UNIVERSITI PUTRA MALAYSIA

ELUCIDATION OF BASIC MECHANISMS OF FLAVOKAWIN B
INHIBITORY EFFECTS ON THE GROWTH OF SELECTED CANCER
AND TRANSFORMED NORMAL CELL LINES

NASIR TSAFE UMAR

FPSK(m) 2008 8
ELUCIDATION OF BASIC MECHANISMS OF FLAVOKAWIN B INHIBITORY EFFECTS ON THE GROWTH OF SELECTED CANCER AND TRANSFORMED NORMAL CELL LINES

BY

NASIR TSAFE UMAR

Thesis submitted in fulfilment of the requirements for the Degree of Master of Science in the Faculty of Medicine and Health Sciences Universiti Putra Malaysia

May 2008
DEDICATION

To all the de-humanised, oppressed,

starving, sub-dued and suppressed

peasants of the world.
ELUCIDATION OF BASIC MECHANISMS OF FLAVOKAWIN B INHIBITORY EFFECTS ON THE GROWTH OF SELECTED CANCER AND TRANSFORMED NORMAL CELL LINES

By

NASIR TSAFE UMAR

May 2008

Chair: Associate Professor Dr Rozita Rosli, PhD

Faculty: Medicine and Health Sciences

Flavokawin B (FNB) is a hydroxychalcone isolated from a local plant species, Alpinia zerumbet of the Zingiberaceae family. It has been shown to have antioxidant and pro-immune properties. The aim of the present study was to assess the basic growth inhibitory mechanisms of FNB, on 21 cell lines, comprising tumour and transformed cell lines. The cells were treated with FNB at 0.1, 1, 3, 10, 30 and 100 µM. Over 3 to 4 days exposure, FNB selectively inhibited the growth of all the cell lines. Tumour cells were more sensitive to FNB than normal cells. MTT cytotoxicity assay was then conducted in order to assess the cytotoxic-indices of FNB. Caco-2, CEM-SS, MCF-7, T-47D and U87MG were found to be the five most sensitive cell lines, with IC50 values of 6.53 ± 0.81, 2.00 ± 0.41, 7.67 ± 0.71, 8.67 ± 1.40 and 14.00 ± 3.00 µM respectively. Tamoxifen (TMX) was used as a positive control for the 5 cell lines, with all the IC50 values found to be comparable to that of FNB. Cell survival analysis confirmed very significant patterns of FNB efficacy
(P<0.001 - P<0.05), in comparison to the untreated/negative controls in all the 5 cell lines. Apoptosis induction was then assessed by life-culture morphology in all the 21 cell lines, out of which 9 indicated apoptosis induction. Nucleoprotein fluorescence analysis was carried out in order to quantify and establish apoptotic frequencies. Combined image captures were used to analyse the apoptotic effects. FNB was found to induce apoptosis at the IC50 concentrations in 9 of the 21 cell lines. The most significant FNB-induced apoptotic frequencies compared to the untreated controls, were found at 70.67 ± 7.51% (P<0.01), 68.17 ± 6.81% (P<0.01), 49.33 ± 7.32% (P<0.01), 57.5 ± 4.82% (P<0.01) and 52.83 ± 3.62% (P<0.001), for the Caov-3, CEM-SS, CHO, HL-60 and MDA-MB-468 cell lines, respectively. The maximal apoptotic frequency effect induced by FNB was on the Caov-3 cell line, which was more significant than etoposide (ETS) positive control (P<0.05). Apoptosis induction was confirmed only in the 5 most significant (P≤0.01) cell lines, using agarose gel electrophoresis for DNA-laddering. The effect of FNB on oestrogen metabolism at IC50 concentrations, was tested using radioisotope enzymatic assays for oestrone sulphatase (E1STS) and oestradiol-17β hydroxysteroid dehydrogenase (oestrone → oestradiol, E2HD), on four selected human breast cancer cell lines (MCF-7, T-47D, MDA-MB-231, MDA-MB-468). FNB had significant inhibitory effects on the E1STS enzyme in the MCF-7 and T-47D cell lines, with 26.41 ± 0.69% (P < 0.01) and 18.53 ± 1.21% (P < 0.05), respectively at IC50 levels. FNB also significantly inhibited the E2HD enzyme in the T-47D cell line (36.40 ± 1.70%, P < 0.01). Confirmatory assays using the E1STS and E2HD ELISA kits were conducted on the MCF-7 and T-47D cell lines. Similar inhibitory effects of FNB on both enzymes were found in the MCF-7 and T-47D cell lines. On the other hand, FNB stimulated both enzymes in the non-oestrogen dependent cell lines, MDA-MB-
231 and MDA-MB-468. Finally, genotoxicity study was conducted in order to establish a safety profile of FNB in the CHO normal cell line, using ethylmethanesulphonate (EMS) as a positive control. Antigenotoxicity was assayed using a combination of FNB and EMS. The results showed an insignificant FNB clastogenicity (P>0.05, at 45 µM) and a significant FNB anti-clastogenicity (P<0.05, at 45 µM), in the CHO cells. In conclusion, the overall cytotoxicity, selectivity, cell survival, apoptotic, anti-oestrogenic, non-genotoxic and anti-genotoxic properties of flavokawin B (which are comparably better than TMX, ETS and EMS), forms the basic inhibitory mechanisms, which make this compound potentially an interesting anti-neoplastic agent.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENJELASAN MEKANISMA-MEKANISMA ASAS KESAN-KESAN PERENCETAN FLAVOKAWIN B KE ATAS PERTUMBUHAN TITISAN-TITISAN SE KANSER DAN TERTRANSFORMASI YANG TERPILIH

