

UNIVERSITI PUTRA MALAYSIA

RELATIONSHIP BETWEEN REFLECTION COEFFICIENT AND MOISTURE CONTENT OF OIL PALM FRUIT USING AN OPEN-ENDED RECTANGULAR WAVEGUIDE TECHNIQUE

ADIB BIN ALI

FS 2007 15

Formatted: Header distance from edge: 70.9 pt, Footer distance from edge: 70.9 pt

DETERMINATION OF REFLECTION COEFFICIENT OF OIL PALM FRUITS IN VARIOUS MOISTURE CONTENTS AT X-BAND FREQUENCIES USING A WAVEGUIDE PROBE<u>A STUDY ON THE</u> RELATIONSHIP BETWEEN REFLECTION COEFFICIENT AND MOISTURE CONTENT_OF_OIL PALM FRUIT USING AAN OPEN-ENDED RECTANGULAR WAVEGUIDE TECHNIQUE

Comment [Adib1]: DRS

By

ADIB BIN ALI

Thesis Submitted to the School of Graduate Studies, <u>UniversitiUniversiti</u> Putra Malaysia<u></u> <u>Hin FulfilmentFulfilment</u> of the Requirement for the Degree of Master of Science

May 200<u>7</u>6

Specially dedicated to:

My Wife and Daughter<u>Family</u>,

My beloved

Father, Mother, Brothers and Sisters,

Nieces and Nephews,

and Friends.

l

I

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DETERMINATION OF REFLECTION COEFFICIENT OF OIL PALM FRUITS IN VARIOUS MOISTURE CONTENTS AT X-BAND FREQUENCIES USING A WAVEGUIDE PROBE<u>A STUDY ON THE</u> RELATIONSHIP BETWEEN REFLECTION COEFFICIENT AND MOISTURE CONTENT OF OIL PALM FRUIT USING AN OPEN-ENDED RECTANGULAR WAVEGUIDE TECHNIQUE

By

ADIB BIN ALI

May 20057

Chairperson -: _Zulkifly Abbas, Ph₇D₇

Faculty----: Science

The thesis describes the development of an open-ended waveguide technique for the determination_-ofof complex permittivity and moisture content of the oil palm fruits of various degree of fruit ripeness. The operating frequency of the -waveguide operate betweenwas between 8 GHz and 12 GHz. A theoretical analysis has been carried out to determine the relationship between reflection coefficient, frequency and moisture content in the oil palm fruit. The propagation of electromagnetic wave is assumed to be transverse electric (TZE) mode. The measurement system consists of thea standard waveguide and a PC-controlled vector network analyzer (VNA). Dielectric measurement software <u>A computer program</u> has been developed to control and acquire reflection data from the VNA using Agilent VEE at each 201 frequency points between 8 GHz and 12 GHz. Comparison results between calculated and measured reflection coefficient are presented. A calibration equation relating the

Comment [Adib3]: Drzd

Comment [Adib2]: DRS

measured and predicted moisture content has been established based on more than

1500 fruit samples. The actual moisture content werewas found determined determining by standard oven drying method. The calibration equation was found to be accurate within \pm 5-% when tested on 50 different fruit samples which each biker have 30 fruits with same moisture content of various moisture contents.

Comment [Adib4]: Drs

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan bagi mendapat<u>untuk</u> Ijazah Master Sains

KAJIAN KAITAN DI ANTARA KANDUNGAN KELENGASAN DAN PEKALI PANTULAN BUAH KELAPA SAWIT MENGGUNAKLAN TEKNIK PERANTI PANDU GELOMBANG

Oleh

ADIB BIN ALI

Mei 20057

Pengerusi----: Zulkifly Abbas, Ph-D-

Fakulti-----: Sains

Tesis ini memperihalkan pembinaan teknik pandu gelombang hujung terbuka untuk menentukan ketelusan kompleks dan kandungan kelengasan bagi buah kelapa sawit yang mempunyai peringkat kematangan yang berlainan. Peranti pandu gelombang ini beroperasi antara 8GHz hingga 12GHz. Analisis teori telah dilaksanakan untuk menentukan hubungan diantara pekali pantulan, frekuensi dan kandungan kelengasan di_dalam buah kelapa sawit. Rambatan gelombang elektromagnet tersebut telah dianggap sebagai ragam elektrik (TZE). Sistem pengukuran ini terdiri daripada peranti pandu gelombang dan penganalisis rangkaian vektor (VNA) kawalan PC.

