

UNIVERSITI PUTRA MALAYSIA

PHOTOLUMINESCENT PROPERTIES OF TIO2 NANOSTRUCUTRES PREPARED BY HYDROTHERMAL METHOD

GOLNOUSH ZAMIRI

FS 2013 47

PHOTOLUMINESCENT PROPERTIES OF TIO2 NANOSTRUCUTRES PREPARED BY HYDROTHERMAL METHOD

By

GOLNOUSH ZAMIRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

December 2013

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright[©] Universiti Putra Malaysia

This thesis dedicates to

My father (Ali Zamiri), my mother (Kobra Fazeli),

my dear brothers (Reza and Roozbeh Zamiri) and my sister (Golriz Zamiri).

Abstract of thesis presented to the Senate of Universiti Putra Malaysia, in fulfillment of the requirement for the degree of Master of Science

PHOTOLUMINESCENT PROPERTIES OF TIO2 NANOSTRUCUTRES PREPARED BY HYDROTHERMAL METHOD

By

GOLNOUSH ZAMIRI

December 2013

Chairman : Professor Azmi Zakaria, PhD

Faculty : Science

The major problem facing in the fabrication of TiO₂ nanostructure is about the control of its size and shape which have directly effect on its physical properties. The nanostructures prepared by hydrothermal method shows better structural, morphological and photocatalytic property. In the present study the fabrication of nanosize TiO₂ prepared by hydrothermal technique using Ethylenediamine (EN) and Thiourea (TH) as solvent has been investigated. The objectives of the work is to present a systematic study on the growth and characterization of TiO₂ nanostructures prepared by this method, and secondly, to experimentally study the effect of Mn doping on structural and photoluminescence properties of TiO₂ nanostructures. In this hydrothermal method, TiO₂ of micron size, EN and TH were dissolved in distilled water and then transferred to a teflon-lined autoclave. The precipitate was collected, washed with ethanol; water solution and then dried in an oven. The effect of temperature, time, precursors on structure and morphology of the TiO₂ were studied. To see the effect of Mn on TiO₂nanostructures, Mn, TiO₂, EN and TH were dissolved in distilled water and then transferred to an autoclave. The obtained powders were characterized by FTIR and photoluminescence (PL) spectroscopies, XRD, EDX, SEM, and VSM. Characterization by SEM confirmed that the samples are well crystalline nanostructure. The XRD patterns of all the products have diffraction peaks which well agree with those of a standard anatase TiO₂ (JCPDS No.21-1272). The SEM results show that the morphology of TiO₂ using EN and TH changed when the sample prepared at various hydrothermal temperatures, times and precursors. The PL study shows that the band gap energy of the TiO_2 nanomaterial increased to 3.23 eV compared to that of bulk state (3.20 eV). When doped with Mn, the XRD result confirmed that Mn goes into TiO₂ crystal lattice and the crystallite size decreases. The SEM images show that the morphology of some pure TiO₂ nanostructure was changed from nanorod and nanoparticle to flower-like after doping. The optical band-gap energy of the sample increases due to the decrease of material size and it behaved as a soft ferromagnet.

Tesis abstrak dikemukan kepada Senat Universiti Putra Malaysia, untuk memenuhi keperluan ijazah Master Sains