Oleh

NASIR TSAFE UMAR

Mei 2008

Pengerusi: Associate Professor Dr Rozita Rosli, PhD

Fakulti: Perubatan dan Sains Kesihatan

Flavokawin B (FNB) adalah kumpulan hydroxchalcone yang dipencilkan daripada spesis pokok tempatan, Aplinia zerumbet dalam keluarga Zingiberaceae. FNB telah dikenalpasti mempunyai ciri-ciri anti-oksida dan pro-imun. Kajian ini bertujuan untuk menilai mekanisma perencatan pertumbuhan asas oleh FNB, ke atas 21 titisan sel yang terdiri daripada tumor manusia, dan manusia tertransformasi. Sel-sel diperlakukan dengan FNB (0.1, 1, 3, 10, 30 and 100 µM). Berikut pendedahan pada ketoksikan piawai selama 3-4 hari, FNB merencat pertumbuhan titisan-titisan sel tersebut secara selektif. Sel-sel tumor lebih sensitif terhadap FNB berbanding sel-sel normal. Asai sitotoksik MTT kemudian dijalankan untuk menentukan indeks sitotoksik bagi FNB. Caco-2, CEM-SS, MCF-7, T-47D dan U87MG merupakan 5 titisan sel yang paling sensitif dengan nilai IC50 6.53 ± 0.81, 2.00 ± 0.41, 7.67 ± 0.71, 8.67 ± 1.40 dan 14.00 ± 3.00 uM masing-masing. Tamoksifen (TMX) telah digunakan sebagai kawalan positif.
Analisis survival sel menentukan corak keberkesanan FNB yang sangat signifikan ($P < 0.001 \leq P < 0.05$), dalam kelima-lima titisan sel. Aruhan apoptosis kemudian dinilai menggunakan morfologi kultur-hidup. Analisis floresen nukleoprotin telah dijalankan untuk mengira kuantiti dan menentukan frekuensi apoptotik. Gabungan imej-imej telah digunakan untuk menganalisa kesan apoptosis. FNB didapati telah mengaruh apoptosis pada kepekatan IC50 dalam 9 daripada 21 titisan sel. Frekuensi apoptosis aruhan FNB yang paling signifikan berbanding kawalan tanpa perlakuan adalah $70.67 \pm 7.51\%$ ($P<0.01$), $68.17\% \pm 6.81\%$ ($P<0.01$), $49.33 \pm 7.32\%$ ($P<0.01$), $57.5 \pm 4.82\%$ ($P<0.01$), $52.83 \pm 3.62\%$ ($P<0.001$), masing-masing bagi Caov-3, CEM-SS, CHO, HL-60 dan MDA-MB-468. Kesan frekuensi apoptosis yang maksima adalah pada titisan sel Caov-3, yang mana lebih signifikan berbanding etoposid (ETS) sebagai kawalan positif ($P<0.05$). Aruhan apoptosis hanya ditentukan pada 5 titisan sel paling signifikan ($P\leq0.01$), menggunakan elektroforesis agaros untuk tetangga-DNA. Kesan FNB ke atas metabolisma estrogen pada kepekatan IC50 telah diuji menggunakan asai radioisotop enzimatik bagi estrone sulphatase (E1STS) dan oestradiol-17ß hydroxysteroid dehydrogenase (oestrone \rightarrow oestadiol, E2HD), dalam 4 titisan sel terpilih (MCF-7, T-47D, MDA-MB-231 and MDA-MB-468). FNB mempunyai kesan perencatan signifikan ke atas enzim E1STS dalam titisan sel MCF-7 dan T47-D, $26.41 \pm 0.69\%$ ($P<0.01$) dan $18.53 \pm 1.21\%$ ($P<0.05$) masing-masing. FNB juga merencat secara signifikan enzim E2HD dalam titisan sel T-47D ($36.40 \pm 1.70\%$, $P<0.01$). Asai penentuan menggunakan kit ELISA E1STS dan E2HD telah dijalankan ke atas titisan sel MCF-7 dan T-47D. Kesan perencatan yang serupa ditemui ke atas kedua-dua enzim dalam titisan sel MCF-7 dan T-47D. Sebaliknya, FNB telah merangsang kedua-dua enzim dalam titisan sel
berstandar bukan-estrogen, MDA-MB-321 dan MDA-MB-468. Akhirnya, kajian genotoksik telah dijalankan bagi profil keselamatan dalam titisan sel normal CHO, dengan menggunakan ethylmethanesulphonate (EMS) sebagai kawalan positif. Asai antigenotoksik adalah secara gabungan FNB dan EMS. Ujian menunjukkan kesan klastogenik yang tidak signifikan (P>0.05, dengan 45 µM), dan anti-genotoksik yang signifikan (P<0.05, dengan 45 µM). Kesimpulannya, secara keseluruhan ciri-ciri sitotoksik, selektif, survival, apoptotik, anti-estrogenik, non-genotoksik dan anti-genotoksik oleh flavokawin B (secara bandingannya lebih baik daripada TMX, ETS dan EMS) menjadikan sebatian ini berpotensi sebagai agen anti-neoplastik yang menarik.
ACKNOWLEDGEMENTS

All praises are due to the Lord of the Universe and all its surrounding systems, Allah, The annihilator of all oppressors and oppression, suppressors and suppression, tyrants and tyranny. His peace and blessings are bestowed upon the noble prophet and the best of all creations, Muhammad, his pure progeny, his righteous companions and all those who follow their footsteps with sincerity up to the last day.