Perisian pengukuran dielektrik telah dibina untuk mengawal dan memperolehi pantulan data-data daripada VNA dengan menggunakan Agilent VEE pada setiap 201 titik frekuensi antara 8GHz and 12GHz. Perbandingan keputusan diantara pekali pantulan yang diukur dan yang dikira ditunjukkan didalam tesis ini. Persamaan penentukuran kandungan kelengasan yang berhubung-mengaitkan antara pengukuran kandungan kelengasan dan ramalan kandungan kelengasan telah dibina bergantung kepadamenggunakan lebih daripada 1500_-buah kelapa sawit-sampel. Kandungan kelengasan yang sebenar telah diperolehi denganditentukan menerusi kaedah piawai pengeringan oven. Ketepatannya penentukuran persamaan tersebut adalah dalam lingkungan \pm 5–% apabila diuji atas 50 buah sampel yang mana setiap bikar mengandungi 30 biji buah kelapa sawit.

Comment [Adib5]: drs

ACKNOWLEDGEMENTS

I would like to thank "The man of a thousand and one ideas", my advisor, Dr. --- Formatted: Line spacing: Double Zulkifly Abbas. His patience, encouragement, guidance and financial support were essential to the completion of this thesis.

I would like to thank my other thesis committee members for their suggestions and
 Formatted: Line spacing: single
 Formatted: Line spacing: Double
 Formatted: Line spacing: Double

Formatted: Line spacing: single

I thank the other members of research group, for their overall help in the completeion - - - Formatted: Line spacing: Double of this thesis.

Formatted: Line spacing: single
 Formatted: Line spacing: Double

I want to thank the Electromagnetic Research Lab and Graduate $\frac{sS}{S}$ chool $\frac{sO}{S}$ ffice for early financial support through the Exploratory and Foundational Research program.

I would like to thank all the wonderful supervisory committee, especially for Prof. Abd Halim Shaari and Dr. Jumiah Hassan for always keeping me thinking and for always being willing to answer even the most stupid questions.

I certify that an Examination Committee met on 1211th AprilMay 20037 to conduct the final examination of You Kok YeowAdib Bin Ali on his Master of Science thesis entitled "<u>A Study on the Relationship Between Reflection Coefficient and Moisture</u> <u>Content in Oil Palm Fruit Using An Open-Ended Rectangular Waveguide</u>

Comment [Adib7]: DRS

<u>Technique</u><u>Development of a New Technique for Measurement of Dielectrie</u> <u>Properties of Oil Palm Fruits</u>" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree of Master of Science.

Members of the Examination Committee are-were as follows:

ZAINAL ABIDIN TALIBWANan Mahmood Wan Mat Yunus, PhD-

Associate Professor, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Chairman)

Sidek Abdul Aziz PhD

ZULKIFLY ABBAS, Ph.D. Associate Professor Lecturer, Faculty of Science and Environmental Studies, Universiti Putra Malaysia-(MemberInternal Examiner)

Zaidan <u>A</u>bdul <u>W</u>ahab, <u>PhD</u>

ABDUL HALIM SHAARI, Ph.D.

Professo<u>Associate</u> <u>FProfessor</u>, Faculty of Science and Environmental Studies, Universiti Putra Malaysia-(Internal Examiner) (Member)

Muhamad Rasat Muhamad JUMIAH HASSAN, PhD.

<u>ProfessorLecturer</u>, Faculty of Science-and Environmental Studies, Universiti <u>Putra MalaysiaMalaya</u> <u>Malaysia-</u> (<u>External Examiner</u>) (<u>Member</u>)

> GULAM RUSUL RAHMAT ALIHASANAH MOHD GHAZALI, PhD. Professor /Deputy Dean

School of Graduate Studies, Universiti Putra Malaysia.

