DESIGN, FABRICATION, AND PERFORMANCE EVALUATION OF A HOT AIR HEATING SYSTEM FOR PROCESSING OF MALAYSIAN COCKLES (Anadara Granosa L.)

IRAJ YAVARI

FK 2014 88
DESIGN, FABRICATION, AND PERFORMANCE EVALUATION OF A HOT AIR HEATING SYSTEM FOR PROCESSING OF MALAYSIAN COCKLES (Anadara Granosa L.)

IRAJ YAVARI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2014
DESIGN, FABRICATION, AND PERFORMANCE EVALUATION OF A HOT AIR HEATING SYSTEM FOR PROCESSING OF MALAYSIAN COCKLES
(Anadara Granosa L.)

BY
Iraj Yavari

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

July 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dedicated To

To all my teachers and, my family members, especially

my beloved wife, Leila and my dear son, Nima

and my ever-encouraging parents for their

love, and my brothers and sisters
Heat and the heating process are of the most widespread and the most important activities in the post-harvest operations for food products in the world. Such activities are usually expected to decrease the moisture content for crop preservation; the heating process is also used for modifying the mouthfeel of a product in order to raise the food’s market values. Likewise, recovery and storage of the energy, environmental protection alongside the climate effect are considered as notable issues.

Nowadays different types of heating system such as the hot air heating machines are being used for heating the food products. Mostly, fossil fuel has been used by machines for this purpose, making the heat energy in the direct combustion. The heat from burning fuels is supplied directly by the airflow through the blower housing and harmful gases directed to enter the food chamber and the environment. It must also kept in mind that in a direct in-line burner using natural gas, 3.5 lb. of water is add to the air for every cubic meter of natural gas consumed.

This action leaves undesirable and unintended effects on the product quality. Regarding these cases, such as non-constancy of the temperature in the compartment space of the products, lack of a precise temperature control, food contamination through contact with invisible gases from the burning fuel, more pollution and other environmental issues are among the disadvantages of these types of machines. Currently, the same actions are being used in Malaysia.

Therefore, a new hot air heating system was required for heating the food and it’s products having high capacity and satisfactory heating quality with no damage to the food quality and the environment.
Air distribution in the machine reservoir and the flow rate were calibrated to achieve good results and outcomes in the construction phase as well as in the procedural steps to create the machine. To conserve energy, a closed circuit system and series was added to the machine.

In this research work first, the parts of the machine were designed using CATIA software then new heating system based on a hot water recirculation technique and effective air velocity has been fabricated. An adjustable system was used to provide hot water with a high setting range of adjustment and high precision for different temperatures up to ninety degrees at the constant pressure.

In order to avoid energy losses and prevent pollution of the environment A Newly Developed and Extra-Enclosed System was designed, fabricated and add to the machine. For this purpose two extra devices of heat exchanger mounted on the machine, one located at the blower fan inlet and other situated at the air outlet final channel of machine. Both energy saving heat exchangers have been connected by connecting series and insulated tubes.

The new machine was tested in the Agricultural Process and Instrument Laboratory (APIL) of the faculty of engineering in UPM. The tests were performed based on the Randomized Complete Block Design (RCBD) experimental design was with three replications and the means were being compared using the Duncan’s Multiple Range Test (DMRT). The parameters included the air temperature at three levels, the air velocity at three levels, and the hot air heating time duration at five levels. The data measured included the energy consumption, the opening force of the cockle shells, the moisture content, the cutting force, the compression force, the penetration force, the meat volume, the length, the height, the inflation, and the air and water temperature profiles. The Malaysian cockle (Anadara Granosa L.) was used as the experimental material.

The results revealed that the best and lowest cockle’s opening force [N] belonged to the hot air heating parameters (air velocity: 2 m/s, air temperature: 70 °C) in the first hours of process, \(M=(111±6.4) \times 10^{-2} \) [N]. For the volume of the cockle’s, the best result was observed at (air velocity: 2 m/s, air temperature: 70 °C) in the first hours of the air heating time \(M=(3.47± 0.19) \) [cm³]. Results also showed that the lowest \(\Delta MC\% \) happened at (air velocity:1 m/s, air temperature: 50 °C) after 1hour \(M=0.26\%± 0.01 \). The best treatment on the cutting stress \((\tau, \text{N/m}^2) \) was at the air parameter of (air velocity: 1 m/s, air temperature: 60 °C) in the first hours of the experiment \(M= (1.08±0.02) \times 10^5 \) [N/ m²]. The lowest penetration force \([N]\), was also observed for the air parameter of (air velocity:1m/s, air temperature: 50 °C) in the first hours of time duration \(M=(52± 0.58) \times 10^{-2} \) [N]. The lowest compression stress \((\sigma, \text{N/m}^2)\) was observed for the air parameter of (air velocity: 1 m/s, air temperature: 50 °C) in the first hours \(M=(0.7887± 0.004) \times 10^5 \) [N/m²]. The boiling experiment, it was found that the opened cockle, the cutting stress, the penetration force, and the compression stress increased significantly by having an increase in the boiling time. In this test, by increasing the boiling time, the cockle’s volume decreased significantly and the lowest volume was for 15 min of boiling \(M=(2.033± 0.033) \) [cm³].
This result showed that the volume increased in air heating system and shrinkage was $M=1.186\pm0.09$ compared to two traditional systems, volume decreased in boiling system ($M=0.966\pm0.042$) [cm3] and in steaming was $M=(1.042\pm0.067)$[cm3] which showed a little increase in volume.

For the steaming condition, a similar behavior happened with the boiling process with the difference that the cutting stress for more than 6 min was significantly different from the control.

The result of the lump system analysis on the cockles indicated that the center temperature of the cockle in the air heating system, steaming, and boiling methods after 35, 7 and 4 minutes respectively reached a thermal equilibrium state with the surrounding environment temperature. Furthermore, by using the Matlab fitting application and an exponential function, three different heating processes were formalized by equation $\theta(t)=Ce^{-mt}$ finding the coefficients, C and m with 95%, confidence bounds ($C= 41.63$, $m= 0.002792$, $R^2= 0. 8453$), ($C=76.09$, $m= 0.02206$, $R^2=0.902$) and ($C= 74.44$, $m= 0.014$, $R^2= 0.9993$) respectively for the air heating, boiling, and steaming processes.

Utilizing the data logger output and control volume testing on the machine indicated that 25% of the energy leaving the exhaust compartment of the machine has been returned to the product by using the extra system mounted on the machine.

As a result, after having compared the machine treatments and the traditional experiments by considering the expenditure of the production and the product quality, the new technique with treatment of (air velocity: 2 m/s, air temperature: 70 °C and first hour of air heating time) has been presented as the best method in this research work.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

REKABENTUK, FABRIKESI DAN PENILAIAN PRESTASI BAGI SISTEM PERMANASAN UDARA PANAS BAGI KERANG MALAYSIA
(Anadara Granosa L.)

Oleh

IRAJ YAVARI

July 2014

Pengerusi: Assosiat Profesor Johari Bin Endan, PhD. Ir
Fakulti: Kejuruteraan

Haba dan proses pemanasan adalah salah satu aktiviti yang paling penting dalam operasi lepas-tuaian bagi produk pertanian di seluruh dunia. Selalunya, ia akan mengurangkan kelembapan bagi penyimpanan tanaman; ia juga mampu mengubah rasa produk dan meningkatkan nilai pasarannya. Selain itu, pemulihan dan penyimpanan tenaga, perlindungan alam sekitar serta perubahan iklim adalah isu yang besar.