CIRI-CIRI KEFOTOPENDARCAHAYAAN STRUKTUR-NANO TIO2 DISEDIAKAN MELALUI KAEDAH HIDROTERMA

Oleh

GOLNOUSH ZAMIRI

Disember 2013

Pengerusi : Profesor Dr. Azmi Zakaria, Ph.D

Fakulti : Sains

Masaalah utama dihadapi dalam fabrikasi strukturnano TiO₂ adalah berkaitan dengan pengawalan saiz dan bentuknya yang mana secara terusnya terkesan keatas sifat fizikalnya. Strukturnano disediakan secara kaedah hidrotherma menunjukkan sifat struktur, morfologi dan ciri fotokatalitik yang lebih baik. Dalam kajian ini fabrikasi saiznano TiO₂ disediakan secara teknik hidroterma manggunakan Ethylenediamine (EN) dan Thiourea (TH) sebagai pelarut telah diselidiki. Objektif kajian adalah untuk mempersembahkan kajian sistematik pembesaran dan pencirian strukturnano TiO₂ disediakan dari kaedah ini, dan keduanya, untuk mengkaji kesan pendopaan Mn keatas struktur dan sifat-sifat strukturnano TiO₂. Dalam kaedah hidroterma ini, TiO₂ bersaiz micron, EN dan TH telah dilarutkan dalam air suling dan kemudian dipindahkan ke autoklev tersalut-teflon. Mendakan dikumpul, dibasuh dengan larutan etanol:air dan kemudian dikeringkan dalam oven. Kesan suhu, masa, prekerser keatas struktur dan morfologi TiO₂ telah dikaji. Untuk melihat kesan Mn keatas strukturnano TiO₂, Mn, TiO₂, EN dan TH dilarutkan dalam air suling dan kemudian dipindahkan kedalam Serbok diperolehi telah dicirikan dengan XRD, EDX, SEM, VSM, dan autoklev. spektroskopi-spektroskopi FTIR, kefotopendarcahayaan (PL). Pencirian oleh SEM mengesahkan bahawa sampel-sampel adalah nanostruktur hablor sempurna. Corak XRD dari semua produk mempunyai puncak-puncak pembelauan yang mana bersetuju benar dengan yang dari TiO₂ anates piawai (JCPDS No.21-1272). Hasil-hasil SEM menunjukkan bahawa morfologi TiO2 menggunakan EN dan TH telah bertukar apabila sampel disediakan dibeberapa suhu, masa hidroterma dan perkerser. Kajian PL menunjukkan tenaga jurang jalur nanomaterial TiO₂ telah bertambah ke 3.24 eV berbanding dengan yang dari keadaan pukal (3.20 eV). Apabila didop dengan Mn, hasil XRD mengesahkan bahawa Mn masuk ke kekisi hablor TiO₂ dan mengecilkan saiz hablor. Imej-imej SEM menunjukkan bahawa sebahagian morfologi strukturnano TiO₂ tulin telah berubah daripada nano-batang dan nano-zarah ke bentuk-bunga selepas pendopan. Tenaga jurang jalur sampel bertambah disebabkan oleh saiz bahan dan ianya bersifat sebagai ferromagnet lembut.

ACKNOWLEDGEMENTS

At the end of this step of my graduate period has allowed for a bit of reflection, and the many people who have contributed to both my work, and my life during this period of time.

First, I would like to express my full thanks and sincere gratitude to my great dear supervisor, Prof. Dr. Azmi Zakaria for all of guidance, discussions, unlimited assistance consultations and support. He also taught me how to look at the life and science. I owe him in whole of my life. I also would like to thank my committee member; Prof. Dr. Mohd Zobir Hussein, for his invaluable suggestions, beneficial advices and his endless helps.

I wish to acknowledge my gratitude to all lecturers specilly to Dr. Raba'ah Syahidah Azis and staffs in Physics Department of Faculty of Science. I would like to express my full thanks and sincere gratitude to my dear family specially my mother (Kobra Fazeli) and my brother (Reza Zamiri) for their encouragements, emotional supports and fortitude efforts in my life time. I am also grateful to my friends; Parnia Tohidi Kalourazi and Atin Khalaj Hedayati for their emotional supports.

Golnoush Zamiri	
2013	

I certify that a Thesis Examination Committee has met on 27 December 2013 to conduct the final examination of Golnoush Zamiri on her thesis entitled "Photoluminescent Properties of TIO2 Nanostructures Prepared by Hydrothermal Method" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Halimah binti Mohamed Kamari, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Khamirul Amin bin Mator, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Zulkifly bin Abbas, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Mohamad Deraman, PhD

Professor Universiti Kebangsaan Malaysia Malaysia (External Examiner)

NORITAH OMAR, PhD Associate Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 February 2014

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azmi Zakaria, PhD Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohd Zobir Hussein, PhD Professor Institute of Advanced Technology Universiti Putra Malaysia (Member)

> **BUJANG BIN KIM HUAT, PhD** Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

Declaration by the student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or comcurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice –chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:

