

UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF LIPASE-CATALYSED SYNTHESIS AND CHARACTERIZATION OF KOJIC ACID ESTERS

NOOR HAYATI BINTI KHAMARUDDIN

FS 2007 18

OPTIMIZATION OF LIPASE-CATALYSED SYNTHESIS AND CHARACTERIZATION OF KOJIC ACID ESTERS

NOOR HAYATI BINTI KHAMARUDDIN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2007

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	viii
DECLARATION	х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii

CHAPTER

1	INTR	ODUCTION	1
1 2	INTR LITEI 2.1 2.2	ODUCTION RATURE REVIEW Enzymes 2.1.1 Enzymes Mechanism 2.1.2 Enzymes in Organic Solvents 2.1.3 Application of Enzymes Lipases 2.2.1 Lipase as Biocatalyst 2.2.2 Sources of Lipase 2.2.2.1 Animal Lipase 2.2.2.2 Plant Lipase 2.2.2.3 Microbial Lipase 2.2.3 Factors Influencing the Catalytic Activity of Lipase 2.2.3.1 Temperature 2.2.3.2 Organic Solvent 2.2.3.3 Water Content 2.2.4 Lipase Specificity 2.2.5 Immobilized Lipase 2.2.6 Lipase-Catalyzed Reaction	1 4 4 4 6 9 11 12 17 18 19 20 22 23 25 26 28
	2.3	2.2.6 Lipase-Catalyzed Reaction2.2.7 Advantages of Lipases2.2.8 Applications of LipasesPalm Oil2.3.1 Oleochemicals	28 29 30 31 32

	2.3.2	Palm and Palm Kernel Oils as Raw Materials for	32
24	4 Substrate Used for the Reaction		
۷.	2.4.1	Fatty acids	36
	2.4.2	Oleic Acid	37
	2.4.3	Kojic Acid	38
		2.4.3.1 Properties of Kojic Acid and Derivatives	40
		2.4.3.2 Application of Kojic Acid and Derivatives	41
2.	5 Synth	esis of Kojic Acid Derivative	45
	2.5.1	Chemical synthesis	46
	2.5.2	Enzymatic synthesis	49
M		S AND METHODS	51
3.1	Cherr	nicals and Materials	51
3.2	2 Metho	odology	54
	3.2.1	Enzymatic Synthesis of Kojic Acid Ester	54
		3.2.1.1 Esterification Reaction	54
		3.2.1.2 Product Isolation and Purification	55
	3.2.2	Screening of Enzyme	56
	3.2.3	Optimization Studies on the Esterification	56
	224	Reaction Product Applycic	64
	3.2.4	3.2.4.1 Thin Laver Chromatography (TLC)	04 64
		3242 Gas Chromatography (GC)	64 67
		3.2.4.3 GC-Mass Spectrometry (GC-MS)	65
		3.2.4.4 Nuclear Magnetic Resonance (NMR)	65
		Spectroscopy	
		3.2.4.5 Infrared (IR) Spectroscopy	66
		IND DISCUSSION	67
4.2		Esterification Reaction	67
	412	Product Isolation and Purification	607
4.2	2 Scree	ining of Enzymes	70
4.3	B Optim	ization Studies on the Esterification Reaction	72
	4.3.1	Effect of Reaction Time	72
	4.3.2	Effect of Temperature	75
	4.3.3	Effect of Amount of Enzyme	77
	4.3.4	Effect of Organic Solvents	79
	4.3.5	Effect of Added Water	82
	4.3.6	Effect of Mole Ratio	83
	4.3.7	Effect of Water Activity (a _w)	86

4.3.7 Effect of Water Activity (a_w)4.3.8 Effect of Fatty Acid Chain Length

	4.3.9	Synthesis of Kojic Acid Derivatives from Acid and Palm Oil	Kojic	90
4.4	Produ	ct Analysis		94
	4.4.1	Thin Layer Chromatography (TLC)		94
	4.4.2	Gas Chromatography (GC)		94
	4.4.3	GC-Mass Spectroscopy (GC-MS)		96
	4.4.4	Nuclear Magnetic Resonance (NMR) Spectroscopy		100
	4.4.5	Infrared (IR) Spectroscopy		106
5 0000				100
5 CONC				109
5.1	Docom	mondation for Eurthor Studios		109
5.2	Necom			
BIBLIOGRA	PHY			113
APPENDICE	S			127
Appendix A	React	ion Mechanism of Kojic Acid and Oleic Acid		128
Appendix B	Calcu	lations		129
Appendix C	Protei	n Content of Lipases		130
Appendix D	Fatty /	Acid Composition of Palm Oil		131
BIODATA OF THE AUTHOR 13		132		