Date: 3 AUGUST 2007

This thesis<u>was</u> submitted to the Senate of Universiti Putra Malaysia <u>and</u> has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee <u>awe</u>re as follows:

Zulkifly Abbas, PhD. Lecturer, Faculty of Science and Environmental Studies, Universiti Putra Malaysia. (Chairman)

Abdul Halim Shaari, PhD. Professor, Faculty of Science and Environmental Studies,

Universiti Putra Malaysia-(Member)

Jumiah Hassan, PhD-

Associate ProfessorLecturer, Faculty of Science and Environmental Studies Universiti Putra Malaysia-(Member)

Comment [Adib8]: DRS

AINI IDERIS, PhD.,

Professor <u>+and</u> Dean School of Graduate Studies, Universiti Putra Malaysia

Date: 9th AUGUST 2007

DECLARATION

I hereby-declare that the thesis is based on-my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is noror concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

ADIB BIN ALI

Date: 1st AUGUST 2007

<u>T</u>ABLE OF CONTENTS

Page

DEDICATION	ii	 Formatted: Font: Bold
ABSTRACT	iii	 Formatted: Font: Bold
ABSTRAK	V	 Formatted: Font: Bold
ACKNOWLEDGEMENTS	vii	 Formatted: Font: Bold
APPROVAL	viii	 Formatted: Font: Bold
DECLARATION	Х	Formattade Cante Bald
LIST OF TABLES	xi vi	
LIST OF FIGURES	xiv	 Formatted: Font: Bold
LIST OF SYMBOLS ABBREVIATIONS	XV II I	 Formatted: Font: Bold
		 Formatted: Font: Bold

CHAPTER

1

1	_ ,0		*,		Formatted: Font: Bold
	-INTR	ODUCTION	<u> </u>		Formatted: Tab stops: 36 pt, Left + 387 pt,
	1.1	Introduction	4 <u>1</u>	\sim	Left
	1.2	An Overview of the Oil Palm Fruits-Tree and Bunch	<u> 22</u>		Formatted: Font: Bold
	1.3	Microwave	44		
	1.4	Microwave Moisture MeasurementMeasure of Ripeness o	f Oil Palm		
		Fruits	5 5		
	1.5	Problem StatementMicrowave Moisture Measurement-	77		
	1.6	Probe Measurement SystemScope of The Thesis	9 9		Formatted: Font: Not Bold
	1.7	Objectives and Scope of Thesis	10 -		Formatted: Bullets and Numbering

2.0 2	L	ITERATURE REVIEW	12	* >	Formati
	2.1	Introduction	12	 * 	Formatt
	2.2	The Oil Palm Fruit	12	•	stops: 3
	2.3	Variation in Dielectric Properties of the Palm Oil Mixture			Formatt
		with Moisture Content	16	in in	Formatt
		2.3.1 Dielectric Properties of the Palm Oil Mixture	16	- N	pt, Tab s
		2.3.2 Fractional Volume of Water in a Palm Oil Mixture	17	\sim	
	2.4	Microwave of Measurement Ripeness of Oil Palm Fruit	18		Formati
		with Moisture Content	-11		Formati
		2.1.1Dielectric Properties of the Palm Oil Mixture	11	· · ·	Formati
		2.1.2Fractional Volume of Water in a Palm Oil Mixture	$\frac{11}{12}$		pt, Tab s at 54 pt
				<u>````</u>	

	Formatted: Font: Bold					
	Formatted: No bullets or numbering, Tab stops: 36 pt, Left + 387 pt, Left					
Ì	Formatted: Tab stops: 387 pt, Left					
	Formatted: Indent: Left: 36 pt, Hanging: 36 pt, Tab stops: 72 pt, Left + 387 pt, Left + Not at 54 pt + 414 pt					
Ì	Formatted: Bullets and Numbering					
Ì	Formatted: Bullets and Numbering					
	Formatted: Indent: Left: 36 pt, Hanging: 36 pt, Tab stops: 72 pt, Left + 387 pt, Left + Not at 54 pt + 414 pt					
Ì	Formatted: Bullets and Numbering					

