UNIVERSITI PUTRA MALAYSIA

EVALUATION OF COMPOST PRODUCED COMMERCIALY FROM OIL PALM BIOMASS

NORHASMILLAH ABU HASSAN

FS 2014 19
EVALUATION OF COMPOST PRODUCED COMMERCIALY FROM OIL PALM BIOMASS

By

NORHASMILLAH ABU HASSAN

Thesis Submitted to the School of Graduates Studies Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

July 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EVALUATION OF COMPOST PRODUCED COMMERCIALLALLY FROM OIL PALM BIOMASS

By

NORHASMILLAH ABU HASSAN

July 2014

Chair: Nor Azowa Ibrahim, PhD
Faculty: Science

Processing of fresh fruit bunches (FFB) to extract its oil at the same time produced biomass namely mesocarp fibre, shell, empty fruit bunches (EFB) and palm oil mill effluent (POME). EFB and POME were the most abundance among the oil palm biomass. Composting was proposed as one of the potential alternatives to the management of EFB and POME. However, production of compost from oil palm biomass may adversely affect the environmental quality. To date, there is no detail study conducted to evaluate the production of compost from oil palm biomass. The main objective of this study is to evaluate the compost produced commercially from oil palm biomass namely EFB and POME. Further objectives are to identify environmental impacts related to composting of oil palm biomass and to determine chemical characteristics of compost produced from oil palm biomass. In this study, life cycle assessment (LCA) was the chosen tool to identify the potential environmental impacts related to composting of oil palm biomass while the chemical characteristics of compost produced from oil palm biomass were determined using Fourier transform infrared (FT-IR) spectroscopy and thermogravimetry analysis (TGA). Life cycle inventory (LCI) was obtained from three commercial oil palm biomass composting projects in Malaysia. The LCI was calculated based on the functional unit of one tonne of compost produced. Composting 2.0 - 2.5 t of EFB and 5.0 – 7.5 t of POME required diesel from 218.7 – 270.2 MJ and electricity from 0 – 6.8 MJ. Life cycle impact assessment was carried out using the SimaPro software version 7.2 and the Eco-indicator 99 methodology. The results showed that the environmental impact from the production of compost is related to the use of diesel which contributes to the impact categories of fossil fuel, respiratory inorganics, acidification or eutrophication and climate change. It is estimated that the composting emitted from 0.01 - 0.02 tCO2eq / tcompost mainly from diesel used to operate machineries. Based on the FT-IR spectra and TGA thermogram, the composting of oil palm biomass is affected by factors including pretreatment of raw material and the use of microbes. The most efficient process consisted of the use of shredded EFB for composting. FT-IR spectra and TGA showed that composting resulted in the loss of aliphatic structures by enrichment of amide and aromatic structures and subsequently
increasing the stability of the compost. The production of compost of the three plants showed very minimal impact to environment and chemical characteristics as a potential soil conditioner.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