BIODATA OF THE AUTHOR

OPTIMIZATION OF LIPASE-CATALYSED SYNTHESIS AND CHARACTERIZATION OF KOJIC ACID ESTERS

Ву

NOOR HAYATI BINTI KHAMARUDDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

March 2007

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

OPTIMIZATION OF LIPASE-CATALYSED SYNTHESIS AND CHARACTERIZATION OF KOJIC ACID ESTERS

ΒY

NOOR HAYATI BINTI KHAMARUDDIN March 2007

Chairman : Professor Mahiran Basri, PhD

Faculty : Science

Kojic acid ester was successfully synthesized by esterification using lipase from *Pseudomanas cepacia* (Amano PS) as a biocatalyst in an organic media. The reaction mixture consisted of 90 mM of oleic acid, 360 mM of kojic acid and 0.15 g Amano PS in the presence of 2 mL of acetonitrile. The mixture was incubated at temperature of 50°C for 24 hour at shaking speed of 150 rpm. Lipozyme IM, Novozym 435, *Pseudomonas cepacia* lipase, *Aspergillus niger, Candida rugosa* and Eupergit C-Lipase were tested for their suitability as the enzyme in the reaction.

Among the enzymes tested, lipase from *Pseudomonas cepacia* gave the highest enzyme activity (0.015 yield/ μ g protein content) and specific activity (3.738 x 10⁻⁶ mmol ester/min/mg protein content) in the synthesis. Oleic acid

was found to be the best substrate to produce the ester but must be in the presence of acetonitrile as an organic solvent. The maximum percentage yield using *Pseudomonas cepacia* lipase at optimal condition was 44% without removal of water from the reaction mixture. From the optimization studies, kojic acid derivatives can be synthesized from palm oil and kojic acid, by *Pseudomonas cepacia* lipase (Amano PS).

TLC analysis showed that kojic acid ester gave an R_f value of 0.28 in the TLC plate and a retention time of 31.752 min in the gas chromatogram. The product formation and the reactant disappearance were monitored by IR spectroscopy. A strong C=O stretching of the ester at 1746 cm⁻¹ and weak absorption peak of O-H in the unreacted kojic acid indicated completion of the esterification reaction. The gas chromatography-mass spectrometry (GC-MS) analysis gave a molecular ion peak at m/z 478 which was due to the kojic acid ester. ¹H-NMR and ¹³C-NMR spectral data confirmed the molecular structure of the kojic acid ester.

Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGOPTIMUMAN SINTESIS BERMANGKINKAN LIPASE DAN PENCIRIAN BAGI ESTER ASID KOJIK

Oleh

NOOR HAYATI BINTI KHAMARUDDIN Mac 2007

Pegerusi : Profesor Mahiran Basri, PhD

Fakulti : Sains

Ester bagi asid kojik dapat disediakan melalui proses pengesteran dengan menggunakan lipase berasal daripada *Pseudomonas cepacia* (Amano PS) sebagai mangkin dalam pelarut organik. Tindak balas ini mengandungi 90 mM asid oleik, 360 mM asid kojik dan 0.15 g Amano PS dengan kehadiran 2 mL asetonitril. Campuran ini ditindak balas pada suhu 50°C selama 24 jam dan digoncang pada kelajuan 150 rpm. Lipozyme IM, Novozym 435, *Pseudomonas cepacia* lipase, *Aspergillus niger, Candida rugosa* and Eupergit C-Lipase diuji untuk kesesuian sebagai enzim di dalam tindak balas ini.

Di antara enzim yang diuji, lipase daripada *Pseudomonas cepacia* menunjukkan aktiviti enzim yang tertinggi (0.015 hasil/µg kandungan

protein) dan aktiviti spesifik (3.7379 x 10⁻⁶ mmol ester/min/mg kandungan protein) di dalam sintesis. Asid oleik adalah substrat yang terbaik untuk menghasilkan produk ester tetapi dengan kehadiran asetonitril sebagai pelarut organik. Peratusan hasil maksimum untuk lipase *Pseudomonas cepacia* pada keadaan optimum adalah 44% tanpa meyingkirkan air daripada tindak balas. Hasil kajian tinda kbalas optimum, terbitan asid kojik boleh dihasilkan daripada minyak kelapa sawit dan asid kojik, dengan menggunakan lipase *Pseudomonas cepacia* (Amano PS).