3.0			* 5	Formatted: Font: Bold
	THE	ORY OF AN OPEN-ENDED WAVEGUIDE	20	Formatted: Tab stops: 36 pt, Left + 387 pt,
	3.1	Maxwell's Equation	15 <u>20</u>	Left
	3.2	Admittance of Open-Ended Waveguide	<u>2182</u> ``	Formatted: Font: Bold
		3.1.1 <u>An</u> Overview of Open-Ended Waveguide	<u>2182</u>	Formatted: Font: Bold
		3.1.2 The Rectangular Aperture	<u>1823</u>	
1		A The Infinite Lossy Medium	<u>18</u>	
		B Numerical Results and Interpretation	-25	
		C Lossy Slab	-31	
		C 2000 0 000	01	
4.0	-CAL	CULATION OF THEOR <mark>+E</mark> TICAL VALUES OF		Formatted: Font: Bold
	REFI	LECTION REFLECTION COEFFICIENT	<u>41</u> ()	Formatted: Tab stops: 387 pt, Left + Not at
	4.1	Introduction	<u>4</u>	199.2 pt + 310.35 pt
I		-37<u>1</u>		Formatted: Font: Bold
1	4.2	Variation in Normalized Conductance and Susceptance		Formatted: Font: Bold
		Susceptance with Frequency	4 39 3∙、 \`	Formatted: Font: Bold
		1 1 5		Formatted: Tab stops: 387 pt Left + Not at
			- N.	310.35 pt + 389.85 pt
	4.3	Variation in Complex Permittivity of Oil Palm Fruit,	Ň	Formatted: Tab stops: 387 pt, Left + Not at
		ε^*_{fruit} with Frequency and Moisture Content at 26 °C	4 <u>253</u> ∢	389.85 pt
				Formatted: Tab stops: 387 pt, Left + Not at 389 85 pt
				(
<u>5.0</u>				Formatted: Font: Bold
	MET	HODOLOGY AND <u>EXPERIMENTAL RESULTS</u>	55	Formatted: Tab stops: 36 pt, Left + 387 pt,
	5.1	Sample Preparation	53<u>55</u>	
	5.2 5.2	Experimental set-up Calibration and Massurament Procedures	33 <u>36</u>	Formatted: Font: Bold
	5.5 5.4	Data Acquisition and Control to Determine the	38<u>39</u>	Formatted: Font: Bold
	5.4	Reflection Coefficient an Permittivity Software Development	6061	Formatted: Font: Not Bold
		5.4.1 Data Acquisition	60 61	Formatted: Font: Not Bold
		5.4.2 Calculation of Reflection Coefficient. $\Gamma_{c.s}$	$\frac{6263}{62}$	Formatted: Font: Not Bold
		5.4.2 Colculation of Parlaction Coefficient of Water Γ	6264	Formatted: Indent: Left: 72 pt
		5.4.4 C_{1} L L C_{2} Calculation of Reflection Coefficient of water, Γ_{3}	02<u>04</u>	
	55	5.4.4 Calculation of the Complex Permittivity	0 <u>00</u> 6567	
I	3.3	5.5.1 Variation in the Pofloation Coefficient of Fruit	<u> </u>	
1		Sample with Frequency and Moisture Content	6567	
1		5.5.2 Relationship between Estimated and Actual Values of	00 <u>07</u>	
		Moisture Content and Comparison between Measured		
		and Theoretical Reflection Coefficient	69 72	
		5.5.3 Variation in Dielectric Constant and loss Factor		
		X111		