Tindakan ini meninggalkan kesan buruk kepada kualiti produk. Mengenai perkara seperti perbezaan suhu dalam ruang tanaman, kekurangan kawalan suhu yang tepat, pencemaran tanaman melalui gas yang tidak dapat dilihat akibat pembakaran bahan api, pencemaran dan isu-isu alam sekitar adalah antara kelemahan mesin jenis ini. Pada masa ini cara yang sama telah digunakan di Malaysia.

Oleh itu, mesin pemanas udara panas yang diperlukan bagi memanaskan produk pertanian perlu mempunyai kapasiti yang tinggi dan kualiti pemanasan yang memuaskan, serta tidak membawa kerosakan kepada kualiti tanaman dan alam sekitar. Dalam kajian ini, mesin pemanasan baru berdasarkan teknik edaran air panas dan halaju udara yang berkesan telah direka, dirumuskan dan dinilai.

Mesin teknik baru, telah diuji dalam (APIIL) fakulti kejuruteraan UPM. Ujian telah dijalankan berdasarkan (RCBD) reka bentuk eksperimen dengan tiga replikasi dan dibanding menggunakan (DMRT). Parameter termasuk suhu udara pada tiga
peringkat, halaju udara pada tiga peringkat dan tempoh masa pada lima peringkat. Data yang diukur ialah penggunaan tenaga, tenaga pembukaan, kelembapan, daya permotongan, daya mampatan, daya penembusan, isipadu daging, panjang, tinggi, inflasi, dan profil suhu udara dan air bagi setiap keadaan telah ditafsirkan. Kerang darah Malaysia (Anadara granosa L.) telah digunakan sebagai bahan eksperimen.

Keputusan menunjukkan bahawa kuasa pembukaan kerang terendah adalah berdasarkan parameter pemanasan udara (2 m/s, 70 °C) dalam jam pertama [M=(111±6.4) ×10^{-2}] [N]. Untuk isipadu kerang, keputusan terbaik yang diperhatikan adalah pada 2 m/s, 70°C dalam jam pertama [M = (3.47± 0.19)] [cm^3]. Keputusan juga menunjukkan bahawa DMC yang paling rendah berlaku pada 1m/s, 50 °C selepas 1 jam (M=0.26±0.01). Cara terbaik untuk daya pemotongan (τ, kg/cm2) adalah pada parameter udara 1m/s, 60 °C pada jam pertama eksperimen [M= (1.08±0.02) ×10^{5}] [N/ m^2]. Kuasa penembusan terendah [N] diperhatikan pada parameter udara 1m/s dan 50°C dalam jam pertama [M=(52± 0.58) ×10^{-2}] [N]. Daya mampatan terendah (σ, N/m²) diperhatikan untuk parameter udara 1 m/s, 50 °C dalam jam pertama [M=(0.7887± 0.004) ×10^{5}] [N/m^2]. Untuk experimen pendidihan: kerang yang bukan, daya pemotongan, daya penembusan dan daya perbandingan meningkat secara ketara dengan peningkatan dalam masa pendidihan dalam ujian ini. Isipadu kerang menurun dengan ketara semasa masa pendidihan meningkat dengan isipadu terendah selama 15 min mendidih [M= (2.033± 0.033)] [cm^3]. Untuk keadaan pengukusan, tingkah laku yang serupa juga berlaku pada proses pendidihan dengan perbezaan bahawa daya pemotongan selama lebih daripada 6 min adalah jauh berbeza daripada kawalan.

Hasil analisis sistem ketulan pada kerang yang menunjukkan bahawa suhu pusat kerang dalam pemanasan udara, pengukusan dan kaedah mendidih selepas 35, 7 dan 4 minit masing-masing telah mencapai keadaan keseimbangan haba dengan suhu sekitar alam sekitar. Tambahan pula, dengan menggunakan Matlab fungsi penyesuaian dan eksponen, tiga proses pemanasan yang berbeza dibentuk melalui persamaan dan mendapati pekali kekal pada persamaan dan mendapati pekali, C dan m dengan 95 %, sempadan keyakinan(C= 41.63, m= 0.002792, R^2= 0. 8453), (C=76.09, m= 0.02206, R^2=0.902) and (C= 74.44, m= 0.014, R^2= 0.9993) masing-masing untuk pemanasan udara, merebus dan pengukusan. Penggunakan keputusan Logger data, dan kawalan nilai pada mesin menunjukkan bahawa 25% daripada tenaga yang meninggalkan petak ekzos mesin, dengan menggunakan penjimatan tenaga dalam teknik ini, telah kembali ke produk.

Hasilnya, selepas dibandingkan antara mesin rawatan dan eksperimen tradisional daripada segi perbelanjaan pengeluaran dan kualiti produk, teknik baru dengan sebatian rawatan (2 m/s, 70 °C dan 1 jam) telah dibentangkan sebagai kaedah terbaik dalam kajian ini.
ACKNOWLEDGMENTS

First, my utmost gratitude goes to Allah. An effort such as undertaking postgraduate studies for a Ph.D. needs the direct and indirect help of several people. This is an opportunity to remember their help and acknowledge their contributions to enlighten, educate, and enable me to complete this piece of work.

My deepest appreciation is extended to my academic advisor Associate Professor Dr. Johari Bin Endan for exquisite scientific guidance and unfailing essential support to the successful completion of this research work.

I would like to give special thanks to my supervisory committee members, Associate Professor Dr. Yus Aniza Yusof head of the Department of Process and Food Engineering, and Professor Dr. Desa Bin Ahmad, and Associate Professor Dr. Mohd Nordin Ibrahim for their time, support, expertise, encouragement, advice and confidence while I worked towards my doctorate degree.

I wish to thank Associate Professor Dr. Chin Nyuk Ling and Associate Professor Dr. Farah Salina Tap for allowing me to use the laboratory facilities, and Professor Dr. Suhas P. Sukhatme (Department of Mechanical Engineering University Press INDIA) and Associate Professor Dr. Kaumars Mansori (Department of Physics Razi University IRAN) for his helpful advice in the mechanical design of the heat exchanger.

I wish to express my gratitude to Universiti Putra Malaysia for the financial support. Also, I would like to acknowledge the Faculty of Engineering and School of Graduate Studies, Universiti Putra Malaysia (UPM), and administrative staff of the laboratories at the Department of Process and Food Engineering for providing the facilities and their assistance for my study, especially Mr. Kamarulzaman Dahlin, Mr. Zamzuri Zabidin, Mr. Mohd. Zahiruddin Daud, Mr. Raman Morat, Mr. Shahrulrizal Zakaria, Mr. Hairul Anuar b. Abd Munib, the office personnel for answering all my questions, Mrs. Juliana Abdul Hak, Mrs. Azizah Abdullah and Mrs. Rosniatul Abdul Rashid, and Mrs Nordiyana bt. Abd. Razak.

I wish to express my deepest gratitude to the numerous people who have walked with me along the journey of my study. First and foremost I would like to express my deep gratefulness to Dr. Abbas Keshavarz, the Former Deputy Minster and Dean of AREEO, Dr. Mohammad Reza Jahansoz, the Former Deputy Minister of Agriculture of Iran for his kind assistance, Dr. Jahangir Porhemmat, the Former Deputy Minster and Head of AREEO, Dr. Abdolali Ghaffari, the Head of DARI, and Dr. Seyed Saeid Pordad, the Deputy dean of DARI, also Mr. Maghsoud Hassanpour Hosni the Deputy dean of DARI, and Dr. Mostafa Aghaei, the Deputy Dean of AREEO for approving my study leave and financial support.

I would like to express my deepest gratitude to the Dr. Mohmoud Danaee also Dr. Daryush Talei for helping me in the statistical analyses. Thank you for always being there when I needed you.
I would also like to express my sincere appreciation to Dr. Dariush Saberi, Mr. Koresh Nadermahmodi, Dr. Reza Haghparast, Dr. Mohammad Reza Bakhtiari, Mr. Addel Jahangiri, Dr. Reza Mohammadi, Dr. Mehrzad Javadi and Dr. Ali Arab for their invaluable help and generous contributions to my research during difficult times.