Date: 27 December 2013

Name and Matric No: GOLNOUSH ZAMIRI, (GS32054)

Declaration by Members of Supervisory Committee

This is to confirm that:

C

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:	Signature:
Name of Chairman of	Name of Member of
Supervisory Committee:	Supervisory Committee:

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGMENTS	V
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xvii

1

1

2 3

3

4

5

5

5

5

25 26 27

28

CHAPTER

1 INTRODUCTION 1.1 Nanomaterial TiO₂ Nanomaterial 1.2 1.3 Mn doping with TiO₂ 1.4 Hydrothermal synthesis 1.5 Photoluminescence Photoluminescence properties of nanostructure 1.6 Magnetic properties of Mn 4 1.7 Statement of problem 1.8 Objective of research 1.9 Scope of research 1.10 Outline of the thesis 1.11 **2 LITERATURE REVIEW** 2.1 Fabrication of TiO₂ nanostructure 6 2.2 Hydrothermal Synthesis of TiO₂ nanostructure 9 2.3 Photoluminescence Properties of TiO2 nanostructure 15 2.4 Mn doped TiO₂ 18 **3 METHODOLOGY** 3.1 Materials 20 3.2 **Sample Preparation** 20 3.2.1 Preparation of TiO₂ at various temperatures 21 3.2.2 Preparation of TiO₂ at various heating time 21 3.2.3 Effect of ethylenediamine 22 3.2.4 Effect of thiourea 23 Preparation of Mn doned TiO 275 24 3.3

5.2.3	Preparation of Min doped 110_2
Characte	erization of TiO ₂ nanostructure
3.3.1	X-ray diffraction
3.3.2	Field emission scanning electron microscopy
3.3.3	Fourier transform infrared

3.3.4 Energy dispersive X-ray

		3.3.5	Spectroflourophotometer	28
		3.3.6	Vibrating sample magnetometer	29
4	RESU	JLTS AN	D DISCUSSION	
	4.1	Preparat	ion, characterization and optical properties of TiO ₂	30
		nanostru	icture	
		4.1.1	Effect of temperature	31
		4.1.2	Effect of time	34
		4.1.3	Effect of ethylenediamine	37
		4.1.4	Effect of thiourea	40
		4.1.5	Optical properties of the prepared samples	45
	4.2	Characte	erization of TiO ₂ doped with manganese	46
		4.2.1	Optical properties of TiO ₂ doped with manganese	50
		4.2.2	Magnetic properties of Mn doped TiO ₂	51
5	CON	CLUSIO	N AND FUTURE WORK	53

REFERENCES BIODATA OF STUDENT

C

54 61

LIST OF TABLES

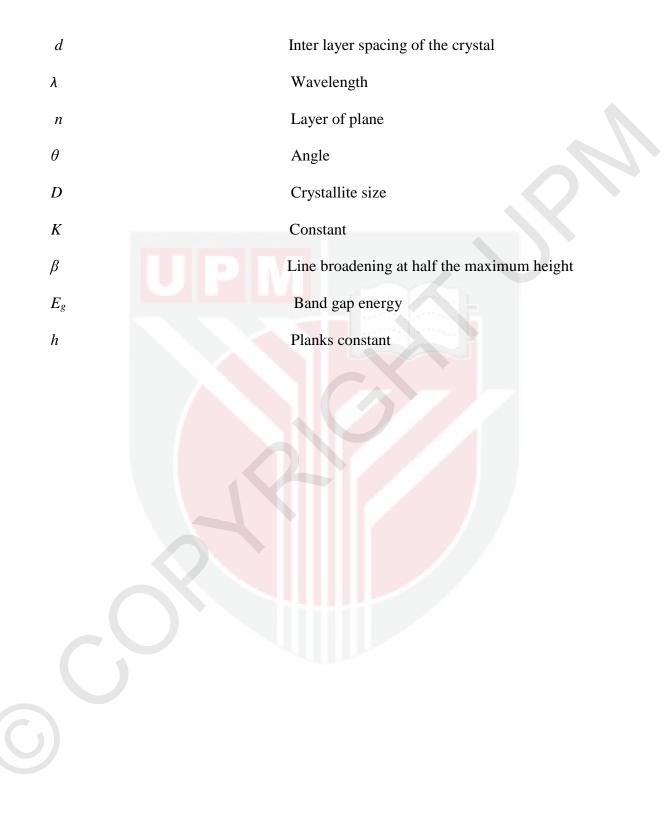
.

