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High performance concrete (HPC) is currently used in massive amounts in the
construction industry due to its technical and economical advantages over nor-
mal concrete. The HPC is characterized by improved mechanical and durability
properties resulting from the use of chemical and mineral admixtures as well as
specialized production processes. However, sharp strength loss and reduction in
elastic modulus at temperatures below 400 ◦C are major disadvantages of HPC
compared to normal concrete; raising questions on its application in the construc-
tion industry at high temperatures. The demerit of HPC at elevated temperatures
up to 400 ◦C is mostly attributed to a mechanism called hydrothermal process by
which cracks and in some cases spalling occur due to vapor pressure. It is caused
by the release of water from capillaries as well as degradation of hydration products
entrapped in the impermeable microstructure of the HPC, increasing the internal
vapor pressure. All this is brought about by the low water to binder ratio in the
HPC with the presence of mineral admixtures such as silica fume. Nonetheless,
some studies have mentioned the positive effect of mineral admixtures at elevated
temperatures due to the formation of stronger clusters of calcium silicate hydrate
and restriction in crystal growth of calcium hydroxide.

This study investigated the behavior of high performance concrete mortars with
nanomaterials at elevated temperatures to simulate the behavior of binding ma-
trix exposed to heat in order to increase the heat resistant behavior of the binding
matrix with a focus on temperatures below 400 ◦C. Furthermore, since there is a
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debate on the effects of mineral admixtures on the HPC at elevated temperatures,
the findings of this study helps to identify the critical influencing factors namely:
chemical composition, moisture content, and permeability in behavior of the bind-
ing matrix at elevated temperatures. It is well established that nanomaterials can
modify the above mentioned factors due to their size, shape, and solid state.

Four nanomaterials, namely: nano silica with amorphous state, nano titania with
both amorphous and crystal states, nano alumina with pure crystal state, and
halloysite nano clay with tubular shape were chosen for this study and fractions
of 1, 2 and 3% by weight of cement were added to the mixes. XRD, DSC, SEM
and gas permeability tests were conducted to investigate the chemical composition
and microstructural changes of the HPC mortars after being exposed to elevated
temperatures up to 1000 ◦C. The residual compressive strength, energy absorp-
tion, brittleness index and relative elastic modulus were studied to compare the
mechanical properties of mortars with and without nanomaterials and to identify
the most effective amount of each nanomaterials. Addition of a 1% nano silica,
2% nano titania, 1% nano alumina, and 3% halloysite nano clay , as most effec-
tive amounts, enhanced the heat resistant behavior of the mortars up to 400 ◦C
in terms of residual mechanical properties and the microstructure. Up to 13%
enhancement in the relative residual compressive strength, 28% enhancement in
the relative elastic modulus, and 32% enhancement in the permeability of mortars
were achieved when nanomaterials were added. The interlocking and filling effects
of the nanomaterials played an important role in controlling the governing factor
of vapor pressure in the binding matrix.

Keywords: High performance concrete mortars, Elevated temperatures, nano-
materials, Mechanical properties, Chemical composition.
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BERPRESTASI TINGGI TERDEDAH PADA SUHU MENINGKAT

Oleh

NIMA FARZADNIA

Mei 2014

Pengerusi: Professor Dato Ir. Abang Abdullah Abang Ali

Fakulti: Kejuruteraan

Konkrit prestasi tinggi (HPC) digunakan dalam jumlah yang besar dalam indus-
tri pembinaan pada masa kini disebabkan kelebihannya dari segi teknikal dan
juga ekonomi berbanding konkrit normal. Peningkatan ciri mekanikal dan ke-
tahanlasakan HPC terhasil daripada penggunaan bahan tambah kimia dan min-
eral serta proses penghasilan yang khusus. Walaubagaimanapun, kehilangan de-
ripada kekuatan yang mendadak dan pengurangan modulus kenyal pada suhu
kurang 400 ◦C adalah kelemahan utama HPC berbanding konkrit normal; rintan-
gan haba ini menambahkan persoalan terhadap penggunaannya di dalam industri
pembinaan. Kelemahan HPC pada suhu meningkat sehingga 400 ◦C kebanyakan-
nya diperolehi daripada mekanisma yang dipanggil proses hidrotermal dimana re-
takan dan di dalam beberapa kes serpihan berlaku disebabkan tekanan wap. Ini
disebabkan oleh air yang dibebaskan daripada rerambut serta penurunan produk
penghidratan yang terperangkap di dalam mikrostruktur tidak boleh telap HPC
dan meningkatkan tekanan wap dalaman. Semua ini disebabkan oleh nisbah air
kepada pengikat yang rendah di dalam HPC dengan kehadiran bahan tambah min-
eral seperti wasap silika. Namun begitu, beberapa kajian ada menyatakan tentang
kesan positif bahan tambah mineral pada suhu meningkat disebabkan oleh pem-
bentukan kelompok kalsium silikat hidrat yang lebih kuat dan pembatasan dalam
tumbesaran hablur kalsium hidroksida.