I would also like to express my gratitude towards the administrative staff of the DARI and DDARI of Kermanshah Iran, Mr. Siros Omidi, Mr. Iraj Hoseinabad, Mr. Ali Moradi, Mr. Behdosh Mohammadi, and Mr. Aliabbas Mohammadi. I would also like to thank Mr. Mohammad Gholami, and Mr. Samad Gholaminaserkhani. The last but not least, I owe my loving thanks to my beloved wife Leila and my dear son Nima, my father Zeinolabedin and my mother Nimtaj, and all my siblings for their support, understanding, help, and encouragement.
I certify that a Thesis Examination Committee has met on 24th July 2014 to conduct the final examination of IRAJ YAVARI on his thesis entitled “Design, Fabrication and Performance Evaluation of a Hot Air Heating System for Processing of Malaysian Cockles (Anadara Granosa L.)” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Wan Ishak b. Wan Ismail, PhD
Professor
Faculty of Engineering,
Universiti Putra Malaysia
(Chairman)

Chin Nyuk Ling, PhD
Associate Professor
Faculty of Engineering,
Universiti Putra Malaysia
(Internal Examiner)

Mohd Shamsul Anuar, PhD
Senior Lecturer
Faculty of Engineering,
Universiti Putra Malaysia
(Internal Examiner)

Sundaram Gunasekaran, PhD
Professor
Faculty of Engineering,
University Wisconsin Madison
United States of America
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment for the requirement for the degree of Doctor of Philosophy. The members of the Supervisory committee are as follows:

Johari Bin Endan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Desa Bin Ahmad, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Yus Aniza Yusof, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Nordin Ibrahim, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:
Date: 24 July 2014

Name and Matric No.: Iraj Yavari, GS26577
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:
Johari Bin Endan, PhD. Ir
Associate Professor

Signature:
Name of Member of Supervisory Committee:
Desa Bin Ahmad, PhD. Ir
Professor

Signature:
Name of Member of Supervisory Committee:
Yus Aniza Yusof, PhD
Associate Professor

Signature:
Name of Member of Supervisory Committee:
Mohd Nordin Ibrahim, PhD
Associate Professor

xiv
TABLE OF CONTENTS

COPYRIGHT ii
DEDICATION iii
ABSTRACT iv
ACKNOWLEDGMENTS ix
TABLE OF CONTENTS xv
LIST OF TABLES xxiv
LIST OF FIGURES xxivii
LIST OF ABBREVIATIONS xxvii

1 GENERAL INTRODUCTION 1
1.1 Background of the study 1
1.2 Statement of the Problem 3
1.3 Contributions 4
1.4 Objective 4
1.5 Scope of Study 4
1.6 The Research Framework 5
1.7 Outline of the Thesis 6

2 LITERATURE REVIEW 7
2.1 Cockle “Anadara Granosa L.” 7
 2.1.1 Introduction 7
 2.1.2 Taxonomy 8
 2.1.3 Anatomy of the Shell 8
2.2 Existing Method 9
2.3 Heating Process Development 10
2.4 Mechanical Characterization of Solid Foods 11
 2.4.1 Basic Concepts 11
 2.4.1.1 Destructive Measurements 14
 2.4.1.2 Penetrate 14
 2.4.1.3 Compression Stress 17
 2.4.1.4 Cutting Stress 19
 2.4.1.5 Shrinkage 20
 2.4.1.6 The Texture Profile Analysis 22

3 DESIGN AND FABRICATION 25
3.1 Heat Transfer 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Heat Transfer Model</td>
<td></td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>Conduction</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Convection</td>
<td>26</td>
</tr>
<tr>
<td>3.1.1.3</td>
<td>Radiation</td>
<td>26</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Heat Transfer By Conduction</td>
<td></td>
</tr>
<tr>
<td>3.1.2.1</td>
<td>Fundamental Equations In Heat Conduction</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2.2</td>
<td>Rectangular Coordinates</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2.3</td>
<td>Cylindrical Coordinates</td>
<td>30</td>
</tr>
<tr>
<td>3.1.2.4</td>
<td>Spherical Coordinates</td>
<td>31</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Heat Transfer by Convection</td>
<td></td>
</tr>
<tr>
<td>3.1.3.1</td>
<td>Introduction</td>
<td>32</td>
</tr>
<tr>
<td>3.1.3.2</td>
<td>Heat Transfer Coefficients</td>
<td></td>
</tr>
<tr>
<td>3.1.3.2.1</td>
<td>Individual Coefficients</td>
<td>33</td>
</tr>
<tr>
<td>3.1.3.2.2</td>
<td>Natural Convection</td>
<td>35</td>
</tr>
<tr>
<td>3.1.3.2.3</td>
<td>Forced Convection</td>
<td>36</td>
</tr>
<tr>
<td>3.1.3.3</td>
<td>Fluids Flowing on the Exterior of Solids</td>
<td>37</td>
</tr>
<tr>
<td>3.1.3.4</td>
<td>Heating or Cooling of Flat Surfaces</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Heat Exchangers</td>
<td></td>
</tr>
<tr>
<td>3.2.1</td>
<td>Compact Heat Exchangers</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Designing</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Detail of Drawing of Machine</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Materials and equipment that were used to fabricate the hot air heating system, Main part of the machine, are listed as follows,(Figure 3.11):</td>
<td>59</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Chassis (the Main Frame)</td>
<td>59</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Centrifugal Blower (Fan)</td>
<td>60</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>The Centrifugal Blower Speed Control</td>
<td>61</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Air Inlet Channel to the Secondary Heat Exchanger</td>
<td>61</td>
</tr>
<tr>
<td>3.3.2.5</td>
<td>The Air Inlet Channel To The Main Heat Exchanger</td>
<td>61</td>
</tr>
<tr>
<td>3.3.2.6</td>
<td>The Air Inlet Channel to the Crop Box</td>
<td>62</td>
</tr>
<tr>
<td>3.3.2.7</td>
<td>The Air Exhaust Channel of The Crop Box</td>
<td>63</td>
</tr>
<tr>
<td>3.3.2.8</td>
<td>The Perforated Thermocouple Protector</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2.9</td>
<td>The Air Exhaust Channel of the Crop Box, and Inlet Channel to the Exhaust Heat Exchanger</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2.10</td>
<td>Power Measuring Devices (kWh Meter)</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2.11</td>
<td>Water Measuring Devices</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2.12</td>
<td>The Pressure Indicator</td>
<td>66</td>
</tr>
</tbody>
</table>
3.3.2.13 Connecting Tubes 66
3.3.2.14 The one-Way Valve 67
3.3.2.15 The Pressure Reduction Valve 67
3.3.2.16 The Air Bleeder Valve 67
3.3.2.17 Insulation of Conductor Tubes 68
3.3.2.18 The Water Heater 68
3.3.2.19 The Three-Speed Transferring Water Pump 69
3.3.2.20 Main Heat Exchangers 69
3.3.2.21 The Secondary Heat Exchanger 70
3.3.2.22 Energy Saving, Heat Exchangers 71

3.3.3 General Description of the Machine 72
3.3.3.1 A Detailed Description of Drawing of the New Hot Air Heating System 75

3.3.4 Piping Systems 78
3.3.4.1 Mass Balance 78
3.3.4.2 Calculation of Velocity and Circulation Flow Rate 79
3.3.4.3 Calculation of Minimum Diameter of Piping 81
3.3.4.4 Piping Systems (parallel and Series) 82
3.3.4.4.1 Parallel Piping Systems 83
3.3.4.4.2 Piping in Series 84