Table		Page
3.1	List of chemicals and manufacturers	20
4.1	Crystallite size and vertical distance of crystal plane	32
4.2	Crystallite size and vertical distance of crystal plane	35
4.3	Crystallite size and vertical distance of crystal plane	38
4.4	Crystallite size and vertical distance of crystal plane	41
4.5	Crystallite size and vertical distance of crystal plane	47

LIST OF FIGURES

Figure		Page
1.1	Crystalline structures of a) anatase and b) rutile phases of TiO_2	2
1.2	Schematic diagram of TiO ₂ doped with transition metal	3
1.3	Schematic diagram of absorption and emission of photon by electron in atom	4
2.1	TEM image of TiO ₂ nanoparticles	10
2.2	TEM image of TiO ₂ nanorods	11
2.3	SEM and TEM images of TiO ₂ nanowires	11
2.4	TEM and HRTEM images of TiO ₂ nanowires	12
2.5	TEM image of TiO ₂ nanotubes	13
2.6	(a, b) HRTEM image and cross-sectional view of TiO ₂	14
2.7	Main photophysical processes of a semiconductor excited by light	16
2.8	PL spectra of ZnO nanoparticles with the excitation wavelength of (a) 300 nm and (b) 350 nm	17
2.9	PL spectra of TiO_2 nanoparticles with the excitation wavelength of (a) 300 nm and (b) 350 nm	17
2.10	XRD patterns of TiO2 nano powders doped with Mn concentration of $0 - 12$ % annealed for 2 hrs. (a) at 500 °C (b) at 800 °C	19
3.1	a) Hydrothermal oven, b) Autoclave	20
3.2	Flowchart of TiO ₂ preparation at different temperature	21
3.3	Flowchart of TiO ₂ preparation during different time	22
3.4	Flowchart of TiO ₂ preparation using EN	23
3.5	Flowchart of TiO ₂ preparation using TH	24
3.6	Flowchart of Mn doped TiO ₂ preparation	25
3.7	Schematic of X-ray reflection on the crystal planes	25

3.8	Block diagram of an FTIR spectrometer	27
3.9	FESEM principle	27
3.10	Schematic of the working principle of spectrofluorophotometer	29
3.11	Hysteresis loop of magnetic materials	30
4.1	XRD pattern of preparing samples at different temperatures a) 110 °C, b) 130 °C and c) 150 °C	31
4.2	FESEM images of preparing sample at different temperatures a) 110 °C, b) 130 °C and c) 150 °C	33
4.3	FTIR spectra of preparing sample at different temperatures a) 110 °C, b) 130 °C and c) 150 °C	34
4.4	XRD pattern of preparing sample at 130 °C during different times a) 6 hour, b) 18 hour and c) 24 hour	35
4.5	FESEM images of preparing sample at 130 °C during different times a) 6 hour, b) 18 hour and c) 24 hour	36
4.6	FTIR spectra of preparing sample at 130 °C during different times a) 6 hour, b) 18 hour and c) 24 hour	37
4.7	XRD patterns of a) TiO ₂ + EN, b) TiO ₂ + EN+ TH	38
4.8	FESEM images of a) TiO ₂ + EN, b) TiO ₂ + EN+ TH	39
4.9	FTIR spectra of a) TiO ₂ + EN, b) TiO ₂ + EN+ TH	40
4.10	XRD pattern of a) TiO ₂ + TH, b) TiO ₂ + TH+ EN	41
4.11	FESEM of a) TiO ₂ + TH, b) TiO ₂ + EN+ TH	42
4.12	FTIR spectra of a) TiO ₂ + Th, b) TiO ₂ + Th+ En	43
4.13	EDX of preparing TiO ₂ + EN+ TH at 130 °C during 6 hour	44
4.14	Mechanism of the growth process of TiO_2 nanostructures	45
4.15	PL spectrum of TiO ₂ nanostructure	46
4.16	XRD pattern of a) Mn doped TiO ₂ , b) TiO ₂	47
4.17	FESEM image of a) Mn doped TiO ₂ , b) TiO ₂	48