I would like to begin with the expression of my gratefulness, gratitude, sincere thanks and appreciation to my main supervisor, Professor Madya Dr Rozita Rosli, under whom (by Allah’s will and guidance), I was not only able to realise my dreams of achieving a higher degree, but also able to strive resiliently to surpass beyond the most of limitations as well as the regular and unexpected havocs, in the cause of survival. It would certainly not be an exaggeration to mention that Dr Rozita’s overall and continuing efforts of helping and rescuing me academically and morally despite my weaknesses, repeated failures and sense of hopelessness, are absolutely invaluable to my life. I equally remain very grateful indeed to my co-supervisor, Professor Dr Nordin Haji Lajis, for being always very helpful, very understanding, very generous and untiringly very hope-providing towards my academic success. To my 2nd co-supervisor, Professor Dr Leslie Charles Lai Chin Loy, however, words can never be satisfyingly available in this universe I believe, with which I could justify the expression of my thanks and gratitude, upon all the continuous efforts, help, patience, forgiveness, guidance, counselling and above all, the academic and professional booster-doses, that always kept me alive, moving and transforming throughout the eight-year period of my association with you. Sir, I am
greatly indebted to you and hope you will accept my sincere acknowledgements please. My best words here would be; may God the Almighty reward all my supervisors abundantly and continue to shower them all and their families, with the greatest of guidance, protection and successful outcome in the hereafter, aameen.

It would have been ideal for me to mention all the many names and affiliations to whom I am greatly indebted during the cause of my studies in Malaysia, however, due to their great number, I would like to summarise with; thanks very much indeed, to all those who were directly or indirectly involved in the realisation of my MSc degree from UPM. May Allah SWT reward you all abundantly. There are some particularly unforgettable and specific name-citations of Kak Nurmawati, Nazefah, Dr Thilaka, Micheal, Wong & all other MGLab members; Dr Maha, Dr Khor Tin Oo, Mr Anthony and Mr Tung; Dato Dr Salleh Muhammad Nor, Hj KP Koya Kutyty, Akhi Kamsani, Akhi Hamdan, Akhi Azmi, Akhi Zainulsham, Akhi Rashed, Dr Syed Halim, Ustaz Danial, Haji Sulaiman and Dr Bala Yawuri; of Hj Dr Lawan A Gumel, Salisu Garba, Aminu M Sokoto (Glasgow), Abdulsalam Salisu, Dr Abdulmumin Sa’ad, Dr Ibrahim Anka, Mal M Magashi, Br Hani Hamad, Dr Abdulakarim Sabo Muhammad, Farizan Aris, Indah Muhammad Amin, Zulinda Zulkifli, Dr Mu’azu Musa and Haji Mahmoud M Garba (Nottingham). Thank you all for the technical, typographical, moral-support and or financial assistance, which you have had or been rendering to me.

This thesis would definitely have been unjustified and incomplete without acknowledging all the special efforts, moral support, hospitality and financial
assistance rendered by Br Umar Farouk Yusuf. May Allah SWT reward him bi ahsanil khayr, amin.

Lastly, but of course not least, my sincere appreciation, gratefulness, gratitude and thanks, goes to my everlastingly beloved family, Rohana (along with her Kelantan family members), Muhammad, Fatimah Az-Zahra, Halimah As-Sa’adiyyah and Aminah Az-Zuhra. Yours’ is more than special, for without your very existence, effort, support and understanding, I simply may have ceased or absconded to the survival of such a continuously struggling and ending life in Malaysia.
I certify that an Examination Committee has met on 15 May 2008 to conduct the final examination of Nasir Tsafe Umar on his Master of Science thesis entitled “Elucidation of Basic Mechanisms of Flavokawin B Inhibitory Effects on the Growth of Selected Cancer and Transformed Normal Cell Lines” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Asmah Rahmat, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Sabariah Abdul Rahman, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Tengku Sifizul Tengku Muhammad, PhD
Professor
School of Biological Sciences
Universiti Sains Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date : 27 November 2008
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rozita Rosli, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Nordin Haji Lajis, PhD
Professor
Institute of Biosciences
Universiti Putra Malaysia
(Member)

Leslie Charles Lai Chin Loy, MD, PhD, FRCPath.
Professor
Gleaneagles Intan Medical Centre
Kuala Lumpur
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION
I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Signature

[Signature]

NASIR TSAFE UMAR

Date: 15 May 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.1 Natural Medicinal Plants Products</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.1.1 Historical Perspective</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.1.2 Drug Discovery and Development</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2.1.3 Applications (Natural Plant Products)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.2 The Alpinia species (Zingiberaceae)</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Distribution</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2.2.2 Commercial and Traditional Medicinal Properties</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.2.3 Chemical Components of the Alpinia species</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2.2.4 Flavokawin B and Structure</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2.2.5 Flavokawin B and Structure-Related Compounds</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2.3 Mammalian Cancer</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>2.3.1 Global Cancer Incidence, Mortality Rate and Survival</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2.3.2 Cancer Incidence in Malaysia</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2.3.3 Breast Cancer, Incidence and Mortality Rate</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2.3.4 The Oestrone Sulphatase (E1,STS) and Breast Cancer</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2.3.5 The Oestradiol-17β Hydroxysteroid Dehydrogenase (E2HSD) and Breast Cancer</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>2.3.6 Anticancer Drugs</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2.3.7 Mechanism of Action of Anticancer Drugs</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>2.4 Mammalian Cell Cycle</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>2.4.1 Mammalian Interphase (G1, G0, S and G2 phases)</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>2.4.2 Mammalian M-phase (Mitosis)</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>2.4.3 Mammalian Cell Cycle and Cancer</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>2.4.4 Mammalian Cell Cycle Length</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2.4.5 Mammalian Cell Cycle and Chemotherapy</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2.5 Mammalian Cell Death</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>2.5.1 Necrosis</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>2.5.2 Apoptosis</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>
2.5.3 Morphological features of Apoptosis 34
2.5.4 Biochemistry and Molecular Mechanisms 38
2.5.5 Apoptosis and the p53 39
2.5.6 Apoptosis and Anticancer Drugs in Chemotherapy, Gene Therapy and the Future 40
2.6 Toxicity 42
2.7 Cytotoxicity 42
2.7.1 In Vitro Cytotoxicity 44
2.7.2 In Vivo Cytotoxicity 45
2.7.3 Cytotoxicity and Apoptosis 47
2.8 Genotoxicity 48
2.9 Review of Cell Lines Product Data and Literature Searches 50