3.4 The Control Volume of Machine 85

3.5 The Practical Thermal Analysis of Heat Exchanger Used in this Mechanism 91
3.5.1 Calculating the Heat Transfer Coefficients h_a For the Air and Water Side of the Heat Exchanger 91
3.5.1.1 The Heat Transfer Coefficient (Air Side) 94
3.5.1.2 The Heat Transfer Coefficient (Water Side) 95
3.5.1.3 The Overall Heat Transfer Coefficient U_a Based on the Air Side Surface 97
3.5.1.4 Total Heat Transfer Rate Q 98
3.5.1.5 Air Outlet Temperature. 100
3.5.1.6 Water Outlet Temperature. 100

3.6 Transient Conduction And Use of Temperature Charts 101
3.6.1 Introduction 101
3.6.2 Lumped System Analysis 101

3.7 Advantage and Novelty of the Present Hot Air Heating Machine 106
3.7.1 Advantages and Novelty of the New Heating System 106
4 MATERIALS AND METHODS 107

4.1 Introduction 107

4.2 Determination of Physical, and Mechanical Properties of Cockle 107

4.3 Physical Properties 107

4.3.1 Moisture Content 107

4.3.2 Principle Dimensions 108

4.3.3 The Geometric Mean Diameter 109

4.3.4 The Arithmetic Mean Diameter 109

4.3.5 The Aspect Ratio 110

4.3.6 The Sphericity 110

4.3.7 The Surface Area 111

4.3.8 The Real Volume of Each Cockle, and True Density 111

4.3.9 The Bulk Density 112

4.3.10 The Porosity of Solid Food 113

4.3.11 Mechanical (Frictional) Properties 114

4.3.11.1 The Static Coefficient of Friction 114

4.3.11.2 The Filling (Static) Angle of Repose 115

4.3.11.3 The Emptying (Dynamic or Funnelling) Angle of Repose 116

4.3.12 Techniques For Measuring Real Volume of Each Cockle 117

4.4 Techniques For Measuring Texture 118

4.4.1 Compression Stress Test 118

4.4.2 Cutting Stress Test 118

4.4.3 Penetration Test 119

4.5 Experimental of Process 120

4.5.1 Material and Equipment 120

4.5.1.1 Experimental Material 120

4.5.1.2 Sampling 121

4.5.1.3 Tap Water 122

4.5.1.4 The Circular Stainless Steel Strainer 122

4.5.1.5 The Pot and Closed Container 123

4.5.1.6 The Data logger (Midi Logger G800) and Anemometer (Testo 425) 123

4.5.1.7 The Caliper 124

4.5.1.8 The Texture Analyzer 125

4.5.2 The Heating Process and Experimental Tests 125
4.5.2.1 Preparation of Sample 125
4.5.2.2 The Boiling Processing Procedure 126
4.5.2.3 The Steaming Processing Procedure 127

4.6 The New Dryer Processes Procedure 127
4.6.1 Design Procedure of Laboratory Machine 127
4.6.2 Human Sensory Test of Cockle Meat Based on Time and Hot Air Heating Parameter 128
4.6.3 The Experimental Design 128
4.6.4 The Processes Procedure 129

4.7 Texture Analyzing Process 129
4.7.1 The Force Required for the Opening of the Cockle Shell’s 130

4.8 Lumped System Analysis Method for Cockles 131
4.8.1 Introduction 131
4.8.2 Thermal Equilibrium of Cockle Center and Surrounding Environments in the Three Modes of Heating Process (Air Heating, Boiling And Steaming) 132
4.8.3 The Hot Air Heating Method 133
4.8.4 The Boiling Method 133
4.8.5 The Steaming Method 133

4.9 Summary 134

5 RESULTS AND DISCUSSION 135
5.1 Hot Air Heating Process Evaluation of the Cockle’s Characteristics 135
5.1.1 The Homogeneity Test of the Experimental Samples 135
5.1.2 Descriptive Statistics of the Physical Properties of the Cockle’s 138

5.2 Effect of Hot Air Performance on the Cockle Characteristics 139
5.2.1 Effect of Hot Air Parameters and Time Duration on the Force Required to Open The Cockles’ Shells 139
5.2.2 Effect of Hot air Parameters and Time Duration on Cockle Volume 142
5.2.3 Effect of the Hot Air Parameters on the Cockle’s Moisture Content Changes 146
5.2.4 Effect of the Air Parameters on the Cockle Meat Cutting Stress [N/m²] 149
5.2.5 Effect of the Hot Air Parameters on the Cockle Meat Penetration Force (N) 153
5.2.6 Effect of Hot Air Parameters on the Cockle Meat Compression Stress (N/m²) 156
4.1.1 Cost Analysis of Hot Air Parameters

5.3 Effect of Physical Parameters of the Cockles on the Predicted Opening Force of Cockles shells

5.4 Evaluation of the Boiling and Steaming Methods on the Cockle Characteristics
 5.4.1 Effect of Boiling on the Opening and Texture of the Cockles
 5.4.2 Effect of Steaming on the Opening and Texture of Cockles

5.5 Comparing of Shrinkage among different methods

5.6 Using Lump System Analysis to Find C and m Constant Coefficients, of the equation $\theta(t) = Ce^{-mt}$ at Different Heating Condition on the Malaysia Cockle
 5.6.1 Finding C and m for the Air Heating Method
 5.6.2 Finding C and m for the Steaming Process
 5.6.3 Finding C and m for Boiling Process
 5.6.4 Assessment of the computed constant coefficients (C and m in the equation $\theta(t) = Ce^{-mt}$)

5.7 Duration time to reach the thermal equilibrium state
 5.7.1 General Outline

5.8 Evaluation of the Hot Air Heating Machine Performance
 5.8.1 Thermocouples Positioned Within the Chamber
 5.8.2 Air Temperature Distribution Within the Crop Chamber of The Hot Air Heating Machine
 5.8.3 The Temperature Profile of the Water Recirculation Within the Heat Exchanges and the Airflow Through the Heat Exchangers Tubes and Pores.