4.18	FTIR spectra of a) Mn doped TiO ₂ , b) TiO ₂	49
4.19	EDX of preparing Mn doped TiO ₂	50
4.20	PL spectra of Mn doped TiO_2 and TiO_2 nanostructures	51
4.21	VSM of preparing Mn doped TiO ₂	52

LIST OF ABBREVIATIONS/SYMBOLS

TiO ₂	Titanium Dioxide
EN	Ethylenediamine
TH	Thiourea
UV	Ultraviolet
DSCs	Dye-sensitized Solar Cells
1-D	1-Diamentional
XRD	X-ray Diffraction
FTIR	Fourier Transform Infrared Spectroscopy
SEM	Field Emission Scanning Electron
EDX	Microscopy Energy Dispersive X-ray
PL	Photoluminescence
VSM	Vibrating Sample Magnetometer
CVD	Chemical Vapor Deposition
PXRD	Powder X-ray Diffractometer
TEM	Transmission Electron Microscopy
HRTEM	High Resulotion Transmission Electron Microscopy
FWHM	Full Width at Half Maximum
nm	nanometer
eV	electron volt

LIST OF SYMBOLS

CHAPTER 1

INTRODUCTION

This Chapter presents a brief introduction of the nanomaterial that is, TiO_2 , Mn doping in TiO_2 and also photoluminescence and hydrothermal method. This follows by the statement of problems, objectives and scope of the research.

1.1 Nanomaterial

Nanomaterials research is an area that has a material science approach in nanotechnology. The size of nanomaterials is less than 100 nanometers. The important reasons that nanomaterials are interesting to be studied are optical, magnetic, electrical and other properties of these materials which are different or even improved in comparison with their bulk. These properties are being used to great impacts in electronics, medicine and other applications. These interesting properties resulted from their nanometer size that made them to have: (i) larger part of surface atoms; (ii) higher surface energy; (iii) space containment (spatial confinement); (iv) lower defect (reduced imperfections) (Alagarasi, 2011).

1.2 TiO₂ nanomaterials

Titanium dioxide (TiO₂) is being extensively used due to its good photocatalytic properties, nontoxicity and, wide applications to solve environmental problems such as photocatalyst, cancer treatment, photonic crystals, UV blockers and, self-cleaning materials (Peining et al., 2011). TiO₂ is also one of the potential candidate for solar energy application because of the special optoelectronic and photochemical properties of TiO₂ (Lucky, 2008).These applications originated from the specific electronic and ionic properties of TiO₂ which strongly depend on the specific crystal structure (anatase, rutile, or brookite) and its morphology, i.e. titanium dioxide is a photocatalytic material that has different nature of the valence and conduction bands compared of the semiconductor metal oxides. The band gap energy of TiO₂ nanostructure is much higher than that of bulk TiO₂ (Bauer et al., 2011).

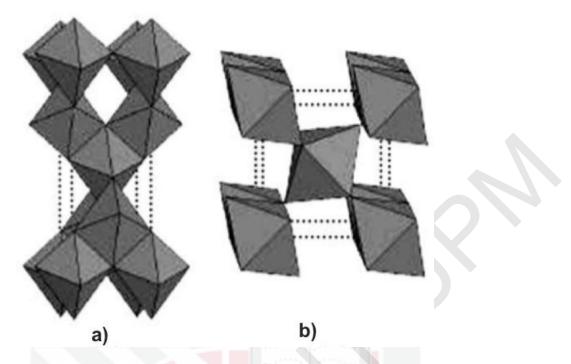


Figure 1.1. Crystalline structure of a) anatase and b) rutile phases of TiO₂

Both the anatase and rutile have same tetragonal crystalline structure with different volume which the anatase unit cell has higher volume than the rutile. Figure 1.1 presents crystal arrangements of two phases of TiO_2 (Kiatkittipong, 2012). The band gap of the rutile form is 3.02 eV with the absorption edge at 416 nm that is in the visible area. The band gap of the anatase form is 3.20 eV with the absorption edge in the near UV area at 386 nm (Bannerji et al., 2006).