with Moisture Content	7378	
5.6 The Uncertainties	<u>8185</u>	
5.6.1 Effect of the Uncertainties	85<u>89</u>	
6CONCLUSION AND SUGGESTION	<u>90</u>	Formatted: Font: Bold
6.1 <u>IntroductionConclusions</u>	86 90	Formatted: Font: Bold
6.2 <u>Suggestions</u> Conclusion	87<u>91</u>	Formatted: Tab stops: 36 pt, Left + 387 pt, Left + Not at 72 pt
		Formatted: Not All caps
(2) Supporting	0.0	
6.3 Suggestion	88	
DEFEDENCES		Formattadi Santi Dald
		Formatted: Font: Bold
+	<u>20</u> 40	
APPENDIXCES	<u>98</u>	Formatted: Font: Bold
A. Approximation of Admittance Model B. Calculation of Sensitivity Probe	<u> </u>	Formatted: Font: Not Bold
C. MATLAB Programs	<u> </u>	Formatted: Tab stops: 387 pt, Left
BIODATA OF	STUDENT <u>VITA</u>	Formatted: Font: Bold
D 1	<u>104</u>	
D.1		
	∢	Formatted: Normal
1		
	◄ = -	Formatted: Normal
LISI OF TABLES		
Table	Pana	
Table	1 agt	
xiv		

<u>1.1</u>	_Microwave Frequencies from IEEE	<u>52</u>	4	Formatted: Left, Indent: Left: 0 pt, First line: 0 pt, Line spacing: Double
<u>2.1</u>	Variation in size, colour, percentage of oil/fresh mesocarp and percentage of free fatty acid with different stages of ripeness.	<u>13</u>		
5.1	Table for determination of uncertainty between predicted moisture content and measured moisture content (oven).	72<u>76</u>		
5.2	Table for determination of uncertainty between reflection coefficient measurement and reflection coefficient theory.	80<u>77</u>		

---- Formatted: Normal, Left

LIST OF FIGURES

	Figure		Page	
	1.1	 Palm oil tree and bunch (a) Palm oil tree (b) Schematic division of fruit bunch (c) The outer and inner halves of a spikelet. 	4 <u>3</u>	
	<u>2.1</u>	External appearance of oil palm fruits (Hartley, 1977).	<u>15</u>	
	<u>2.2</u>	Internal appearance of oil palm fruits (Hartley, 1977).	<u>15</u>	
	3.<u>3.</u>01	Rectangular aperture in a ground plane	18<u>22</u>	
	3. <u>2</u> 4	Rectangular aperture in a ground plane	19<u>23</u>	
ļ	<u>3.3</u>	Waveguide Analogy	34	
l	4. <u>1</u> 0	Rectangular waveguide mouth with an infinite flange	<u>4371</u>	
	4 <u>.14.2</u>	The theoretical normalized conductance, G/Y_o and susceptance, B/Y_o by considering various values of C = 0:0.2:2 with A = $\pi/2$ and B = π	4 44 <u>3</u>	Formatted: Bullets and Numbering
	4 <u>.24.3</u>	The theoretical normalized conductance, G/Y_o and susceptance, B/Y_o by considering various values of C = 0:0.5:6 with A = $\pi/2$ and B = π	4 <u>454</u>	Formatted: Bullets and Numbering
	4 <u>.34.4</u>	The theoretical normalized conductance, G/Y_0 and susceptance, B/Y_0 by considering various values of C = 0:0.2:2 with A = $3 \pi/4$ and B = $3 \pi/2$.	<u>4465</u>	Formatted: Bullets and Numbering
	4 <u>.44.5</u>	The theoretical normalized conductance, G/Y_o and susceptance, B/Y_o by considering various values of C = 0:0.5:4 with A = $3\pi/4$ and B = $3\pi/2$.	<u>4476</u>	Formatted: Bullets and Numbering
		xvi		