3 METHODOLOGY 51
3.1 Materials: Chemicals, Reagents and Consumables/Equipments 51
3.2 Materials: Schematic Summary of Methodological Approaches 51
3.3 Materials: Isolation and Purification of Flavokawin B 57
3.4 Methods 58
3.4.1 Cell Culture, Growth Data and Optimisation of Cell Lines 58
3.4.2 Population Doubling Time (PDT) Analysis 59
3.4.3 Microculture Cytotoxicity Screening 60
3.4.4 Methylthiazole tetrazolium (MTT) Assay 62
3.4.5 Cytotoxic Selectivity Analysis 62
3.4.6 Cell Survival (CS) Assay 63
3.4.7 Life Culture (Unstained) Apoptosis Microscopy 64
3.4.8 Apoptosis AO/PI Fluorescence Microscopy 64
3.4.9 FITC and TRITC Image Analysis 66
3.4.10 DNA Extraction Using DNAZOL™ 68
3.4.11 Agarose Gel Electrophoresis (AGE) for Apoptotic DNA Laddering Analysis 70
3.4.12 Oestrone Sulphatase 3H Assay 71
3.4.13 Oestradiol-17β Hydroxysteroid dehydrogenase radioisotope (3H and 14C) Assay 73
3.4.14 The Principles of E$_1$ and E$_2$ ELISA Confirmatory Assays 74
3.4.15 The E$_1$ ELISA Confirmatory Assay 76
3.4.16 The E$_2$ ELISA Confirmatory Assay 77
3.4.17 Metaphase Cytogenetic Assay 79
3.4.18 Giemsa Stain 81
3.4.19 Mitotic Index (MI) Assay 82
3.4.20 Clastogenic Indices and Dose-response Analysis 82
3.4.21 Direct Genotoxicity CA Analysis 83

xvi
3.4.22 Antigenotoxicity CA Analysis 84
3.4.23 Statistical Analysis 84

4 RESULTS AND DISCUSSION 86
4.1 Cell Culture, Growth Data and Optimisation Criteria of Cell Lines 87
4.2 Microculture Cytotoxicity Screening 89
 4.2.1 MTT Assay and Selectivity Analysis 94
 4.2.2 Cytotoxicity Index (IC\textsubscript{50}) Values 103
 4.2.3 Dose-Response & Log-Phase Patterns 105
4.3 Cell Survival (CS) Assay 106
4.4 Life Culture Apoptosis Morphological Analysis 114
4.5 Apoptosis AO/PI Fluorescence Microscopy 115
4.6 Apoptosis DNA Laddering Analysis 120
4.7 The E\textsubscript{1}STS and E\textsubscript{2}HSD Radioisotope Analysis 130
4.8 The E\textsubscript{1}STS and E\textsubscript{2}HSD ELISA Analysis 142
4.9 Mitotic Index (MI) Analysis 144
4.10 Direct Genotoxicity CA Analysis 151

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 154

REFERENCES/BIBLIOGRAPHY 157
APPENDICES 190
BIODATA OF STUDENT 235
LIST OF PUBLICATIONS 236
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Scientific classification of Alpinia zerumbet</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>A chronological list of apoptosis history</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Culture vessels and media volumes</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>The media, serum concentration sub/split-culture& stocks</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Representatives of the supplements used</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Some chemical information of compounds used</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Cytotoxicity cell plating and sample dilution design</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Cell culture duration for cytotoxicity and other assays</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Population doubling time (PDT) results, assayed and calculated for all cell lines</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>Calculated cell plating densities for cytotoxicity, cell survival, apoptosis and oestrogen assays</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>The IC$_{50}$ values for FNB, tamoxifen and etoposide compounds</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>E$_2$HD assay results (FNB effects on T-47D cell growth)</td>
<td>137</td>
</tr>
<tr>
<td>4.5</td>
<td>E$_2$HD assay results (FNB effects on T-47D E$_2$ formation)</td>
<td>138</td>
</tr>
<tr>
<td>4.6</td>
<td>E$_1$ and E$_2$ ELISA assay results (FNB effects on E$_1$ and E$_2$ formation) from the MCF-7 cells</td>
<td>143</td>
</tr>
<tr>
<td>4.7</td>
<td>E$_1$ and E$_2$ ELISA assay results (FNB effects on E$_1$ and E$_2$ formation) from the T-47D cells</td>
<td>143</td>
</tr>
<tr>
<td>4.8</td>
<td>Mitotic index assay results (FNB effects on CHO cells)</td>
<td>147</td>
</tr>
<tr>
<td>4.9</td>
<td>The genotoxicity and antigenotoxicity CA results (untreated, EMS-treated and FNB-treated CHO cells)</td>
<td>150</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Alpinia zerumbet (Pers.) in pictures</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>The structure of flavokawin B</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Apoptosis detection criteria</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>The non-centrable phase-contrast micrographs of the adherent Caov-3 cells</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>(A-D)</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>HL-60 cells (A-D) showing non-centrable phase-contrast micrographs</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>Representative non-centrable phase-contrast micrographs of the MDA-MB-468</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>(A and B)</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Representative FNB dose-response curves obtained from MTT cytotoxicity assay</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Tamoxifen’s representative dose response curves (MTT cytotoxicity assay)</td>
<td>100</td>
</tr>
<tr>
<td>4.6</td>
<td>Cell survival effect of the FNB IC$_{50}$ concentration on Caco-2 cells</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>after 96 hour treatment</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Cell survival effect of the FNB IC$_{50}$ concentration on CEM-SS cells</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>after 72 hour treatment</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Cell survival effect of the FNB IC$_{50}$ concentration on MCF-7 cells</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>after 96 hour treatment</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Cell survival effect of the FNB IC$_{50}$ concentration on T-47D cells</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>after 96 hour treatment</td>
<td></td>
</tr>
</tbody>
</table>
4.10 Cell survival effect of the FNB IC$_{50}$ concentration on U-87 MG cells after 96 hour treatment