1.3 Mn Doping with TiO2

The electron is excited from the valence band to the conduction band and leaves a hole in the valence band when a semiconductor is illuminated by light of energy higher than its band gap. TiO_2 can be excited by UV light due to its wide band gap (3.2 eV for anatase phase). The practical applications of TiO_2 are limited in most conditions because of its wide band gap. The band gaps of TiO_2 were narrowed by doping the compounds with metal (such as Fe, Cr, Co, Mn, V, and Ni) or nonmetal atoms (Figure 1.1). Manganese (Mn) is the most potential material to permit the important optical absorption in the visible or even the infrared solar light between the 3d metals. The optical absorption energy of TiO_2 is increased from the limited ultraviolet spectral range well into the major visible and even infrared range by doping Mn with TiO_2 (Deng et al., 2011; Yahya, 2010).

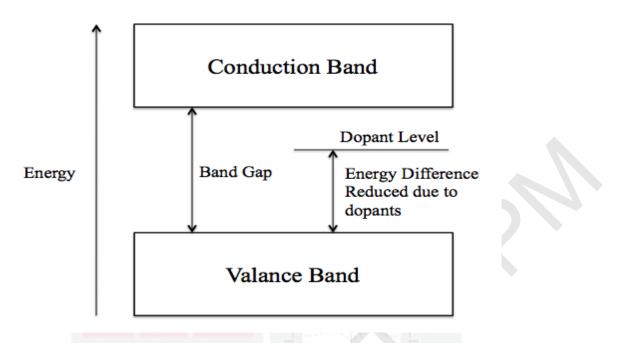


Figure 1.2. Schematic diagram of TiO₂ doped with transition metal

1.4 Hydrothermal synthesis of nanomaterials

Nowadays considerable studies have denoted hydrothermal route as a powerful and encouraging method for preparing 1-D nanomaterials, such as nanowires and nanotubes. Since it is a simple procedure and low cost, it can be beneficial and would be worthwhile to use hydrothermal reactions for the synthesis of nanostructures (Zhao et al., 2007). Apparently, the morphologies of the obtained TiO₂ nanostructure, synthesized by hydrothermal treatment, can be controlled by changing the structure (or size) of raw material, the species and concentration of alkaline solution, reaction temperature and time (Jitputti et al., 2008). Hydrothermal process occurs in the aqueous solutions at temperatures higher than 100 °C and high pressures to produce various chemical compounds and materials.

The pH of the medium, the duration and temperature of synthesis, and the pressure in the system are the main parameters of hydrothermal synthesis to explain the properties of resulting products and the processes kinetics. The autoclaves which sealed in steel cylinders that can bear high pressure and temperature for a long time is used to carry out the synthesis.

Hydrothermal synthesis provides effective control of the size and shape of nanostructures at relatively low response temperatures and short response times, providing for well crystallized response products with a high uniformity and definite composition. Hydrothermal synthesis is a profitable method for the commercial synthesis of nanostructures (Almeida, 2010).

1.5 Photoluminescence

Photoluminescence (PL) is the phenomenon of certain types of materials on exposure to UV or visible light, without the involvement of the heat generation. The principles of PL is schematically shown in Figure 1.2 When the kinetic energy of the electrons in the molecule are increased by lighting, electrons move from the base state

(valance band) S0 to the excited states (conduction band) S1. Electrons release the absorbed energy in the form of heat or light, when they will return to the valance band. The light that electrons give off when they return to valance band is known as PL (Chuanwang, 2004).

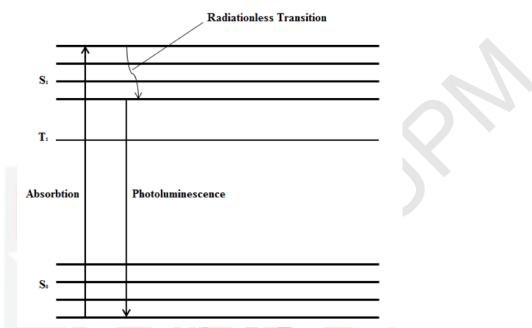


Figure 1.3. Schematic diagram of absorption and emission of photon by electron in atom

1.6 Photoluminescence properties of TiO₂ nanomaterials

The optical properties of a material are associated with the band gap energy and band structure, which in turn depend on the crystal structure of material (Leweyehu, 2009). The PL signals which can display behavior of photo-induced electrons and holes are useful since the signals can explain the recombination of photo-induced electrons and holes in TiO₂. The nanostructured TiO₂ powder shows obvious PL bands in visible light (Liu et al., 2007).