<u>4.6</u>	The theoretical normalized conductance, G/Y_o and susceptance, B/Y_o by considering various values of C = 0:0.5:4 with A = π		-	Formatted: Bullets and Numbering
	and $B = 2\pi$.	47	4	Formatted: Indent: Left: 36 pt
		-		
<u>4.64.7</u>	The variation theoretical reflection coefficient, for water at			Formatted: Bullets and Numbering
	<u>26°C.Reflection coefficient theory in various moisture content and</u>	4951		
I	requercy.	-7 <u>51</u>		
4 <u>.74.8</u>	Reflection coefficient theory in various moisture content and			Formatted: Bullets and Numbering
	frequency. Reflection coefficient measurement in various moisture	5051		
I	content and requercy.	50<u>51</u>		
4 <u>.84.9</u>	Reflection coefficient measurement in various moisture content		-	Formatted: Bullets and Numbering
	and frequency. Reflection coefficient theory and measurement are	5052		
I	protect in a single axis in various moisture content and requency.	<u>50<u>52</u></u>		
4 <u>.94.1</u> (Deflection coefficient theory and measurement are plotted in a		•	Formatted: Line spacing: single
	single axis in various moisture content and frequency. The variation	1 5152		Formatted: Bullets and Numbering
	theoretical reflection coefficient, for water at 20 C.	-	-	Formatted: No bullets or numbering, Tab
4.10 4.1	11	V	-	Formatted: Bullets and Numbering
1	ariation in calculated dielectric constant of oil palm fruit, ε' with	5254		
I	frequency and moisture content at 26 C.	32<u>34</u>		
5.1	Oil palm fruit of various moisture content. (a), bunch of oil palm			
	fruit (b) and (c) oil palm fruit could be look clearly at fruit bunch.	55<u>55 - 56</u>		
5.2(a)	Experimental set-up <u>diagram</u> .	56<u>57</u>		
5 2(b)	The open ended waveguide Procedure to Establish Eq. (5.13) to Eq.			
5.2(0)	The open ended waveguide <u>r toeedare to Establish Eq. (5.15) to Eq</u>	<u>.</u>		
	<u>(5.17)</u> .	57<u>58</u>		
53	The main panel for collection of data from acquisition of			
0.0	measurement by controls the VNA with PC. The main panel to			
	calculate the theoretical reflection coefficient of water (MATLAB program, example for frequency 8 GHz)	63 61		
		_		

	5.4	The main panel to calculate the theoretical reflection coefficient of water (MATLAB program, example for frequency 8 GHz)The main panel for collection of data from acquisition of measurement by control the VNA with PC.	<u>6465</u>
ĺ	5.5	Variation in the reflection coefficient with frequency at various percentage of moisture content.	66<u>68</u>
	5.6	Variation in reflection coefficient, R with moisture content (a) 8 GHz, (b) 9 GHz, (c) 10 GHz, (d) 11 GHz and (e) 12 GHz.	68<u>69 - 71</u>
	5.7	Comparison between predicted and actual moisture content at (a) 8 GHz, (b) 9 GHz, (c) 10 GHz, (d) 11 GHz and (e) 12 GHz.	71<u>73 - 75</u>
	5.8	The $\frac{\forall v}{2}$ ariation of <u>(a)</u> , dielectric constant, <u>(a)</u> and <u>(b)</u> , <u>variation</u> loss factor (b) of oil palm fruit, with frequency.	75<u>80</u>
	5.9	Variation of the reflection coefficient measurement, reflection coefficient theory and reflection coefficient obtained from mixture model with frequency is plotted together (a), (b), (c), (d), (e), (f), (g) and (h).	79<u>81 - 84</u>
l	5.10	Uncertainty Mean error between predicted moisture content and measured moisture content.	81<u>85</u>
	5.11	Uncertainty Mean error between predicted moisture content and measured moisture content.	82 86
	5.12	The uncertainty Mean error between reflection coefficient measurement, S11 and reflection coefficient theory, Ft	83 87
l	5.13	The <u>uncertainty</u> mean error between reflection coefficient measurement, $S_{11,-1}$ and reflection coefficient theory, $F_{\underline{t}}$.	84<u>88</u>

xviii

LIST OF SYMBOLS ABBREVIATIONS

ϵ^* or ϵ	complex permittivity
ε	permittivity of vacuum
ε	real part of permittivity or dielectric constant
8	imaginary part of permittivity or loss factor
ϵ_{∞}	optical permittivity
ε	static permittivity
ε _c	complex permittivity of coaxial line (PTFE)
$\epsilon^*_{ m w}$	complex permittivity of water
$\epsilon_{\rm f}^*$	complex permittivity of fiber
ε [*] _o	complex permittivity of oil
ϵ^*_{fruit}	complex permittivity of oil palm fruit