PENILAIAN TERHADAP KOMPOS YANG DIHASILKAN SECARA KOMERSIL DARI BIOJISIM SAWIT

Oleh

NORHASMILLAH ABU HASSAN

Julai 2014

Pengerusi: Nor Azowa Ibrahim, PhD
Fakulti: Sains

Pemprosesan buah tandan segar (FFB) untuk mengestrak minyaknya dalam masa yang sama menghasilkan biojisim iaitu sabut mesokarpa, tempurung sawit, buah tandan kosong (EFB) dan efluen kilang sawit (POME). EFB dan POME adalah yang paling banyak antara biojisim. Pengkomposan telah dicadangkan sebagai salah satu alternatif dalam pengurusan EFB dan POME. Walau bagaimanapun, penghasilan kompos dari biojisim sawit mungkin menjejaskan kualiti alam sekitar. Setakat ini, tiada kajian khusus dijalankan untuk menilai penghasilan kompos dari biojisim sawit. Objektif utama kajian ini adalah untuk menilai kompos yang dihasilkan secara komersil dari biojisim sawit iaitu EFB dan POME. Objektif selanjutnya adalah untuk mengenalpasti kesan alam sekitar berkaitan pengkomposan biojisim sawit dan menentukan sifat kimia kompos yang dihasilkan dari biojisim sawit. Dalam kajian ini, penilaian kitaran hidup (LCA) merupakan kaedah yang dipilih untuk mengenalpasti kesan alam sekitar berkaitan pengkomposan biojisim sawit manakala sifat kimia kompos yang dihasilkan dari biojisim sawit ditentukan menggunakan spektroskopi infra merah penjelmaan Fourier (FT-IR) dan analisis termogravimetri (TGA). Inventori kitaran hidup diperoleh dari tiga projek komersil kompos biojisim sawit di Malaysia. Inventori tersebut dikira berdasarkan unit berfungsi satu tan kompos yang dihasilkan. Kompos 2.0 – 2.5 t EFB dan 5.0 – 7.5 t POME memerlukan diesel dari 218.7 – 270.2 MJ dan elektrik dari 0 – 6.8 MJ. Penilaian kesan kitaran hidup telah dijalankan menggunakan perisian SimaPro versi 7.2 dan kaedah Ecoindicator 99. Keputusan menunjukkan kesan alam sekitar berkaitan penghasilan kompos adalah berkaitan penggunaan diesel yang menyumbang kepada kategori kesan bahan api fosil, respirasi tak organik, pengasidan atau eutrofikasi dan perubahan iklim. Dianggarkan bahawa kompos mengeluarkan dari 0.01 – 0.02 tCO₂eq/tkompos terutamanya dari diesel yang digunakan untuk mesin beroperasi. Berdasarkan spektrum FT-IR dan TGA, didapati bahawa penghasilan kompos dari biojisim sawit dipengaruhi oleh faktor termasuklah rawatan awal bahan mentah dan penggunaan mikrob. Proses yang paling efisien adalah penggunaan EFB yang telah disihat untuk penghasilan kompos. Spektrum FT-IR dan TGA menunjukkan kehilangan struktur alifatik melalui peningkatan terhadap struktur amida dan aromatik seterusnya.
meningkatkan kestabilan kompos. Penghasilan kompos di ketiga-tiga kilang menunjukkan kesan alam sekitar yang sangat minima dan sifat kimia yang berpotensi sebagai perapi tanah.
ACKNOWLEDGEMENTS

My highest and endless gratitude to Almighty God for His blessings all the way through the accomplishment of this study. I would like to express my sincere gratitude to Malaysian Palm Oil Board (MPOB) for the sponsorship under Graduate Students’ Assistantship Scheme (GSAS) throughout this study. My deepest appreciation and extended thanks to my project supervisor Dr. Nor Azowa Ibrahim, co-supervisors Dr. Azhari Samsu Baharuddin and Dr. Puah Chiew Wei for their supervision, brilliant ideas and technical guidance throughout the completion of this work. Special thanks to all the staffs at Faculty of Science and Faculty of Engineering, Universiti Putra Malaysia and Engineering and Processing Research Division, Malaysian Palm Oil Board.

A heartfelt thank you to the staffs in Processing Laboratory, Puan Noor Umaina Mohamed Yunus from Sustainability and Climate Change Unit and my colleagues, Elcy and Aizuddin whose help, give suggestions, encouragement and companion in sustaining the morale and enthusiasm. This research project would not have been possible without the support of many people.

I would like to thank my beloved husband Muhammad Khairi Ismail whose always there stood by me through the good times and bad. Also to my family whose always encouraging me with their best wishes. My research completion would not have been possible without their love and support.
I certify that an Examination Committee has met on 11th July 2014 to conduct the final examination of Norhasmillah Abu Hassan on her thesis entitled “Evaluation of Compost Produced Commercially from Oil Palm Biomass” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A)106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science (Environmental Chemistry).

Members of the Examination Committee were as follows:

Mohamed Ibrahim Mohamed Tahir, PhD
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Tan Wee Tee, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Latifah Abd Manaf, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Internal Examiner)

Noor Zalina Mahmood, PhD
Associate Professor
Faculty of Science
Universiti Malaya
(External Examiner)

NORITAH OMAR, PhD
Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nor Azowa Ibrahim, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Azhari Samsu Baharuddin, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Puah Chiew Wei, PhD
Senior Research Officer
Head of Sustainability and Climate Change Centre
Malaysian Palm Oil Board
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

NORHASMILLAH ABU HASSAN
GS28748
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________
Chairman of Supervisory Committee: NOR AZOWA IBRAHIM

Signature: ______________________
Member of Supervisory Committee: AZHARI SAMSU BAHARUDDIN