Kajian ini tertumpu kepada kelakuan mortar konkrit prestasi tinggi dengan bahan
nano pada suhu meningkat untuk mensimulasi kelakuan pengikatan matriks yang
didedahkan kepada haba bertujuan untuk meningkatkan kelakuan rintangan haba
pengikatan matriks dengan fokus pada suhu kurang daripada 400 ◦C. Tambahan
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pula, kerana wujudnya perdebatan terhadap kesan bahan tambah mineral ter-
hadap HPC pada suhu meningkat, penemuan kajian ini dapat membantu dalam
mengenalpasti faktor kritikal yang mempengaruhi iaitu: komposisi kimia, kan-
dungan lembapan, dan kebolehtelapan dalam kelakuan pengikatan matriks pada
suhu meningkat. Adalah diketahui bahawa bahan nano dapat mengubahsuai fak-
tor yang disebutkan di atas disebabkan saiz, bentuk dan keadaan pepejal bahan
tersebut.

Empat bahan nano yang biasa digunakan iaitu: silika nano dengan keadaan amor-
fus, titania nano dengan keadaan amorfus dan juga hablur, alumina nano den-
gan keadaan hablur tulen, dan tanah liat nano haloisit berbentuk tiub dipilih
untuk kajian ini dan pecahan 1, 2 dan 3% dari berat simen telah ditambah ke
dalam campuran. Ujian XRD, DSC, SEM dan kebolehtelapan telah dijalankan
untuk mengkaji komposisi kimia dan perubahan mikrostruktur HPC mortar se-
lepas didedahkan kepada suhu meningkat sehingga 1000 ◦C. Baki kekuatan mam-
pat, serapan tenaga, indeks kerapuhan dan nisbi modulus kenyal dikaji untuk
dibandingkan dengan ciri mekanikal mortar dengan dan tanpa bahan nano untuk
mengenalpasti jumlah paling berkesan untuk setiap jenis bahan nano. Penamba-
han 1% silika nano, 2% titania nano, 1% alumina nano dan 3% tanah liat nano
haloisit adalah jumlah paling berkesan untuk meningkatkan kelakuan rintangan
haba mortar hingga 400 ◦C dalam sebutan ciri mekanikal dan mikrostruktur. Se-
hingga 13% peningkatan dalam nisbi baki kekuatan mampat, 28% peningkatan
dalam nisbi modulus kenyal, dan 32% peningkatan dalam kebolehtelapan mor-
tar berjaya dicapai apabila bahan nano ditambah. Kesan saling mengunci dan
isian oleh bahan nano memainkan peranan paling penting untuk mengawal faktor
pengawal tekanan wap dalam matriks pengikat.

Kata kunci: Mortar konkrit prestasi tinggi, Suhu meningkat, Bahan nano, Ciri
mekanikal, Komposisi kimia.
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CHAPTER 1

INTRODUCTION

1.1 Background

Concrete is a widely used construction material around the world and its prop-
erties have undergone changes through technological advancements. Numerous
types of concrete have been developed to enhance its properties. Currently, high-
performance concrete (HPC) is used in massive amounts due to its technical and
economical advantages over normal concrete.The HPC is characterized by im-
proved mechanical and durability properties resulting from the use of chemical
and mineral admixtures as well as specialized production processes.