Analisis TLC menunjukkan ester asid kojik memberikan nilai R_f adalah 0.28 di dalam kepingan TLC dan 31.752 minit di dalam kromatogram gas. Pembentukan produk dan reaktan dianalisis oleh spektroskopi IR. Peregangan C=O ester yang kuat pada 1746 cm⁻¹ dan penyerapan puncak lemah pada O-H dalam asid kojik yang tidak bertindak balas membuktikan tindak balas pengesteran telah selesai. Analisis kromatografi gasspektrometri jisim (GC-MS) memberikan puncak ion molekul pada *m/z* 478 adalah ester asid kojik. Data spektrum ¹H-NMR dan ¹³C-NMR membuktikan struktur molekul ester asid kojik.

ACKNOWLEDGEMENTS

All praises to Allah, Lord of the universe. Only by His grace and mercy this thesis can be completed.

I wish to express my sincere appreciation and gratitude to Prof. Dr. Mahiran Basri, Prof. Dr. Abu Bakar Salleh, Assoc. Prof. Dr. Mohd. Basyaruddin Abdul Rahman and Assoc. Prof. Dr. Raja Noor Zaliha Abdul Rahman of the Enzyme and Microbial Technology Research group for their great concern, advice, patience, persistent encouragement and invaluable assistance during the period of this study.

My deepest appreciations are also extended to the committee members: Prof. Dr. Arbakaryia Ariff, Dr. Rosfarizan Mohamad and Dr. Roila Awang for their valuable time and comments.

Special thanks also goes to Kak Erin, Salina, Salhah, Ita, Yamin and other members of Lab 401, without whom life would be a bore and uneventful. Thank you for the bond of friendship and for making my stay in UPM a bearable one with many sweet memories and experiences. Thank you for being friends in need.

I am grateful to staff of AOTC and Infoport especially to Mrs. Bariah, Mr. Rizal, Mrs. Yana and Mr. Sabri for their help in using gas chromatography.

I would like to express my honor, love and gratitude to my family for their love and constant supports. Not forgetting, my beloved husband, Mohd. Najib for simply being there and loving me.

Finally, thank you to the Ministry of Science, Technology and Environment and Universiti Putra Malaysia for their financial support and facilities.

I certify that an Examination Committee met on 8 March 2007 to conduct the final examination of Noor Hayati Binti Khamaruddin on her Master of Science thesis entitled "Optimization of Lipase-Catalysed Synthesis and Characterization of Kojic Acid Esters" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Irmawati Ramli, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohd. Aspollah Hj. Md. Sukari, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Taufiq Yap Yun Hin, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Hasnah Mohd Sirat, PhD

Professor Faculty of Science Universiti Teknologi Malaysia (External Examiner)

HASANAH NOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 27 APRIL 2007

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mahiran Basri, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Abu Bakar Salleh, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Arbakaryia Ariff, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Rosfarizan Mohamad, PhD

Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Roila Awang, PhD

Malaysian Palm Oil Board (MPOB) Bandar Baru Bangi, Selangor (Member)

> AINI IDERIS, PhD Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 MAY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NOOR HAYATI BINTI KHAMARUDDIN

Date: APRIL

LIST OF TABLES

Table		Page
1	Example of Commercially Available Lipases	14
2	Yield of Different Oil Crops in Kg Oil Per Hectare Per Year	33
3	Chemical Composition and Properties of Some Oils and Fats	35
4	Applications of Kojic Acid	43
5	Solvents and Their Log P Values	59
6	Weight of Oleic Acid and Kojic Acid for the Study on the Effect of Substrate Concentration	61
7	Screening of Lipases to Synthesize Kojic Acid Ester.	71
8	Synthesis of Kojic Acid Derivatives from Kojic Acid and Palm Oil.	92
9	¹ H-NMR and ¹³ C-NMR Data for Kojic Acid Monooleate	103