4.11 AO/PI Fluorescence morphology

4.12 The AO/PI apoptotic score results from the FNB and ETS IC$_{50}$ treatment concentrations, after 72 hour (CEM-SS and HL-60) and 96 hour (other cells)

4.13 DNA ladder (AGE) results. Representative micrographs showing the preliminary (A) and specific (B, Caov-3) DNA ladder induction patterns

4.14 DNA ladder (AGE) results. In these micrographs Caov-3 cells (A) were compared with MDA-MB-468 cells (B)

4.15 A representative linearity assay results (MDA-MB-231 cell line)

4.16 A representative of the E$_1$STS assay results, showing the dose-response effects of FNB on both cell growth and % growth inhibition on MCF-7 cells

4.17 A representative of the E$_1$STS assay results, showing the dose-response effects of FNB on both E$_1$ formation and % E$_1$ inhibition on MCF-7 cells

4.18 FNB dose-response curve (Mitotic index assay)

4.19 CHO chromosomal micrographs
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>%CV</td>
<td>Percentage coefficient of variation</td>
</tr>
<tr>
<td>%Ec</td>
<td>Percentage counting efficiency</td>
</tr>
<tr>
<td>%Rv</td>
<td>Percentage recovery value</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>δ</td>
<td>Delta</td>
</tr>
<tr>
<td>μ</td>
<td>Micro</td>
</tr>
<tr>
<td>μg/L</td>
<td>Microgram per litre</td>
</tr>
<tr>
<td>μg/ml</td>
<td>Microgram per millilitre</td>
</tr>
<tr>
<td>μl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>14C</td>
<td>Carbon-14</td>
</tr>
<tr>
<td>14CE$_2$</td>
<td>Carbon-14-oestradiol</td>
</tr>
<tr>
<td>3H</td>
<td>Tritium</td>
</tr>
<tr>
<td>3H-14C</td>
<td>Tritiated-carbon-14</td>
</tr>
<tr>
<td>3H-14C$_{Xv}$</td>
<td>Specific activity value of tritiated-carbon-14</td>
</tr>
<tr>
<td>3HE$_1$</td>
<td>Tritiated-oestrone</td>
</tr>
<tr>
<td>3H$_{Xv}$</td>
<td>Tritiated specific activity value</td>
</tr>
<tr>
<td>ACS</td>
<td>American Cancer Society</td>
</tr>
<tr>
<td>AGE</td>
<td>Agarose gel electrophoresis</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine orange</td>
</tr>
<tr>
<td>ATCC</td>
<td>American type culture collection</td>
</tr>
</tbody>
</table>
Avrg. : Average
Bax : An oncogene involved in apoptosis/cell growth regulation
Bcl-2 : An oncogene involved in apoptosis/cell growth regulation
Bcl-W : A factor involved in apoptosis/cell growth regulation
Bcl-XL : A factor involved in apoptosis/cell growth regulation
Bcl-XS : A factor involved in apoptosis/cell growth regulation
BHC : Biohazard cabinet
bp : Base pair
BQN : Benzoquinone
CA : Chromosome aberration
CCO : Corrected carry over
CGM : Complete growth medium
CI : Confidence interval
CLC : Chalcone
CnDF : Cell number dilution factor
CO₂ : Carbon dioxide
contd : Continued
cpm : counts per minute
CRC : Corrected reference count
DAPI : 4,6-diamidino-2-phenylindole
DF : Dilution factor
DMEM : Dulbecco’s modified Eagle’s medium
DPH : Diphenylheptone
dpm : Disintegrations per minute
DTP : Diterpene
E₁DF : Oestrone-counts dilution factor
E₁S : Oestrone sulphate
E₁STS : Oestrone sulphotase
E₂ : Oestradiol
E₂DF : Oestradiol-counts dilution factor
E₂HD : Oestradiol-17β hydroxysteroid dehydrogenase
E₂HSD : Oestradiol-17β hydroxysteroid dehydrogenase
E₃ : Oestriol
ECACC : European collection of (Applied) cell cultures
EDTA : Ethylene diamine tetra acetic acid
ELISA : Enzyme-linked immunosorbent assay
EMS : Ethylmethanesulphonate
ER : Oestrogen receptor
ETS : Etoposide
FAS : A surface protein for apoptosis (programmed cell death)
Fas-L : A ligand surface protein for apoptosis (programmed cell death)
FBS : Foetal bovine serum
FCS : Foetal calf serum
FITC : Fluorescein isothiocyanate
FLV : Flavone/flavonol
fmol : Femtomole(s)
FNB : Flavokawin B
G : Gram
H : Hour(s)
HEPES : 4-2-hydroxyethyl-1-piperazineethanesulphonic acid
HF-12 : Ham’s F-12
HPH : Hydroxyphenylheptone
i.e. : That is
IARC : International agency for research on cancer
IC : Interphase cells
IC$_{50}$: 50 % inhibitory concentration of cell growth
IMDM : Iscove’s modified Dulbecco’s medium
Kb : Kilobase
KPN : Kavapyrone
LL-15 : Leibovitz’s L-15
M : Molar
MC : Mitotic cells
Mc5A : McCoy’s 5A
Mcl-1 : A factor involved in apoptosis/cell growth regulation
MEGM : Mammary epithelial growth medium
MEME : Minimum essential medium Eagle’s
mg/ml : Milligram per millilitre
MgCl$_2$: Magnesium chloride
MI : Mitotic index
MIC$_{100}$: 100 % of control mitotic index
MIC$_{25}$: 25 % of control mitotic index
MIC$_{50}$: 50 % of control mitotic index
Ml : Millilitre
mRNA : Messenger ribonucleic acid
MTD : Maximum tolerative dose
MTP : Moneterpene
MTT : Methylthiazol tetrazolium
MW : Molecular weight
Na : Sodium
NCI : National cancer institute
ng/ml : Nanogram per millilitre
Nm : nanometre
OECD : Organisation for economic corporation and development
P : Probability (statistical)
p53 : A tumour suppressor gene involved in apoptosis/cell growth signal
PBS : Phosphate buffered saline
PCN : Proanthocynidine
pg/ml : Picogram per millilitre
PI : Propidium iodide
pMB : Promyeloblast
pMC : Promyelocytic
PNL : Phenolic
ppm : Parts per million
PR : Progesterone receptor
pS2 : An Oestrogen inducible gene
rpm : Revolutions per minute
RPMI : Rosewell park memorial institute
SD : Standard deviation
SEM : Standard error of mean
SQP : Sesquiterpene
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>STDEV</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TC</td>
<td>Tissue culture</td>
</tr>
<tr>
<td>TCtC</td>
<td>Total cells</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMX</td>
<td>Tamoxifen</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TNFR</td>
<td>Tumour necrosis factor receptor</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumour necrosis factor-Alpha</td>
</tr>
<tr>
<td>TNFβ</td>
<td>Tumour necrosis factor-Beta</td>
</tr>
<tr>
<td>TRITC</td>
<td>Tetramethyl rhodamine isothiocyanate</td>
</tr>
<tr>
<td>UK</td>
<td>United kingdom</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Voltage (volt)</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume/volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight/volume</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Plants provide an unlimited source of novel and complex chemical structures isolated as bioactive compounds, which could be developed continuously as therapeutic agents, with the goal of direct use as drugs (Fabricant and Farnsworth, 2001). Flavokawin B (FNB, section 2.2.4) is one such compound, a hydroxychalcone purified from a local herb, *Alpinia zerumbet* *(formerly known as A. nutans)*. The compound also exists in other species of the Zingiberaceae family, such as *A. japonica, A. mutica* and *A. rafflesiana* (Habsah, 2002) among others.