Signature: ______________________
Member of Supervisory Committee: PUAH CHIEW WEI
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ABSTRAK</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Overview of the Study 1
1.2 Problem Statement 2
1.3 Objectives of the Study 3
1.4 Scope of the Study 3
1.5 Significance of the Study 3

2 LITERATURE REVIEW

2.1 Production of Oil Palm Biomass 5
 2.1.1 Empty Fruit Bunches (EFB) 8
 2.1.2 Palm Oil Mill Effluent (POME) 8
 2.1.3 Managing the POME and EFB 9
2.2 Composting 12
 2.2.1 Technology and Production of Compost 12
 2.2.2 Advantages of Composting 15
2.3 Composting of Oil Palm Biomass 23
2.4 Life Cycle Assessment (LCA) 18
 2.4.1 Phases in the LCA 18
 2.4.2 Software used 19
 2.4.3 Foreground and Background Data 19
 2.4.4 Characterisation in LCA 20
 2.4.5 Conducting the LCA of Oil Palm Biomass Composting 21

3 METHODOLOGY

3.1 Flow diagram of Research Work 22
3.2 Goal and Scope definition 22
3.3 System Boundary 23
 3.3.1 Functional Unit 25
3.3.2 System Balance

3.4 Life Cycle Inventory (LCI)

3.5 Characterisation of Compost

3.5.1 Sampling of Compost

3.5.2 Analyses of Compost

3.5.3 Fourier Transform Infrared (FT-IR) spectroscopy

3.5.4 Thermogravimetry Analysis (TGA)

4 RESULT AND DISCUSSION

4.1 Life Cycle Inventory

4.1.1 Composting versus Open Lagoon and Mulching

4.2 Assumptions

4.2.1 Transportation

4.2.2 Utilities

4.2.3 Process emission

4.2.4 Microbes

4.3 Life Cycle Impact Assessment (LCIA)

4.3.1 Characterisation

4.3.2 Weighting

4.4 Characterisation of Compost

4.4.1 Fourier Transform Infrared (FT-IR) Analysis

4.4.2 Thermogravimetry Analysis (TGA)

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations for future work

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of life cycle assessment (LCA) conducted in oil palm industry in Malaysia</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Current application of biomass</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Parameter limits for watercourse discharge for palm oil mills according to the second schedule in the Environmental Quality Act (Environmental Quality (Prescribed Premises) (Crude Palm Oil) Regulations, 1977)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Properties of empty fruit bunch (EFB) and palm oil mill effluent (POME)</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Brief descriptions of a few examples of open and closed composting</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Estimated figures on Asia fertiliser forecast from 2012-2016 (thousand tonnes)</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Estimated figures on world demand for fertiliser nutrients from 2012-2016 (thousand tonnes)</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of composting condition at P1, P2 and P3</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of samples collected from compost plants</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Life cycle inventory for production of one tonne compost</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparing open lagoon system and mulching with composting (aYacob et al., (2006), bSuhaimi and Ong, (2001), cown data and calculation)</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Properties of compost 0 and final day at P1, P2 and P3</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>Absorbance bands in Fourier transform-infrared (FT-IR) spectra relating to functional group from literature sources on composting studies</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Oil palm biomass (a) mesocarp fibre, (b) shell, (c) palm oil mill effluent, (d) empty fruit bunch</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Typical material balance for processing of fresh fruit bunches</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Estimated biomass production in Malaysia in 2012</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Raw palm oil mill effluent fraction</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>General composting process</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic overview of the methodology proposed by Goedkoop & Spriensma (as cited in Goedkoop and Oele, 2004)</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow diagram of Research Work</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>System boundary of the production of compost</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>System balance of the production of compost at P1</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>System balance of the production of compost at P2</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>System balance of the production of compost at P3</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Weighted life cycle impact assessment of gate to gate for one tonne compost produced from oil palm biomass at P1, P2 and P3</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Fourier transform-infrared spectra of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P1</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Fourier transform-infrared spectra of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P2</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Fourier transform-infrared spectra of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P3</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Thermogravimetry profile of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P1</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Thermogravimetry profile of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P2</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Thermogravimetry profile of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P3</td>
<td>45</td>
</tr>
<tr>
<td>4.8</td>
<td>Derivatives thermogravimetry profile of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P1</td>
<td>46</td>
</tr>
</tbody>
</table>

xiii
4.9 Derivatives thermogravimetry profile of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P2