LIST OF FIGURES

Figure	÷	Page
1	The Chemical Structure of Kojic Acid	1
2	'Lock and Key' Mechanism of Enzyme	5
3	Fat Splitting Process	36
4	The Chemical Structure of Oleic Acid	37
5	The Reaction Lipase-catalyzed Synthesis of Kojic Acid Monoester	38
6	The chemical Structure of Rutin	39
7	The Chemical Structure of Khellin	40
8	The Chemical Structure of Maltol	44
9	The Chemical Structure of Ethyl Maltol	44
10	The Chemical Structure of Benzenesulphonic Acid	45
11	Treatment of Kojic Acid and Triacetic Acid Lactone with Arylmethylenemalononitrile Derivatives in the Presence of Piperidine of Ethanol	47
12	Synthesis of 1,2,5-trisubstituted-4(1H)-pyridinone.2HBr Derivatives	49
13	Esterification Reaction between Kojic Acid and Oleic Acid to produce Kojic Acid Ester (2-hydroxylmethyl-4- pyranone-5-octadec-9-ene-ate acid)	68
14	Thin Layer Chromatography of Substrates and Products of Esterification Reaction Between Oleic Acid and Kojic Acid Using Lipase from <i>Pseudomonas cepacia</i> (Amano PS).	70
15	Effect of Reaction Time on Enzymatic Synthesis of Kojic Acid Derivative by Lipase from <i>Pseudomonas cepacia</i> (Amano PS).	74

- 16 Effect of Reaction Temperature on Enzymatic Synthesis 76 of Kojic Acid Derivative by Lipase from *Pseudomonas cepacia* (Amano PS).
- 17 Effect of Amount of Enzyme on Enzymatic Synthesis of 79 Kojic Acid Derivative by Lipase from *Pseudomonas cepacia* (Amano PS).
- 18 Effect of Organic Solvent on Enzymatic Synthesis of Kojic 81 Acid Derivative by Lipase from *Pseudomonas cepacia* (Amano PS).
- 19 Effect of Added Water on Enzymatic Synthesis of Kojic 83 Acid Derivative by Lipase from *Pseudomonas cepacia* (Amano PS).
- 20 Effect of Mole Ratio on Enzymatic Synthesis of Kojic Acid 85 Derivative by Lipase from *Pseudomonas cepacia* (Amano PS).
- 21 Effect of Water Activity (a_w) on Enzymatic Synthesis of 88 Kojic Acid Derivative by Lipase from *Pseudomonas cepacia* (Amano PS).
- 22 Effect of Fatty Acid Chain Length on Enzymatic Synthesis 90 of Kojic Acid Derivative by Lipase from *Pseudomonas cepacia* (Amano PS).
- 23 Gas Chromatography Analysis of Kojic Acid and Palm Oil 93 Before Reaction and After Reaction-Comparison with Known Standard.
- 24 Gas Chromatography of the Esterification Reaction 95 between Oleic Acid and Kojic Acid
- 25 General MS Fragmentation Pattern of Silylated Product of 96 Kojic Acid Monooleate
- 26 Total Ion Chromatogram of Silylated Kojic Acid 98 Monooleate
- 27 Mass Spectrum of Silylated of Kojic Acid Monooleate 99
- 28 ¹H-NMR Spectrum of Kojic Acid Monooleate 101
- ²⁹ ¹³C-NMR Spectrum of Kojic acid Monooleate 102

30	HMQC Spectrum of Kojic Acid Monooleate	104
31	HMBC Spectrum of Kojic Acid Monooleate	105
32	IR Spectrum of Oleic Acid	107
33	IR spectrum of Kojic Acid Monooleate	108
34	Possible Reaction Mechanism between Kojic Acid and Oleic Acid	128

LIST OF ABBREVIATIONS

KAMO	Kojic acid monooleate
KAML	Kojic acid monolaurate
TLC	Thin Layer Chromatography
FT-IR	Fourier Transform-Infra Red
GC	Gas Chromatography
GC-MS	Gas Chromatography-Mass Spectrometry
NMR	Nuclear Magnetic Resonance
TMS	Tetramethylsilane
DMF	Dimethylformamide
γ	gamma
a _w	initial water activity
°C	degree celcius
Å	Angstrom
rpm	rotation per minute
sp.	species
mM	milimolar
cm	centimeter
mm	millimeter
m	meter
g	gram
mL	milliliter