New technologies may bring new problems in some applications and should be
studied carefully before being applied practically in industry. One important pre-
caution to take into consideration is when high temperatures are involved. Normal
concrete meets certain minimum safety standards since it limits the extension of
damage in fire due to its heat resistance. Recently, drawbacks in the HPC have at-
tracted the attention of researchers after some real vehicle accident fire exposures
such as at the Great Belt tunnel in Denmark and the Chunnel tunnel. A sharp
strength loss and in some cases explosive spalling were some of the major disad-
vantages of the HPC at elevated temperatures raising questions on its application
in the construction industry, especially in tunnels, power plants and military build-
ings. Furthermore, concrete is used in some heat exposed environments such as
runway areas, air field pavements, molten metal splash areas, hot material storage
areas, fire resistant plastering works and some other possible applications which
necessitate a further study on processes by which heat resistance is enhanced.

Some of the most important factors affecting the resistance of concrete at ele-
vated temperatures are aggregate type, cement type, and water to binder ratio. A
number of studies have investigated the effect of the above-mentioned factors on
the behavior of both normal concrete and HPC.For the HPC and its behavior at
elevated temperatures, researchers attach great importance to the effect of min-
eral admixtures since they are the main distinguishing constituents of HPC from
conventional concrete.

Mineral admixtures are available in the market as industrial by-products such
as silica fume and fly ash or agro-wastes such as rice husk and palm oil fuel ash.
They modify the binding matrix of concrete and the interfacial transition zone
(ITZ) by their effect on the formation of hydration products through their poz-
zolanic behavior and nucleation effect due to their high surface area. Today, a
number of efforts have been made to study the addition of mineral additives into
the binding matrix in order to reduce consumption of cement as well as to enhance
the properties of concrete.
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1.2 Statement of the Problem

Results from the latest studies on mineral admixtures in the HPC at elevated
temperatures have encouraged discussions on their effect on the behavior of HPC
binding matrix at elevated temperatures. A number of researchers have addressed
the adverse effect of incorporation of mineral admixtures, which resulted in high
impermeability of the binding matrix, causing sharp strength loss due to evapo-
ration of bound and unbound water in the binding matrix. Others reported an
enhanced heat resistance due to the formation of stronger clusters of C-S-H and
restricted size of calcium hydroxide crystals as a result of pozzolanic behavior of
the mineral admixtures.

Recently, with the introduction of nanomaterials to the concrete industry, new op-
portunities have arisen to study the effects of additives on microstructural changes
and chemical composition of the binding matrix. This is due to remarkable effect
of their nano sized particles on the binding matrix. Incorporation of nanomaterials
in the heat exposed binding matrix may clarify the mechanisms by which concrete
is affected by high temperatures. It is also well established that the incorporation
of nanomaterials can refine the binding matrix by chemical effects such as poz-
zolanic reactivity, and that the physical filling and nucleation effects enhance the
mechanical properties and durability of concrete.

So far , some aspects of incorporation of nanomaterials in cementitous composites
have been studied but there are still areas that need to be covered before mass
production of such concretes. Since nanomaterials considerably influence the for-
mation of hydrated products, moisture content and permeability of the matrix, an
investigation on the behavior of the binding matrix with nanomaterials after ex-
posure to elevated temperature is indispensable. Moreover, the interlocking effect
of nanomaterials in failure planes caused by heat exposure as well as modification
in hydration products may enhance the heat resistance of concrete. This study
intended to investigate the physical filling and nucleation effects, as well as the
chemical effect of pozzolanic reactivity and shape of nanomaterials on the heat
resistant behavior of HPC mortars and to identify the influencing factors on the
behavior of HPC binding matrix at elevated temperatures.

1.3 Objectives

The main aim of this research was to study the effect of adding nanomaterials in
high performance concrete mortars when exposed to elevated temperatures.

This was realized through the following three objectives;

• To investigate the effects of nanomaterials on the microstructure and chem-
ical composition of the binding matrix at ambient room temperature and
after exposure to elevated temperatures.

2
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• To investigate the effects of nanomaterials on the mechanical properties of the
binding matrix at ambient room temperature and after exposure to elevated
temperatures.

• To identify the influencing factors on the behavior of the binding matrix in
high performance concrete at elevated temperatures.

1.4 Research Questions

This study focused on the chemical and physical characteristics of nanomaterials
in order to answer the following questions;

1. How can different characteristics of nanomaterials namely interlocking, nu-
cleation, and pozzolanic activity affect the heat resistant behavior of the
binding matrix?

2. Which is the most dominant factor influencing the behavior of mortars after
being exposed to elevated temperatures: permeability, formation of hydra-
tion products or moisture content?