μ_{o}	free space permeability
μ	permeability
σ	conductivity
$\tan \delta$	loss tangent
V _w	volume fraction of water
V _f	volume fraction of fiber
V _o	volume fraction of oil
$\rho_{\rm w}$	relative density of water
$\rho_{\rm f}$	relative density of fiber
ρ_{o}	relative density of oil
m _w	mass of water
m _f	mass of fiber
mo	mass of oil
m.c. or m	moisture content
γ	propagation constant
f	frequency
$\mathbf{f}_{\mathbf{c}}$	cutoff frequency
ω	angular frequency
τ	relaxation time
c	velocity of light
λ	wavelength
λ_{o}	free space wavelength
λ_{c}	cutoff wavelength

a	inner radius of coaxial probe
b	outer radius of coaxial probe
d	sample thickness or sensitivity depth
D	physical length of the probe
L	effective transmission line length
ko	free space wave number
k ₁	wave number of internal medium probe
k ₂	wave number of external medium under test
Ē	electric field or electric intensity
Ď	electric flux density
Ĥ	magnetic field or magnetic intensity
B	magnetic flux density
P	polarization
Ĵ	current density
$ ho_q$	charge density
Ι	electric current
Š	area
ſ	distance
x, y, z	Cartesian coordinates
ρ, φ, z	cylindrical coordinates
V	total potential
Γ	reflection coefficient
$ \Gamma $	magnitude reflection coefficient
Γ' or $\operatorname{Re}(\Gamma)$	real part of reflection coefficient xxi

Γ or Im(Γ)	imaginary part of reflection coefficient
Γ_1	theoretical reflection coefficient of short circuit
Γ_2	theoretical reflection coefficient of open circuit
Γ ₃	theoretical reflection coefficient of water
$\Gamma_{ m fruit}$	measured reflection coefficient of fruits
Γ _c	calculated reflection coefficient of fruits
φ	phase of reflection coefficient
S^{Γ}_{ϵ}	sensitivity of an open ended coaxial probe
${ m S}_{ m MC}^{\sqrt{arepsilon}^*}$	sensitivity of mixture model
Y _o	characteristic admittance of coaxial line
G	conductance
В	susceptance
$\frac{G(0)}{Y_o}$	normalized conductance
<u>B(0)</u> Y _o	normalized susceptance
Ŷ	normalized admittance
Y	aperture admittance
Zo	characteristic impedance
Z	impedance
R	resistance
Х	reactance
Co	static value of the fringe-field capacitance
C _f	fringe-field capacitance of coaxial line
C _T	total fringe-field capacitance of coaxial line xxii

A_1, A_2, C_1	parameters empirical
А	surface of the sample
F	flange radius
Si(x)	sine integral
$J_{o}(x)$	Bessel function of zero order
α, β, χ	optimization coefficients
G _m	series terms of normalized conductance, n=0,1,2
B _m	series terms of normalized susceptance, $n=0,1,2$
G	modified series terms of normalized conductance
B	modified series terms of normalized susceptance
$e_{11}, e_{22}, e_{12}, e_{21}$	[e] matrix
S_1 or ρ_1	measured reflection coefficient of short circuit
S_2 or ρ_2	measured reflection coefficient of open circuit
S_3 or ρ_3	measured reflection coefficient of water
S_d or ρ_m	measured reflection coefficient of medium under test
S _{11M}	measured values of reflection coefficient
S _{11A}	actual values of reflection coefficient
ξ_1 , ξ_2 , ξ_3	criterion error or error function
TEM	Transverse Electromagnetic Mode
ТЕ	Transverse Electric Mode
ТМ	Transverse Magnetic Mode
EFIE	Integral Equation for Aperture Electric Field
	xxiii

MFIE	Integral Equation for Aperture Magnetic Field
PTFE	Polytetrafluorethylene (Teflon)
SMA	Sub-Miniature A
type N	Navy type connector
VNA	Vector Network Analyzer
GPIB	General Purpose Interface Bus
Agilent VEE	Agilent Visual Engineering Environment
MATLAB	Matrix Laboratory

