but functional properties like increased thermal, mechanical, optical and conductivity are often mentioned as well. These materials are useful in various fields such as medical applications, automotive industry, higher performance electronic, magnetic and optical devices manufactorys, packaging industry, etc. (Chae et al., 2005; Raman et al., 2011).

Cellulose nanocrystal (CNC) is one of the emerging renewable materials that has been extensively investigated over the past two decades as a potential nano-sized reinforcement in different polymers (Kvien et al., 2005), particularly within the bio-polymer matrices. Cellulose nanocrystals (CNCs) are characteristically rod-formed monocryals, 2 to 20 nm in diameter and from tens to hundreds of nanometers in length, and extracted after acid hydrolysis of cellulose (Habibi et al., 2010). Some advantages of cellulose nanocrystal are their high aspect ratio, low density, high elastic modulus and strength (Xu et al., 2013; Yu et al., 2013).

Mono-functional nano-sized fillers like CNCs may only enhance a small number of properties of host polymers. To prepare polymer materials with more improved properties, mixtures of various nano-sized fillers are used into polymer matrices.

Inorganic nanoparticles (INPs) are significant kinds of nano-sized fillers which have been successfully utilized in the polymer materials. Inorganic nanoparticles give new properties to the host polymer materials. Nevertheless, the forming of aggregates will significantly decrease inorganic nanoparticles’ applicability. How to synthesize inorganic nanoparticles without aggregation during their incorporation into the polymer matrices is a big challenge. The preparation of inorganic nanoparticles is mostly performed through reducing metal salts in the presence of surfactants or polymeric ligands to passivate the cluster surface. Most surfactants and polymeric ligands are prepared from nonrenewable petrochemicals, and finding a renewable biodegradable alternative is essentially important owing to exhausting fossil fuel resources. Cellulose-based materials have been widely used as templates, stabilizers, and carriers in synthesizing metallic nanomaterials (Padalkar et al., 2010; Shinsuke et al., 2009). Considering the functional properties of CNCs and inorganic nanoparticles, the upcoming use of CNCs/INPs nanocomposites as multifunctional nano-sized fillers in polymer matrices is possible.
Among the various types of inorganic nanoparticles, nano-sized zinc oxide (ZnO-NPs) has attained an increased interest and is extensively used in a diversity of applications including functional devices, catalysts, pigments, optical materials, cosmetics, UV-absorbers, and additives in many industrial products (Kim et al., 2012). Recently, the antimicrobial activity of ZnO nanoparticles with sizes less than 100 nm has been reported (Wang et al., 2012). The use of ZnO-NPs has been considered as a viable solution to stop infectious diseases due to the good antimicrobial properties of these nanoparticles (Stoimenov et al., 2002). Silver has been known to be a bactericide since ancient times. Recently, nanosized silver nanoparticles (Ag-NPs) have been reported to exhibit antimicrobial properties. The outstanding antimicrobial properties of Ag-NPs have led to the development of an extensive diversity of nano-sized silver products, including nano-sized silver-coated wound dressings, contraceptive devices, surgical instruments, and implants (You et al., 2012). For economical and efficient use of ZnO, ZnO nanoparticle composites have been developed and tested for antimicrobial purposes. Additionally, doped silver (Ag) reduced the ionization energy of acceptors in ZnO and thus enhanced the emission (Chen et al., 2011). Therefore, Ag ions can enhance the antimicrobial activity of ZnO. Polymer–inorganic nanoparticle materials with the nanoparticles such as ZnO and Ag-NPs can have the role of antibacterial agents.

1.2 Problem Statement

Chitosan is an abundant natural bio-polymer with excellent antimicrobial activity, biocompatibility and non-toxicity. Because of its interesting biological properties, chitosan has long been known and used in pharmaceutical and biomedical applications (Muzzarelli, 2009). Due to its unique bioactivity, the formulation of chitosan with drugs has dual therapeutic outcomes, which make chitosan a new candidate for drug carriers and antimicrobial activity (Muzzarelli et al., 1990). Some synthetic polymers from non-renewable sources are also biodegradable, such as poly(vinyl alcohol). PVA is a water-soluble synthetic polymer, non-toxic with good mechanical properties, film forming, emulsifying, and adhesive properties (No et al., 2007). The blend of PVA/CTS has relatively good physical and chemical properties. Therefore PVA/CTS blend becomes a good candidate to replace petroleum based polymer blends. The PVA/CTS blend has potential applications in the fields of packaging, membrane filtration, biomedical applications, etc. Therefore, scientific studies are needed to improve properties of the polymer blends to produce new products to enhance their performances.

The purpose of this study is to improve the mechanical, thermal, barrier towards oxygen gas, antibacterial, and UV shielding properties of poly(vinyl alcohol)/chitosan (PVA/CTS) blends applications by either the incorporation of mono-functional...
reinforcement viz. CNCs or two types of multifunctional fillers viz. CNCs/ZnO-NPs and CNCs/ZnO-Ag-NPs disperse it.