A. zerumbet is a perennial, erect herb, with numerous leafy stems usually up to 2 metres tall (Habsah, 2002), occurs widely and mainly in secondary vegetation of bamboo and teak forest under shady conditions of lowlands and hill slopes, throughout Southeast Asia. Locally named *lengkuas hutan*, this plant like other Zingiberaceae species is used as a component of spices, medicines, flavouring agents and as dye-sources (Burkill, 1966). In Malaysia, the *Alpinia* genus is one of the major ingredients of a traditionally prepared ‘tonic’ called *Jamu*. In northern Brazil however, the aqueous extract of *A. zerumbet* is traditionally used as a sedative (Dias and Takahashi, 1994). Its sister species (*A. speciosa*) is used as a diuretic to control hypertension (Mendonca *et al* 1991). As substantial ‘germplasm’ of *A. zerumbet* are not yet reported to exist (Oyen and Dung, 1999), this species is now being cultivated by the Laboratory of Phytomedicines and the Plant Genetic Centre, Institute of Bioscience, Universiti Putra Malaysia. Previous studies on *A. zerumbet* have so far only been reviewed and reported for its crude extract effects of anti-microbial, anti-oxidant (Habsah *et al* 2000) and anti-tumour promoting activity (Mackeen *et al* 2000; Habsah, 2002). Further investigations on *A. zerumbet* using bioactivity-guided
fractionation have yielded four compounds that were isolated and found to have antioxidant activities, with FNB as one of the most active (Habsah, 2002). It has been recently reported that FNB possess pro-immune properties of inhibiting nitrogen oxide production in macrophages in vitro (Syahida et al 2006), being a non-toxic kava-herbal component in rats (Disilvestro et al 2007) and as a strong antioxidant (Elzaaweley et al 2007).

Cytotoxicity is the degree of harmfulness that causes damage, acute or eventual lethality at general or specific cellular levels. Cytotoxicity is established on the basis of the ability of cells to survive a toxic insult in vitro or in vivo (Dean and Danford, 1984; Butler and Dawson, 1992; Roper, 1994). It is a destruction capacity that produces structural or functional change in the target cell, which is potentially harmful to the cells or its descendants (Lewis and Besterman, 1998). The general principle of cytotoxicity assays is based on the assessment of a special characteristic of most cytotoxic agents (such as drugs, hormones, nutrients and irradiation). These agents exert cell killing in a manner which may be non-specific, but selective towards cellular proliferative activities, often with acute death, cell cycle blockages and other specificities (Darzynkiewicz et al 1995; Skehan, 1995). In other words, these assays are based on the principle that cytotoxic agents inhibit mammalian cell division in culture, so that at effective concentrations of the agent in the culture medium, cells plated in sparse culture, will not grow to confluency in the wells of a microtitre tray (Shier, 1991).