5.9 Summary

6 Conclusion and Recommendation
 6.1 Conclusion
 6.2 Recommendations
 REFERENCES
 BIODATA OF STUDENT
 LIST OF PUBLICATIONS AND PATENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Values of parameters a and b</td>
</tr>
<tr>
<td>3.2</td>
<td>Physical properties of Air at atmospheric Pressure</td>
</tr>
<tr>
<td>3.3</td>
<td>Physical properties of water</td>
</tr>
<tr>
<td>3.4</td>
<td>Physical properties of Brass</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of the ANOVA for the cockle characteristics</td>
</tr>
<tr>
<td>5.2</td>
<td>The descriptive statistics of the cockles’ physical properties</td>
</tr>
<tr>
<td>5.3</td>
<td>Results of analysis of variance on the cockles opening force</td>
</tr>
<tr>
<td>5.4</td>
<td>The Effect of the air velocity, air temperature and time on the cockle opening force (N) of the cockles</td>
</tr>
<tr>
<td>5.5</td>
<td>Results of the analysis of covariance on the cockle volume</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of the air velocity, air temperature and time on the volume (cc) of cockles</td>
</tr>
<tr>
<td>5.7</td>
<td>The results of analysis of variance on DMC</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect of air velocities, air temperatures and time duration on the cockle’s moisture content changes</td>
</tr>
<tr>
<td>5.9</td>
<td>Results of the analysis of variance on the cutting force [N/m2]</td>
</tr>
<tr>
<td>5.10</td>
<td>Effect of the air velocity, air temperature and time duration on cutting force [N/m2] of cockles</td>
</tr>
<tr>
<td>5.11</td>
<td>Results of analysis of variance on the penetration force [N]</td>
</tr>
<tr>
<td>5.12</td>
<td>Effect of air velocity, air temperature and time duration on the penetration force (N) of the cockle meat</td>
</tr>
<tr>
<td>5.13</td>
<td>Results of the analysis of variance on the cockle compression force [N/m2]</td>
</tr>
<tr>
<td>5.14</td>
<td>Effect of air velocity, air temperature and time duration on compression force (N/m2) of the cockles</td>
</tr>
<tr>
<td>5.15</td>
<td>Correlation Coefficients among Physical Characteristics with the Opening Force</td>
</tr>
<tr>
<td>5.16</td>
<td>ANOVA of Multiple Linear Regression Model</td>
</tr>
<tr>
<td>5.17</td>
<td>Summary of Simultaneous Multiple Regression Analysis for the Physical Characteristics Predicting Opening Force</td>
</tr>
<tr>
<td>5.18</td>
<td>Summary of ANOVA results for the effects of boiling</td>
</tr>
<tr>
<td>5.19</td>
<td>Effect of boiling times on cockles characteristics</td>
</tr>
<tr>
<td>5.20</td>
<td>Comparison of the number of open cockles before and after shaking</td>
</tr>
<tr>
<td>5.21</td>
<td>Summary of ANOVA results on effects of boiling on the texture</td>
</tr>
<tr>
<td>5.22</td>
<td>Effect of the boiling time on the cockle texture</td>
</tr>
<tr>
<td>5.23</td>
<td>Summary of ANOVA results on effects of steaming</td>
</tr>
<tr>
<td>5.24</td>
<td>Effect of the steaming time on the cockles characteristics</td>
</tr>
<tr>
<td>5.25</td>
<td>Comparison between opened cockles before, and after shaking</td>
</tr>
<tr>
<td>5.26</td>
<td>Summary of ANOVA results for effects of steaming on the texture</td>
</tr>
<tr>
<td>5.27</td>
<td>Effect of the steaming time on cockle texture</td>
</tr>
<tr>
<td>5.28</td>
<td>Summary of ANOVA results for effects of heating methods on the shrinkage</td>
</tr>
<tr>
<td>5.29</td>
<td>Center temperature of the cockles, (average of 4 samples taken by the midi logger G800)</td>
</tr>
<tr>
<td>5.30</td>
<td>The dimensionless temperature $\theta(t) = T(t) - T_\infty$ of the air heating, steaming, and the boiling methods as a function of time</td>
</tr>
<tr>
<td>5.31</td>
<td>$\ln\theta_0 = T_c - T_i$ (for air heating, steaming, and boiling method)</td>
</tr>
<tr>
<td>5.32</td>
<td>Slope and interception of linear function at different conditions (the air heating, boiling and steaming conditions)</td>
</tr>
<tr>
<td>5.33</td>
<td>Dimensions of location of the thermocouples probe</td>
</tr>
<tr>
<td>A.1</td>
<td>Questions related to the quality of the samples in the sensory test with coding</td>
</tr>
<tr>
<td>A.2</td>
<td>Raw data for evaluation different air velocity in sensory test</td>
</tr>
<tr>
<td>A.3</td>
<td>Raw data for evaluation different time in sensory test</td>
</tr>
<tr>
<td>A.4</td>
<td>Raw data for evaluation different temperature in sensory test</td>
</tr>
</tbody>
</table>
A.5 ANOVA results of stepwise multiple regression analysis on physical characteristics
A.6 Coefficients
A.7 Available energy and heat conversion efficiency for fuels commonly used for grain drying Source: (Maier, 2002)
A.8 Cost Analysis Data
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Framework of Study</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>The two valves of a closed Cockle. The broad ribs, the ligament and the hinge are conspicuous</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Continuous methods</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Continuous methods</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Uniaxial Compression of A Specimen With An Original Length L0 And Area A0 And The Young’s Modulus E (A) And Shear Stress T Acting on Opposite Planes Causing The Distortion of The Specimen With Shear Modulus G And Area A0 (B)</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Classification of Solid Foods Based on Their Mechanical Properties</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Different Probe Tips Used In Puncture Tests. The Magness-Taylor Probe, Represented By (b) Is Popular For Fruits And Vegetables</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Three Magness-Taylor (MT) firmness testers: (a) a handheld mechanical MT tester based on a calibrated spring that may be helical or spiral; (b) a portable MT tester with an electronic gauge; and (c) a MT probe mounted on a standard laboratory testing machine</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Two Types Of Compression Tests: (a) Uniaxial Compression Test Between Two Plates and (b) Simple Compression–Back Extrusion Test</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic of The Warner-Bratzler Shear Tester For Measuring The Tenderness Of Meat</td>
<td>19</td>
</tr>
<tr>
<td>2.11</td>
<td>The Generalized Texture Profile</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Heat Transfer Model</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Cylindrical Coordinate System, Albert Ibarz, et al., (2003)</td>
<td>31</td>
</tr>
<tr>
<td>3.5</td>
<td>Heat Transfer By convection</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>Typical heat transfer matrices for compact heat exchangers. (a) Circular finned – tube matrix; (b) plain plate-fin matrix; (c) finned flat-tube matrix. Source: (Necati 1985).</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Hot Air Heating Machine</td>
<td>42</td>
</tr>
<tr>
<td>3.9</td>
<td>Hot Air Heating Machine Has Been Drawing by CATIA Software</td>
<td>43</td>
</tr>
<tr>
<td>3.10</td>
<td>Exploded Hot Air Heating Machine</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>The Exploded Machine Designed By Catia Software R5-V19</td>
<td>59</td>
</tr>
<tr>
<td>3.12</td>
<td>Chassis (front and back views)</td>
<td>60</td>
</tr>
<tr>
<td>3.13</td>
<td>The Centrifugal Blower (a) and the Blower Speed Control (b)</td>
<td>60</td>
</tr>
<tr>
<td>3.14</td>
<td>The Air Inlet Channel to the Secondary Heat Exchanger</td>
<td>61</td>
</tr>
<tr>
<td>3.15</td>
<td>The Air Inlet Channel to the Main Heat Exchanger</td>
<td>62</td>
</tr>
<tr>
<td>3.16</td>
<td>The Air Inlet Channel and the air Divider to the Crop Chamber</td>
<td>62</td>
</tr>
<tr>
<td>3.17</td>
<td>The Air Exhaust Channels of the Chamber of Crop</td>
<td>63</td>
</tr>
<tr>
<td>3.18</td>
<td>The Perforated Thermocouple Protector</td>
<td>64</td>
</tr>
<tr>
<td>3.19</td>
<td>The Air Exhaust channel of the Crop Box, and Inlet Channel to the Exhaust Heat Exchanger</td>
<td>64</td>
</tr>
<tr>
<td>3.20</td>
<td>Power Measuring Devices (kWh meter)</td>
<td>65</td>
</tr>
<tr>
<td>3.21</td>
<td>Water Measuring Devices</td>
<td>65</td>
</tr>
<tr>
<td>3.22</td>
<td>The Pressure Indicator</td>
<td>66</td>
</tr>
</tbody>
</table>