ZnO nanoparticles, alone or coated by other metallic nanoparticles such as silver can be used as filler into polymeric materials with the aim to give UV-shielding, barrier, antibacterial, enhanced mechanical and thermal properties to the obtained nanocomposites, thus making them appropriate for a diversity of target applications such as textile, biomedical and food packaging materials. Although, the formation of particles aggregates significantly decrease their applicability. For preventing from the formation of agglomerated ZnO and ZnO-Ag particles and improve dispersion during their integration into polymer matrix cellulose nanocrystals was used as a stabilizer. Cellulose nanocrystal has plentiful hydroxyl groups on its surface which can absorb metallic ions in the synthesis process. This effect control the size by inhibiting the agglomeration of metallic particles formed in the synthesis procedure. On the other hand, the hydrophilic surface of CNCs allows proper blending with water based host polymer matrices and can provide a homogenous dispersion of inorganic particles into water based polymer. Additionally, cellulose nanocrystal is a potential nano-sized reinforcement with excellent mechanical properties. Considering to these advantages, is expected CNCs, CNCs/ZnO and CNC/ZnO-Ag fillers provide good reinforcing effects into PVA/Cs blends polymer matrices.

To date, there have been no studies based on the preparation of CNCs/ZnO and CNCs/ZnO-Ag nanocomposites, and the use of CNCs, CNCs/ZnO-NPs and CNCs/ZnO-Ag-NPs as nano-sized fillers in the PVA/CTS polymer blends matrices.

1.3 **Objectives**

The main objectives of this research are:

1- To extract CNCs, and prepare CNCs/ZnO and CNCs/ZnO-Ag nano-sized fillers
2- To characterize CNCs, CNCs/ZnO and CNCs/ZnO-Ag nano-sized fillers
3- To fabricate PVA/CTS/CNCs, PVA/CTS/CNCs/ZnO and PVA/CTS/CNCs/ZnO-Ag bio-nanocomposites
4- To characterize and determine properties of PVA/CTS/CNCs, PVA/CTS/CNCs/ZnO and PVA/CTS/CNCs/ZnO-Ag bio-nanocomposites
REFERENCES

Cakır, B.A., Budama, L., Topel, Ö. and Hoda, N. Synthesis of ZnO nanoparticles using PS-b-PAA reverse micelle cores for protective, self-cleaning and antibacterial

Dinand, E., Vignon, M., Chanzy, H. and Heux, L. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. *Cellulose* 2002; 9: 7-18.

Ng, L.Y., Mohammad, A.W., Leo, Ch.P. and Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013; 308: 15–33.

Pei, A., Zhou, Q. and Berglund, L.A. Functionalized cellulose nanocrystals as bio based nucleation agents in poly(L-lactide) (PLLA)–Crystallization and mechanical property effects. *Composites Science and Technology* 2010; 70: 815–821.

Sanchez-Garcia, M.D., Lugarno, J. M. and Hoa, S.V. Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers *Composites Science and Technology* 2010; 70: 1095.

Tong, Y., Li, Y., Xie, F. and Ding, M. Preparation and characteristics of polyimide-

Tripathi, S., Mehrotra, G.K. and Dutta, P.K. Physicochemical and bioactivity of cross-
linked chitosane PVA film for food packaging applications. *International Journal of

Turbak, A.F., Snyder, F.W. and Sandberg, K.R. Microfibrillated cellulose, a new
cellulose product: Properties, uses, and commercial potential. *Journal of Applied

Umare, S.S., Chandure, A.S. and Pandey, R.A. Synthesis, characterization and
biodegradable studies of 1, 3-propanediol based polyesters. *Polymer Degradation

Ureña, B.E.E. 2011. *Cellulose Nanocrystals Properties and Applications in Renewable

Vanden B.O., Capadona, J.R. and Weder, C. Preparation of homogeneous dispersions
of tunicate cellulose whiskers in organic solvents. *Biomacromolecules* 2007; 8:
1353-1357.

Vankrevelen, D.W. Some basic aspects of flame resistance of polymeric materials.
Polymer 1975; 16(8): 615–620.

Vatutsina, O.M., Soldatov, V.S., Sokolova, V.I., Johann, J., Bissen, M. and
Weissenbacher, A. A new hybrid (polymer/inorganic) fibrous sorbent for arsenic
removal from drinking water. *Reactive and Functional Polymers* 2007; 67:
184–201.

Vicentini, S.D., Jr, A.S., Laranjeira and M.C.M. Chitosan/poly (vinyl alcohol) films
containing ZnO nanoparticles and plasticizers. *Materials Science and Engineering
C* 2010; 30: 503–508.

Viet, D., Beck-Candanado, S. and Gray, D.G. Dispersion of cellulose nanocrystals in

Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, Sh. and Zhang, Q. Polymer-supported nanocomposites for environmental application: A review. *Chemical Engineering Journal* 2011; 170: 381–394.

[link to Google search for deacetylation of chitin]

[link to Google search for Zno nanoparticles]