1.5 Significance of the Study

This study intended to investigate modification of the binding matrix by incorpo-
ration of nanomaterials at elevated temperatures. The selection of nanomaterials
followed two criteria; their potential to enhance heat resistance of the binding ma-
trix, and secondly to investigate the most dominant factor influencing the behav-
ior of binding matrix after being exposed to elevated temperatures when additives
were present in the mix. Knowledge derived from the findings of this study could
elaborate the behavior of the binding matrix at elevated temperatures which may
increase the knowhow of the industry to avoid structural disasters when concrete
structures are subjected to high temperatures and ensure the built infrastructures
are able to endure accidental exposures to fires. Also, it may introduce a process
by which the binding matrix of concrete can be modified in order to be used in
environments where temperature may be elevated to 400 ◦C to 600 ◦C. The in-
troduction of a heat resistant Portland cement concrete may also change the heat
related building codes in terms of concrete cover thickness and etc. Furthermore,
the results of this study may solve the arising problems related to the incorpora-
tion of silica fume, as the mostly used mineral admixtures in the HPC, at elevated
temperatures.

1.6 Scope of Research

The overarching purpose of this study is to introduce mechanisms by which nano-
materials modify the heat resistant behavior of the binding matrix in high perfor-
mance Portland cement concrete at elevated temperatures. To do so, this study
focused on the microstructural changes and chemical composition of the binding

3
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matrix of high performance mortars with the presence of four different types of
nanomaterial at different temperatures of 28 ◦C, 100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C,
600 ◦C, 800 ◦C and 1000 ◦C. Aggregates with size bigger than 4.75 mm were ex-
cluded from this study in order to minimize the effect of aggregates on behavior of
the binding matrix due to their volume concentration and the amount of interfa-
cial area per unit volume. Nano silica, nano titania, nano alumina, and halloysite
nano clay were chosen as additives due to their characteristics either in shape or
chemical compositions and were added in fractions of 1, 2 and 3%. The target
temperature at which the heat resistance needs to be enhanced is 600 ◦C where
using refractory castables are not economical. The effects of the modification of
the matrix at 28 days on behavior of the mortars at elevated temperatures were
considered and early hydration was not studied.

In this study, compressive strength, XRD, DSC, SEM, gas permeability, and mass
loss were major tests conducted to trace properties of mortars both at room tem-
perature and at elevated temperatures. All results were obtained in residual state
after exposure to elevated temperatures with 1 hour steady state and the effect of
cyclic heating was not investigated in this study. Also, spalling was not targeted
in this study since it mostly occurs in large surfaces of the structural members and
the heat exposed damages in mortars can be traced by cracks and sharp strength
loss.

1.7 Overview of the Thesis

The following four chapters shall describe the research work done in this thesis as
follows;

Chapter 2 initially discusses the microstructural differences between normal and
high performance concrete. Then the effects of elevated temperatures on the chem-
ical composition, microstructure and residual mechanical properties of concrete are
mentioned, and how high performance concrete varies in behavior after being ex-
posed to elevated temperatures is further discussed. This chapter also reviews the
influencing factors on the behavior of high performance concrete when exposed
to high temperatures. Moreover, some efforts to enhance the heat resistance of
cementitous composites are reviewed. In the remaining sections of this chapter
the mechanical properties, durability and microstructural changes of paste, mor-
tar and concrete containing targeted nanomaterials are reviewed.

In chapter 3, the methodology including materials, sample preparation and tem-
perature exposure are described and the different tests which were conducted are
mentioned. These tests were implemented to study the mechanical properties of
mortars which included compression, brittleness index, energy absorption, and rel-
ative elastic modulus as well as chemical composition and microstructural changes
namely XRD, SEM, DSC , gas permeability, and mass loss of samples after being
exposed to elevated temperatures. Figures and images are used to illustrate the

4
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tests clearly.

Chapter 4 discusses test results for halloysite nano clay, nano silica, nano tita-
nia, and nano alumina, respectively. This chapter tends to compare and introduce
the most advantageously effective amount of nanomaterials to be used in mortars
with the behavior at elevated temperatures. In this chapter the author aimed
to discuss the most important effect of nanomaterials on the behavior of binding
matrix after being exposed to elevated temperatures.

Finally, Chapter 5 provides a summary and conclusion of the study and suggests
some recommendation for further research in this area of knowledge.

5
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