4.10 Derivatives thermogravimetry profile of empty fruit bunches (EFB), palm oil mill effluent (POME) and compost (C) collected at P3
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Questionnaire</td>
<td>62</td>
</tr>
<tr>
<td>B1</td>
<td>Calculation for inventory data for the production of compost per functional unit</td>
<td>64</td>
</tr>
<tr>
<td>B2</td>
<td>Calculation for estimated emission from diesel consumption per tonne compost per annum</td>
<td>66</td>
</tr>
<tr>
<td>B3</td>
<td>Calculation for estimated land required by open lagoon system and mulching</td>
<td>67</td>
</tr>
<tr>
<td>C1</td>
<td>Paper Published</td>
<td>68</td>
</tr>
<tr>
<td>C2</td>
<td>Poster presented in International Palm Oil Congress 2011 (PIPOC 2011)</td>
<td>76</td>
</tr>
<tr>
<td>C3</td>
<td>Poster presented in Oils and Fats International Congress 2012 (OFIC 2012)</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

BOD Biochemical oxygen demand
C/N Carbon to Nitrogen
CDM Clean development mechanism
CER Certified emission reduction
CH₄ Methane
CO₂ Carbon dioxide
COD Chemical oxygen demand
CPO Crude palm oil
EFB Empty fruit bunches
FAO Food and Agriculture Organisation of The United Nations
FFB Fresh fruit bunches
FT-IR Fourier transform-infrared
GHG Greenhouse gas
IPCC Intergovernmental Panel on Climate Change
LCA Life cycle assessment
LCI Life cycle inventory
LCIA Life cycle impact assessment
MPOB Malaysian Palm Oil Board
NO₂ Nitrous oxide
POME Palm oil mill effluent
TGA Thermogravimetry analysis
UNFCCC United Nations Framework Convention on Climate Change
USEPA United States Environmental Protection Agency
CHAPTER 1
INTRODUCTION

1.1 Overview of the Study

Processing of fresh fruit bunches (FFB) to extract its oil at the same time produced biomass namely mesocarp fibre, shell, empty fruit bunches (EFB) and palm oil mill effluent (POME) (Figure 1.1). Mesocarp fibre are the fibre left after separating the nuts from presscake while shell are the outer layer of the nuts and obtained after the nut cracking process. POME is effluent water discharged from the milling process, which contains many soluble chemical materials (Mohammad et al., 2012). EFB on the other hand is the fibrous material left after the fruits are stripped for palm oil production (Liew et al., 2009; Shinoj et al., 2011).

![Figure 1.1. Oil palm biomass (a) mesocarp fibre, (b) shell, (c) palm oil mill effluent, (d) empty fruit bunch](image)

The Malaysian oil palm industry sought for solutions to manage the large amount of biomass generated. Utilisation of the oil palm biomass into energy, biocomposites, construction and building industries became current most favourable solution in managing the biomass towards a sustainable system. After the launched of clean development mechanism (CDM), more investors interested to invest on the projects as it provide incentives. However, the incentives were given after successful implementation of the projects and those projects required high investment cost for development which was unaffordable by some of the millers. It is reported that only 55 or 12.9% of the palm oil mills in Malaysia have implemented a system for the capture of biogas from POME and as of August 2012, only eight oil palm biomass energy projects and 12 oil palm biogas projects have obtained total certified
emissions reduction (CER) (The Star, 2012). Hence, composting was proposed as one of the potential alternatives to the management of oil palm biomass. Converting the biomass into compost offers a simple method and economical advantage (Baharuddin et al., 2009). Composting project also has the potential to be incorporated with CDM to further enhanced the economic returns through the carbon credits earned.

As the Malaysian oil palm industry is serious in implementing a sustainable management of oil palm biomass, there is a need to study the impact of the production of compost to the environment. In this case, the Life Cycle Assessment (LCA) is one of the appropriate tools to evaluate the performance of the system. There were various reports on life cycle study of the production and application of compost from domestic and municipal solid waste (Gilbert et al., 2011; Hermann et al., 2011; Jimenez and Garcia, 1989); comparative life cycle study on other industrial byproduct (Cabaraban et al., 2008; Contreras et al., 2009); and a comparative study on the utilisation of oil palm biomass into composting (Stichnothe and Schuchardt, 2010). The LCA study conducted for the oil palm system in Malaysia was summarised in Table 1.1. It considered the plantation, milling, refinery and different option for waste treatment system. However, a detail study on LCA emphasising on the commercial production of compost from oil palm biomass has yet to be conducted. Such studies are useful for millers and compost plant owners to identify opportunities to reduce their respective environmental impacts, for example through process optimisation or new technology innovation.