xxiii
3.23 Connecting Tubes 66
3.24 The One-Way Valve 67
3.25 The Pressure Reduction Valve 67
3.26 Air Bleeder Valve 68
3.27 Insulation Conductor Tubes 68
3.28 The Water Heater 69
3.29 The Three-Speed Transferring Water Pump 69
3.30 Various finned 70
3.31 Main Heat Exchangers 70
3.32 The Secondary Heat Exchangers 71
3.33 The Extra Inlet and Final Outlet Saving Energy Heat Exchanger 71
3.34 Heating Machine (Front View) 73
3.35 Heating Machine (Back View) 74
3.36 Heating Machine (Exhaust Air View) 74
3.37 Heating Machine (Air Inlet and Outlet View) 75
3.38 A Detailed Description of Drawing of the New Hot Air Heating System 77
3.39 Pipe Section 78
3.40 Kármán’s graphic 81
3.41 Parallel piping 83
3.42 Schematic Diagram of A Control Volume of Machine 85
3.43 Effectiveness for Cross-Flow Exchanger With Fluids Unmixed Source 91
3.44 The Heat transfer and friction factor for flow across the finned flat-tube matrix. 94
3.45 Nomenclature for the lumped system analysis of the transient heat flow 102
3.46 Dimensionless Temperature $\Theta_n/\Theta(0)$ As a Function of Time. Source 103
4.1 Measurement of the moisture content of cockles’ meat 108
4.2 Illustration of the digital caliper used in this study 109
4.3 Three Principle Perpendicular Dimensions of the Cockle: L, Length, H, Height and I, Inflation 110
4.4 The Container to Measure the Bulk Density of the Cockles Source (Bakhtyari, M.R. 2012) 113
4.5 Equipment to Measure the Static Coefficient of the Friction Source (Bakhtyari, M.R. 2012) 114
4.6 Side View of Equipment to Measuring Static Coefficient of Friction Source (Bakhtyari, M.R. 2012) 115
4.7 Diagram and Position of The Angle of Repose 116
4.8 The Schematic View of The Step Taken to Measure the volume of the 117
4.9 Compression Stress Distribution 118
4.10 Cutting Force Area 119
4.11 Real Stress Line in Cutting the Meat 119
4.12 Transfer of the Tip of Nail in Penetration test 120
4.13 The sampling site In Kuala Selangor, Malaysia 121
4.14 Raw Cockles 122
4.15 The Circular stainless steel strainer and cockles 123
4.16 The Pot and closed container 123
4.17 Left: Data logger (Midi Logger G800),Right: Anemometer (Testo 425) 124
4.18 Electronic Digital Caliper (Percision of Sensitivity Set to ±0.001) 124
4.19 The Texture Analyzer Used to Measure the Mechanical Properties of the Cockles’ Meat 125
4.20 The Cockles Meat and Shells after Each Boiling Experiment 126
4.21 The Cockles Meat and Shells after Steaming Experiment 127
4.22 Preparing Samples for Texture Analyzer Test 130
4.23 The Fresh and Heated Samples Under the Force Measurement 130
4.24 Nomenclature for lumped system analysis 131
4.25 The Schematic View of The Step Taken to Measure the Time for Reaching the Temperature Equilibrium State 132
5.1 Mean of the Length, Height and Inflation of the Cockles at Different Times of Sampling 136
5.2 Mean of the Moisture Content of the Cockles in Different Times of Sampling 136
5.3 Mean of the Compression Force of the cockles in Different Days of sampling 136
5.4 Mean of the Penetration Force of the Cockles in Different Days of Sampling 137
5.5 Mean of the Cutting Force of the Cockles in Different Days of Sampling 137
5.6 Mean of the Opening Force of Cockles in Different Days of Sampling 138
5.7 Cockle Opening Force under Different Air Velocities. [Mean with the Same Letter are not Significantly Different at p<0.01] 140
5.8 Cockle Opening Force under Different Air Temperatures [Mean with the Same Letter are not Significantly Different at p<0.01] 140
5.9 Cockle Opening Force under Different Times [Means with the Same Letter are not Significantly Different at p<0.01 Level] 141
5.10 Mean Cockle Opening Force under Different Treatments 141
5.11 Cockle Volumes at Different Air Velocities [Means with the Same Letters are not Significantly Different at p<0.01] 143
5.12 Cockle Volumes at Different Air Temperatures [Means with the Same Letters are not Significantly Different at p<0.01] 144
5.13 Cockle Volumes at Different Times [Means with the Same Letters are not Significantly Different at p<0.01] 144
5.14 Means of the Cockle Volumes under Different Treatments 145
5.15 Cockle Moisture Content Changes at Different Air velocities [Means with the Same Letters are not Significantly Different at p<0.01 Level] 147
4.16 Cockle Moisture Content Changes at Different air Temperatures [Means with the Same Letters are not Significantly Different at p<0.01] 147
5.17 Cockle Moisture Content Changes at Different Times [Means with the Same Letters are not Significantly Different at p<0.01] 148
5.18 Mean Cockle Moisture Content Changes under Different Treatments. 148
5.19 Cockle Cutting Force under Different air Velocities [Means with the Same Letters are not Significantly Different at p<0.01] 150
5.20 Cockle Cutting Force under Different air Temperatures [Means with the Same Letters are not Significantly Different at p<0.01] 151
5.21 Cockle Cutting Force under Different Time Duration [Means with the Same Letters are not Significantly Different at p<0.01] 151
5.22 Means of the Cockle Cutting Force under Different Treatments 152
5.23 Cockle Penetration Force under Different air Velocities [Means with the Same Letters are not Significantly Different at p<0.01] 154
5.24 Cockle Penetration Force under Different air Temperatures [Means with the Same Letters are not Significantly Different at p<0.01] 154
5.25 Cockle Penetration Force under Different Time Duration [Means with the Same Letters are not Significantly Different at p<0.01] 155
5.26 Means of the Cockle Penetration Force(N) under Different Treatments 155
5.27 Cockle Compression Force under Different Air Velocities Means with the Same Letters are not Significantly Different at p<0.01] 157
5.28 Cockle Compression Force under Different Air Temperatures [Means with the Same Letters are not Significantly Different at p<0.01] 158
5.29 Cockle Compression Force under Different Time Duration [Means with the Same Letters are not Significantly Different at p<0.01] 158
5.30 Means of the Cockle Compression Force under Different Treatments 159
5.31 Total Cost of Treatments Based on Different Hot Air Parameters 160
5.32 Mean Comparison Cost, Between Different Methods of Heating 161
5.33 Physical Properties for Predicting the Opening Force 162
5.34 Effect of Boiling Time on Cockle Characteristics 166
5.35 Effect of time duration of steaming on the cockle characteristics 169
5.36 Mean Comparison Among Different Methods of Heating. 171
5.37 The dimensionless Temperature $\theta(t)$ as a Function of Time
5.38 The dimensionless Temperature $\theta(t)$ as a Function of Time
5.39 The Dimensionless Temperature $\theta(t)$ as a Function of Time
5.40 The dimensionless Temperature $\theta(t)$ As a Function of Time
5.41 Chart of the Linear Functions of $(Ln \theta(t) = -mt + Ln(C))$ At Different Conditions (the Air Heating, Boiling and Steaming conditions)
5.42 The time required for the center temperature of the cockle to reach the thermal equilibrium state.
[Note: ATL: Laboratory temperature, B: Boiling, S: Steaming, A: Air, CO: Cockle, T: Temperature, RH: Relative Humidity]
5.43 Distribution Thermocouple Probe Inside the Crop Chamber
5.44 Temperature Profiles Within the Crop Chamber for air Heating Machine (the Heating Air Temperature= 50 °C, Air Velocity = 1 m/s)
5.45 Temperature Profiles Within the Crop Chamber for the air Heating Machine (Heating Air Temperature= 50 °C, air Velocity = 1.5 m/s)
5.46 Temperature Profiles Within the Crop Chamber for the air Heating Machine (Heating Air Temperature= 50 °C, Air Velocity = 2 m/s)
5.47 Temperature Profiles Within the Crop Chamber for the air Heating Machine (Heating Air Temperature= 60 °C, Air Velocity = 1 m/s)
5.48 Temperature Profiles Within the Crop Chamber for the air Heating Machine (Heating Air Temperature= 60 °C, Air Velocity = 1.5 m/s)
5.49 Temperature Profiles Within the Crop Chamber for the air Heating Machine (Heating Air Temperature= 60 °C, Air Velocity = 2 m/s)
5.50 Temperature Profiles Within the Crop Chamber for the air Heating Machine (Heating Air Temperature= 70 °C, Air Velocity = 1 m/s)
5.51 Temperature Profiles Within the the Crop Chamber For the air Heating Machine (Heating Air Temperature= 70 °C, Air Velocity = 1.5 m/s)
5.52 Temperature Profiles Within the Crop Chamber for the air Heating Machine (Heating Air Temperature= 70 °C, Air Velocity = 2 m/s)
5.53 Drawing the hot air heating machine with CATIA software
5.54 Temperature Profiles of the Water Inside the Main Heat Exchanger, and the air Temperature Passing Through its Pores (Water Temperature= 80 °C, Air Velocity = 2 m/s)
5.55 Temperature Profiles of the Water Inside the Secondary Heat Exchanger, and the air Temperature Passing Through its Pores (Water Temperature= 80 °C, Air Velocity = 2 m/s)
5.56 Temperature Profiles Of the Water Inside the Exhaust Heat Exchanger, and the air Temperature Passing Through its Pores (Water Temperature= 80 °C, Air Velocity = 2 m/s)
5.57 Temperature Profiles of the Water Inside the Blower Fan Heat Exchanger, and the air Temperature Passing Through its Pores (Water Temperature= 80 °C, Air Velocity = 2 m/s)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis Of Variance</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Randomized Design</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference test</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Df</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis Of Variance</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Randomized Design</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference test</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Df</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔMC</td>
<td>Moisture Changes [%]</td>
</tr>
<tr>
<td>V</td>
<td>Air velocity [m/s]</td>
</tr>
<tr>
<td>T</td>
<td>Temperature [°C]</td>
</tr>
<tr>
<td>t</td>
<td>Time [min]</td>
</tr>
<tr>
<td>L</td>
<td>Length [mm]</td>
</tr>
<tr>
<td>H</td>
<td>Height [mm]</td>
</tr>
<tr>
<td>I</td>
<td>Inflation [mm]</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>cfm</td>
<td>Cubic foot per minute</td>
</tr>
<tr>
<td>ns</td>
<td>Not Significant</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Number</td>
</tr>
<tr>
<td>S</td>
<td>Stanton Number</td>
</tr>
<tr>
<td>M</td>
<td>Mean of Data</td>
</tr>
<tr>
<td>Q</td>
<td>Rate of Heat Transfer</td>
</tr>
<tr>
<td>V</td>
<td>Volume of sample [cm³]</td>
</tr>
<tr>
<td>V_{\text{waf}}</td>
<td>Volume of water after falling the sample [cm³]</td>
</tr>
<tr>
<td>V_{\text{wbf}}</td>
<td>Volume of water before falling the sample [cm³]</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl Number</td>
</tr>
<tr>
<td>G</td>
<td>Mass Velocity</td>
</tr>
<tr>
<td>D_h</td>
<td>Hydraulic diameter</td>
</tr>
<tr>
<td>h_a</td>
<td>Heat Transfer Coefficients Air Side</td>
</tr>
<tr>
<td>h_w</td>
<td>Heat Transfer Coefficients Water Side</td>
</tr>
<tr>
<td>U_a</td>
<td>Overall Heat Transfer</td>
</tr>
<tr>
<td>Q</td>
<td>Total Heat Transfer rate</td>
</tr>
<tr>
<td>ε</td>
<td>Effectiveness, percent</td>
</tr>
<tr>
<td>ε_{NTU}</td>
<td>Method for Heat Exchanger analyses</td>
</tr>
<tr>
<td>f_lf</td>
<td>The fin efficiency</td>
</tr>
<tr>
<td>B</td>
<td>Ratio heat transfer area for the fin to the total area</td>
</tr>
<tr>
<td>MHEWI</td>
<td>Main Heat Exchanger Water Inlet</td>
</tr>
<tr>
<td>MHEWO</td>
<td>Main Heat Exchanger, Water Outlet</td>
</tr>
<tr>
<td>MHEAI</td>
<td>Main Heat Exchanger Air Inlet</td>
</tr>
<tr>
<td>MHEAO</td>
<td>Main Heat Exchanger Air Outlet</td>
</tr>
<tr>
<td>SHEWI</td>
<td>Secondary Heat Exchanger, Water Inlet</td>
</tr>
<tr>
<td>SHEWO</td>
<td>Secondary Heat Exchanger, Water Outlet</td>
</tr>
<tr>
<td>SHEAI</td>
<td>Secondary Heat Exchanger Air Inlet</td>
</tr>
<tr>
<td>SHEAO</td>
<td>Secondary Heat Exchanger Air Outlet</td>
</tr>
<tr>
<td>EHEWI</td>
<td>Exhaust Heat Exchanger, Water Inlet</td>
</tr>
<tr>
<td>EHEWO</td>
<td>Exhaust Heat Exchanger, Water Outlet</td>
</tr>
<tr>
<td>EHEAI</td>
<td>Exhaust Heat Exchanger Air Inlet</td>
</tr>
<tr>
<td>EHEAO</td>
<td>Exhaust Heat Exchanger Air Outlet</td>
</tr>
<tr>
<td>FHEWI</td>
<td>Fan Heat Exchanger, Water Inlet</td>
</tr>
<tr>
<td>FHEWO</td>
<td>Fan Heat Exchanger, Water Outlet</td>
</tr>
<tr>
<td>FHEAI</td>
<td>Fan Heat Exchanger Air Inlet</td>
</tr>
<tr>
<td>FHEAO</td>
<td>Fan Heat Exchanger Air Outlet</td>
</tr>
</tbody>
</table>