The phrase ‘cytotoxicity assay’ has traditionally been used to describe methods of measuring the intensity of death resulting from treatment with compounds that cause
cell death (Freshney, 1987; Wilson, 1992). Measurement of toxicity in vitro is a purely cellular event that can only mimic the complex pharmaco-kinetics of drug exposure through clearance and excretion (Freshney, 1994). Although it is possible to stimulate most of the in vivo parameters (including complex tissue and systemic reactions), most in vitro studies concentrate solely on a direct cellular response, thereby gaining the simplicity to be measured by changes in cell survival, metabolism and other effects. In essence therefore, depending on the parameter in question, numerous cytotoxicity assays are widely available for applications to both normal and cancer cells in vitro and in vivo.

Cancer is a dreaded disease that is due to what is generally understood to be constituent ‘mutational’ activations, that leads to the ‘loss of control’ of the network of activities, regulating normal ‘life and death’ pattern of an individual’s own cells (characterised by net tissue expansion), in a particular part of the body (Lowe, 1996; Vogelstein and Kinzler, 1998). Walt Kelly, cited in Pratt et al (1994), described cancer as ‘an enemy within’.

‘Apoptosis’, a Greek word originally describing the dropping of leaves from trees (Sluyser, 1996), which was first defined by Kerr and co-authors (Kerr et al 1972), is described as a normal, programmed and actively specialised process or mode of cell killing, that occurs in a similar way as normal growth, through proliferation and differentiation, featured by original tissue-localisation (in vivo), to becoming eventually contagious, in vitro (Wyllie et al 1980). In apoptosis, single cells are deleted in the midst of normal living tissue, within an adherent or suspension cell populations, in vitro (Kerr et al 1994).
Apoptosis, alias ‘suicide’, ‘rescue’, or ‘honour’ death, has been understood to result in all normal cellular developments, for the survival of the neighbourhood populace (Fesus, 1991). Apoptosis is implicated in the steady-state kinetics of healthy adult tissues and accounts for focal deletion of cells, where it serves to clear expired cells during normal embryonic development and metamorphosis (Wyllie et al 1980). It is responsible for the fashioning of many tissue structures such as digits-shaping (spaces between our fingers and toes at the very early stage of foetal development) and the hollow cavity development and completion of fusion processes.

The spaces between our fingers and toes, at the very early stage of foetal development, the metamorphosis of tadpole tail to frog, the surplus cell eliminations in the neuron-brain connections or synapses, and the sloughing off of the inner lining of the uterus (endometrium), at the beginning of every regular menstrual process, are all understood to occur by apoptosis. It is an agent of physiological death in normal tissue turnover, and also provides the accomplishing criteria for ‘natural selection’ of the immune system (Wyllie, 1985; 1992; Gregory, 1996).

While cancer is said to result out of abnormal cell regulation, apoptosis being a natural cell homeostatic tool or end-point is a genetically controlled system, which operates through a ‘network’ or ‘cascade’ of factors. In this process, unrepaired or mis-repaired cell damages are the major, committing and critical determinants that trigger the normal but induced cell death process, sparing the neighbourhood cell populace. The apoptotic homeostasis feature in particular, is what makes apoptosis a very important process that plays a vital role in the kinetics of tumour survival and death (Wyllie,
1992; Lavin and Watters, 1993; Sluyser, 1996; Gregory, 1996), to such an extent that its effective presence basically means cancer suppression and its absence translates into cancer cell survival. A major problem that appears to be the most serious of all is the prevalence of cancer in terms of ‘resistance to treatment’ and or ‘metastasis’. Considering both genetic and non-genetic factors on the aetiology of cancer, the biggest problem, however, dramatically remains ‘nobody is above cancer’ and that the exact cause of many cancers remain largely unknown.

It has now been fully reviewed that the general understanding of the regulation of the molecular machinery of apoptosis in vitro, has witnessed major advances, in which molecules linking proliferation and apoptosis in healthy cells are being identified, as the apoptotic cell death provides the 'fail-safe' mechanism to counteract excess proliferation. Furthermore, since tumour specificity as ever, is the main issue to be resolved, inhibition of apoptosis in particular, remains a major mechanism of chemotherapeutic resistance (Makin and Dive, 2003; Duffy, 2007; Leen et al. 2007).

Agents such as FNB that are found to induce cell death through apoptosis in multiple cell lines, are thus expected to provide contributions of paramount importance, towards the clarification of the mechanisms of drug-induced apoptosis, of tumour response. Such contributions are increasingly believed to be capable of providing renewed confidence, where therapeutic approaches based on drug targets within the apoptotic pathways will improve the treatment of cancer patients (Duffy, 2007; Leen et al. 2007).

Oestrogen are generally understood to play an essential role in regulating the growth and differentiation of mammary gland (Lai, 2002; Reed et al. 2005). The higher
concentrations of the biologically active oestrogen, oestradiol (E$_2$), have been shown to be closely related to breast cancer development in breast tumour tissue than in blood. In pre-menopausal women, nearly all the oestrogens are of ovarian origin. Yue et al (1998) have observed that after menopause, direct ovarian oestrogen production ceases as a result of which most oestrogens are derived exclusively from the peripheral conversion of androstenedione to oestrone (E$_1$) by the aromatase enzyme complex. This kind of aromatase activity was markedly observed in stromal cells around the carcinomatous glands in up to 78% of invasive breast carcinoma, where much of the E$_1$ formed is converted to oestrone sulphate (E$_1$S) by oestrone sulphotransferase (Sasano et al 1996). Several recent studies, have enumerated how the regulation of metabolism, in addition to the mitogenic properties of E$_1$STS and E$_2$HSD enzymes plays a chemotherapeutically vital role in the growth and death of oestrogen dependent cancer cells, like the MCF-7 and T-47D cell lines (Abraham et al 2006; Olofsson et al 2007; Stute et al 2007).