1.2 Problem Statement

In extracting crude palm oil (CPO), POME and EFB were the most abundance among the oil palm biomass produced. Actions have been taken by the Malaysian oil palm industry to effectively utilise the biomass. There were a few and composting is one of it. A list of advantages from composting has been discussed, for example composting as an economical and environmental friendly option in managing abundance of biomass. However, production of compost from oil palm biomass may adversely affect the environmental quality. These effects are potentially occurring at any stages of the life cycle of production of compost, starting from raw material extraction, manufacturing process, packaging, consumption until final disposal. To date, there is no detail study conducted to evaluate the production of compost from oil palm biomass. As public concern on environmental health has increased, it is important to identify the potential environmental effects as well as the evaluation on the compost characteristics associated with the production of compost from oil palm biomass.

1.3 Objectives

The main objective of this study is to evaluate the compost produced commercially from oil palm biomass namely POME and EFB. Further objectives of this study are:
i. to identify environmental impacts related to composting of oil palm biomass
ii. to determine chemical characteristics of compost produced from oil palm biomass

1.4 Scope of the Study

Scope of this study covers the evaluation of compost produced from oil palm biomass, using LCA as the tool encompassing receiving of raw material, processing and final compost ready for sale as well as the identification of chemical characteristics of compost. This study focuses on potential emissions associated with the production of compost which lead to environmental impact plus the determination of chemical characteristics of compost produced.

1.5 Significance of the Study

An LCA will help decision makers to identify and select the product or process that has the minimum impact to the environment. LCA data identifies the transformation of environmental impacts from one life cycle stage to another. In this study, LCA will be able to identify the potential environmental impacts associated with the production of compost from oil palm biomass. It will help the compost plants owner to control their process and production effectively. Hence, LCA is significant in improving process and minimization of the environmental risks.

Determination of compost characteristics identifies the elements content and confirms maturity of compost produced from oil palm biomass. It provides information on the optimum condition for compost plant owner to select the system that meets their end product requirement.
<table>
<thead>
<tr>
<th>Boundary</th>
<th>Functional unit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantation</td>
<td>Study considered from oil palm seedling to plantation. From transplanting of seedling to fresh fruit bunches (FFB) delivered to palm oil mill.</td>
<td>Single oil palm seedling Halimah et al., 2010</td>
</tr>
<tr>
<td></td>
<td>1 t of FFB produced</td>
<td>Zulkifli et al., 2010</td>
</tr>
<tr>
<td>Milling</td>
<td>Boundary started from FFB received until production of crude palm oil (CPO) in storage tanks. Study considered from plantation process, transportation of FFB into mill and milling. Kernel collected and transported to kernel crushing plant.</td>
<td>1 t of CPO produced (with weight allocation) Vijaya et al., 2010a</td>
</tr>
<tr>
<td></td>
<td>Production of 1 t CPO (output from 5 t of FFB)</td>
<td>Yusoff and Hansen, 2007</td>
</tr>
<tr>
<td></td>
<td>1 t of crude palm kernel oil (CPKO) produced at kernel crushing plant</td>
<td>Vijaya et al., 2010b</td>
</tr>
<tr>
<td>Refinery</td>
<td>Study begins with the transportation of CPO to the refinery gate and ends with the bulk of storage of refined palm oil (RPO), refined palm olein (RPOo) and refined palm stearin (RPOs).</td>
<td>1 t of RPO, RPOo and RPOs Tan et al., 2010</td>
</tr>
<tr>
<td>Palm biodiesel</td>
<td>The system boundary includes the production of biodiesel and use of palm biodiesel.</td>
<td>The production and use of 1 MJ palm biodiesel in diesel engine vehicles Puah et al., 2010</td>
</tr>
<tr>
<td>Byproducts</td>
<td>Evaluation of environmental impacts of empty fruit bunches (EFB) and palm oil mill effluent (POME) treatment by comparing four different treatment options.</td>
<td>1 t of FFB processed Stichnothe and Schuchardt, 2010</td>
</tr>
</tbody>
</table>
REFERENCES