xxvii
CHAPTER 1

GENERAL INTRODUCTION

1.1 Background of the study

Cockle (Anadara Granosa L.) is one of the important aquatic products and crustaceans in Malaysia. With an annual production of over 100,000 tons per year, their place in the export industry today is of particular importance in the country's national income Narasimham, 1968. Also, it plays an important role in job creation of harvest, transportation, processing and other manufacturing steps to reach the consumer market (Narasimham, 1968 and Shahidi, 1998).

Cockle meat as a protein source is considerable in the diet of many important food groups are low- income cockle role in the diet of pregnant women is of very high importance Narasimham, 1968. Cockles filter one third of the salt-water, which comes into estuaries, also they are as a food for different species of birds plays an important role. Cockle is prepared in different ways in the meat market. According to (Liewa, et al.,1998) In Malaysia, the cockle is popular as an ingredient in several types of local foods. Distribution can be fresh, canned, frozen, or cooked and direct sales and consumption in restaurants are ways through which the consumer's desired method is achieved.

Heating methods of boiling and steaming cockle are traditional methods which are used to separate the meat from the shells. The results may include meat shrinkage, reduce quality and meat marketable (Haniza, 2010). Design have been with regard to content, and not forgetting the environment and nature friendly methods, such as normal heat as hot air heating, indirect water heating systems based on heat transfer. This machine solves all the problems caused by boiling and steaming on the food but also improves its quality.

The physical and mechanical properties of Malaysia cockle were investigated and the design and construction of configurable machine fully adjustable to produce hot air heating system started. At first, the parts were designed by Catia software (Cozzens, 2002). Air distribution in the machine reservoir and flow rate were done to get good results to achieve satisfactory outcomes in the construction phase as well as in the procedural steps to make the machine.