The description of the cell lines used in this study are as, indicated in the respective material data sheets provided by the suppliers, the American Type Culture Collections (ATCC) and the European Collections A Cell Culture (ECACC). These are: A-172 (human, brain cancer), Caco-2 (human, colon cancer), Caov-3 (human, ovarian carcinoma), CEM-SS (human, T-cell lymphoblastic leukaemia, Chang (human, transformed liver epithelium), CHO (Chinese hamster, transformed normal ovary), DU-145 (human, prostate carcinoma), HCN-2 (human, transformed glial epithelium), HeLa (human, cervical carcinoma), HepG2 (human, liver carcinoma), HL-60 (human, myelogenous leukaemia), MCF-7 (human, mammary carcinoma, positive for estrogen receptor), MCF-10A (human, transformed mammary
epithelium), MCF-12A (human, transformed mammary epithelium), MDA-MB-231 (human, mammary carcinoma, negative for estrogen receptor), MDA-MB-468 (human, mammary carcinoma, negative for estrogen receptor), PNT2 (human, transformed prostate epithelium), SK-BR-3 (human, mammary carcinoma, negative for estrogen receptor), T-47D (human, mammary carcinoma, positive for estrogen receptor), U87MG (human, Glioblastoma) and VERO (African Green Monkey, transformed normal kidney).

Since cancer is a multifactorial, dreadful disease which is common worldwide, with wide ranging implications of multistage progressive processes, treatment and metastasis, its prevention and eradication efforts therefore requires coherently systematic approaches that are as wholly as the continuous developmental strides for new or novel anti cancer agents. This is a similar view to those shared by Raina and Aggarwal (2007) and Xu, et al (2007), on the chemotherapeutic role of apoptosis.

With such a problem statement, this study was designed with a hypothesis-driven approach in order to elucidate some of the efficacious mechanisms involved in the proliferative inhibitory potential of FNB. Up to four hypothetical pathways were identified in this study. These are the FNB induction of cytotoxicity and its selectivity patterns, the apoptosis cell death induction pathway, the anti-oestrogenicity pathway and the direct genotoxicity and anti-genotoxicity pathway. The last pathway mainly serves as the pathway for safety potential. Each of these four hypothetical pathways were elucidated using three separate experimental approaches. These are [1] the basic assays: MTT cytotoxicity (Mosmann, 1983; Monks et al 1991), live cell apoptosis morphology (D’Herde et al 2003), the radioisotopic E_1S to E_1 activity (Ng et al 2000; Elsadig et al 2001) and mitotic index
(Dean and Danford, 1984), [2] the reproducibility assays: the cytotoxic selectivity
(Freshney, 1994; Zachary, 2003), the AO/PI apoptosis morphology (Singh et al
1994; Singh et al 1996a; 1996b; Al-Rubeai and Singh, 1998; Ali et al 2001), the
reductive $E_1 \rightarrow E_2$, coupled with the oxidative $E_2 \rightarrow E_1$ activities (Wong et al 2001)
and the clastogenic indices modulation (Dean and Danford, 1984), [3] the
confirmatory assays: cell survival (Wilson, 1992; Zachary, 2003), apoptosis DNA
laddering (Wyllie et al 1980; Chomcyznski et al 1997; Ali et al 2001), the E_1 and E_2
ELISA assays (El-sadig et al 2001; Wong, 2002) and genotoxicity and anti-
genotoxicity assays (Dean and Danford, 1984; Umar-Tsafe et al 2004).

In this research project, it has been hypothesised that due to the medicinal, the
antioxidative and the pro-immune response properties of FNB, as highlighted above
and reviewed in the literature review section, the compound possesses a strong
anticancer cytotoxicity potential. Investigation of the basic mechanisms of its cell
growth inhibitory properties, thus require hypothesis-driven objectives as follows:

(i) To evaluate the basic cytotoxic potential of FNB, through the establishment
of dose-responses and IC$_{50}$ values for each of the 21 cell lines, as well as to
assess the reproducible in vitro cytotoxic-selectivity of FNB among the panel
of 21 cancer and normal cell lines, using the NCI selective-efficacy
guidelines for chemotherapeutic potential.

(ii) To analyse the confirmatory cell survival effects of FNB in the most sensitive
and most significant cell lines, using standard guidelines.
(iii) To enumerate the mechanism of apoptosis (as the mode of cell death) in the cell lines that are sensitive to FNB, using basic classical morphology, quantitatively reproducible and confirmatory analysis.

(iv) To elucidate the mechanistic effect of FNB on oestrogen synthesis in four breast cancer cell lines [2 hormone-dependent (MCF-7 and T-47D) and 2 hormone-independent (MDA-MB-231 and MDA-MB-468)], along with two normal-transformed breast epithelial cell line (MCF-10A and MCF-12A).

(v) To establish the safety and mechanistic-efficacy profile of FNB in the CHO normal cell line, using the basic and reproducible MI analysis, and the confirmatory genotoxicity and anti-genotoxicity CA analysis.
REFERENCES/BIBLIOGRAPHY

Bonney, R.C., Reed, M.J., Davidson, K., Beranek, P.A., and James, V.H.T. (1983). The relationship between 17b-hydroxysteroid dehydrogenase activity and

Miettinen, M. (1999). 17b-hydroxysteroid dehydrogenase types 1 and 2. Expression and activities in various tissues and cell lines and effect of the type 1 enzyme on estrogen-dependent growth of breast cancer cells. University of Oulu, Oulu, Finland.