Heat transfer in cockle meat, time and transfer rate are quality factors that have a direct effect on the texture of the meat since heat transfer in cockle meat and reaching thermal equilibrium state in the heating process is important. The foundation of this study was to investigate the changes in body temperature of cockle to reach the equilibrium temperature , the three conditions were analyzed by the Lumped system analysis method (Necati,1985) .They include air heating method, boiling and steaming of the cockle. These methods were tested and compared.
Energy is considered as one of the pillars of life. Humans have always been searching to find a way to convert, transfer, and utilize the energy. One of the most important forms of the energy is heat. Actually, the heat change into other types of energy has made significant advances in various fields of human life including the heat transfer which is a significant sector of the human industry (Sukhatme, 2005). The heat transfer has a role in various industries including the food process industries, automotive, aerospace and electronics. Furthermore, it is one of the essential mechanisms in the design considerations and system performance.

A precise temperature control needed during the operation, reduction of fuel consumption and energy conservation, preservation of physicochemical features of food and thus reduction of soil and air pollution are among the significant objectives of this research. Nowadays different types of hot air heating system are used for heating the food products ranging from seeds to the meat. Most fuels used in this machines are fossil fuels and the heat energy is from their direct combustion (Pierre B.1998).

The heat from burning fuels is supplied directly by the airflow through the fan chamber and directly enters the foods. Moreover, the amount of moisture in the food is discharged as the heating process of the foods is along with the direct contact of the produced heat and harmful gases. This action leaves undesirable and unintended effects on the physicochemical properties of the products (Pierre B.1998). Some of the drawbacks of these types of machines include non-constantity of the temperature in the food products compartment space, having no accurate temperature control, contaminating the crop by contacting invisible gases resulted from burning the fuel, more pollution, as well as other environmental issues (Benny,1985.Sylvester ,1989 and Pierre 1998). Irrespective of related shortages, the proposed design for the dryer machine has the subsequent merits:

In this machine, the thermal energy from the hot water is used for heating the food. The main energy source for heating is the hot water, not the heat from the fossil fuels. By using this method, not only the direct contact with harmful gases is cut but also a precise temperature control is maintained resulting in fuel storage. Constant hot water from the water heater is pumped into a close circuit including the heat exchangers. The heated water is divided after exiting the water heater and passes through the heat exchanger tubes to release its heat with the help of the air circulation and heat converters around the ambient atmosphere of the products; meanwhile, it returns to the water heater to renew its heat energy. In other words, the heat transfer from the hot water results in energy storage, less fuel consumption, and reduced environmental pollution.

Since changes in temperature are less, the food products are less affected by the environmental temperature fluctuations. Furthermore, a quality crop with its original physical and chemical features will be produced for the warehouse and storage to provide a constant temperature and to improve and accelerate the transfer of heat. To provide a constant temperature, as well as improving and accelerating the heat transfer of the heat exchangers and transferring the evaporated moisture to outdoor, a centrifugal blower was used.

Finally the foods of the air velocity, air temperature and flow rate of water within the system at different levels will be carried out on the moisture content of the material, its
physical and mechanical properties also texture, and food quality in completely randomized block design in three replication. The results of the evaluation parameters of the machines and their effects on the food and crop characteristic have been statistically analyzed using RCBD. Furthermore, the means of the measured characteristic of cockle have been compared using the Duncan's multiple range tests.

1.2 Statement of the Problem

Heating is one of the most important process operations for the food products which is mostly expected to reduce the moisture content for the food conservation. For some, food product such as cockle (Anadara Granosa L.), and so on, the heating is used not only for conservation purposes, but also for modifying the tastes and flavors in order to increase their market values. Nowadays, different types of hot air heating system are used for different products. Mostly, fuel is used by the machines for air heating the food products (Benny1985, Steffen 1989 and Pierre 1998). The fossil fuel makes the heat energy in the direct combustion (Pierre 1998). The heat from the burning fuels is supplied directly by the airflow through the fan chamber and directed to enter the foods (Pierre 1998). The amount of the moisture content in the foods is discharged during the heating process of the products, along with the direct contact of producing heat and harmful gases (Pierre 1998). This action leaves undesirable and unintended effects on the physicochemical properties of the foods (Pierre 1998).

Cases such as non-constancy of the temperature in the compartment space of the products, lack of precise temperature control, food contamination through contact with invisible gases from burning fuel, more pollution and other environmental issues are considered as the drawbacks of these types of machines.

Existing problems of the current trial hot air heating system can clearly demonstrate the requirement of a specific food and crop heating machine. Therefore, a heating system must able to dry the material without damage having a high capacity and satisfactory heating quality, which is more suitable for agriculture industry. In this thesis, considering the fact that there is no suitable dryer for food product, an attempt is made to design and develop a wide range food and crop heating machine. Then a precise temperature control is needed during the operation, reduction of fuel consumption and energy conservation, preservation of texture features of products and thus reduction of soil and air pollution are among significant objectives of this research.
1.3 Contributions

The main contribution of this research is to improve the existing air heating methods to reduce the energy consumption, minimize the environmental pollution, and enhance the quality of the cockle (*Anadaea Granosa L.*).

1.4 Objective

General Objective

- To design, fabricate and evaluate the performance of an efficient hot air heating method.

Specific Objectives

- To save energy and reduce environmental pollution by decreasing the fossil fuel consumption by way of applying hot water heat recirculation
- To provide a closed system for heating the food material independent from the open air conditions.
- To provide a precise temperature control and uniform temperature in the chamber of the product.
- To study the effect of the different heating system on texture and physical characteristics of the cockles
- To compare the texture and physical characteristics, of the cockles between the traditional methods and the new dryer machine

1.5 Scope of Study

This study focuses on two important aspects of food processing:

1. designing, development, and evaluation of a new hot air heating system for energy issues with extra mounted system on a newly and fabricated machine.
2. Food quality
1.6 The Research Framework

The summary of the general steps taken in this thesis are shown in Figure 1.1.

Figure 1.1. Framework of Study
1.7 Outline of the Thesis

The thesis will be organized as follows: Chapter one describes the overview of hot air heating system and objectives of the study. Related literatures will be reviewed and presented in Chapter two. The heat transfer characteristics and factors considered in the design and the development of the hot air heating system have been reported in Chapter three. Materials and methodology used in this research work for evaluation the hot air parameter of machine through the hot water heat transfer and testing of the material, has been illustrated in Chapter four. Comprehensive results has been presented and discussed accordingly in Chapter five. Conclusions have been drawn at the end of the study and lastly suggestions for future work has been illustrated and reported in Chapter six.
REFERENCES

Albert Ibarz, Gustavo V. Barbosa-Cánovas., 2003. Unit operations in food engineering, CRC Press LLC.

Albert Ibarz, Gustavo V. Barbosa-Cánovas., (2003) Unit Operations in Food Engineering, CRC Press LLC.

204

Measurement of Moisture Content in meat and meat Products., (1997) (Australian Meat Technology) and (Meat Research Corporatio)

R, Cozzens. B, Griffiths. 2002, CATIA V5 Basic Workbook Southern Utah University

208

Voisey P W (1976) Engineering assessment and critique of instruments used for meat

Volodkevich N N (1938) Apparatus for measurement of chewing resistance or tenderness

shorebird communities: A case study on the Wash embayment, UK. *Ecological
Modelling*, 202, 527-539.

Wouters A and DE Baerdemaeker J G (1988) Effect of moisture content on mechanical
properties of rice kernels under quasi-static compressive loading, *J Food Eng*, 7(2)
83–111.

spp. including inoculated V. cholerae 0139 during heat-treatment of cockles
(Anadara granosa), International Journal of Food Microbiology.

Engineering*, 98(3), 304-309.

seed. *Biosystems Engineering*, 96(1), 57-63.

Zhang M and Mittal G S (1993) Measuring tenderness of meat products by Warner-

determination of puncture resistance, drop impact, and sonic impulse, *Trans Am Soc
Agri Eng*, 37 (2), 495–500.

ultrasonic wave combined with tenderizer on dried prawns. Transactions of the