1.7 Magnetic properties of Mn

Ferromagnetic materials are divided to two groups such as soft magnetic materials and hard magnetic materials. Soft magnetic materials can be demagnetized at low magnetic field it means coercivity H_c of soft magnetic materials is low. The permeability of soft magnetic materials is high because they can be easy magnetized. Soft magnetic materials can be suitable for applications of recording heads and magnetic cores. The coercivity H_c of hard magnetic materials is high because high magnetic field is required to demagnetize. The soft magnetic materials are useful for applications of permanent magnets and magnetic recording media.

Mn is a magnetic material that can be classified as soft ferromagnetic material. Mn has important magnetic properties such as high permeability, high saturation induction and low coercive force. Technical applications of newly were developed soft ferromagnetic involve the changes in magnetization that occur easily in weak magnetic fields (Magnetic Materials Unit, 2014).

1.8 Problem statement

 TiO_2 is an important material for application in photocatalysis, solar-photovoltaic, ceramic material, filler, coating, pigment and cosmetics. There are many different shapes of TiO_2 such as nanoparticles, nanotubes, nanorods and nanowires, have been reported. Nanomaterials with various shape and structure usually have different optical and electrical properties (Kavitha et al., 2013).

The major problem facing in the fabrication of TiO_2 nanostructure is about the control of the size and shape of the material which have directly effect on it's physical properties. The nanostructures prepared by hydrothermal method shows better structural, morphological and photocatalytic property (Kavitha et al., 2013).

Hydrothermal technique is a powerful method to prepare 1-D nanomaterials, such as nanowires and nanotubes. Therefore hydrothermal reaction is very beneficial for the synthesis of TiO₂ nanostructures.

1.9 Objectives of research

The present study aims to investigate the fabrication of TiO_2 nanostructure by using hydrothermal method. The main objective of the work is to present a systematic study on the growth, physical and optical characterization of TiO_2 nanostructures prepared by hydrothermal method. Moreover, the study also aims to experimentally study about the effect of Mn doping on structural and photoluminescence properties of TiO_2 nanostructures. More specifically the study pursues the following objectives;

- (1) To investigate of morphology and photoluminescence properties of TiO_2 nanostructure fabricated by hydrothermal technique.
- (2) To investigate of the effect of Mn doping on morphology, structure and photoluminescence properties of TiO₂ nanostructure prepared by hydrothermal technique.

1.10 Scope of research

The fabrication and photoluminescence properties of TiO_2 nanostructures by hydrothermal method using EN and TH were investigated in this study. This dissertation also studied about the effect of Mn doping in TiO_2 and the photoluminescence properties of it. The magnetic behavior of Mn doped in TiO_2 was investigated from VSM result.

1.11 Outline of dissertation

The dissertation is structured in five chapters. The current Chapter (Introduction) presents the background of the study, research questions, statement of the problem, theoretical framework, objectives and scope of the study and outline dissertation. Chapter 2 reviews the previous work on hydrothermal fabrication technique and photoluminescence study of TiO_2 nanostructures. Chapter 3 is devoted to description of experimental methods that have been used for preparation of nanomaterials. Chapter 4 presents our obtained results from fabrication and characterization of TiO_2 nanostructures. Finally, chapter 5 concludes the research.

REFERENCES

- Adachi, M., Murata, Y., Harada, M. and Yoshikawa, S. (2000). Formation of titania nanotubes with high photo-catalytic activity. *Chem Lett*, 29, 942-944.
- Adachi, M., Okada, I., Ngamsinlapasathian, S., Murata, Y. and Yoshikawa, S. (2002). Dye-sensitized solar cells using semiconductor thin film composed of titania nanotubes. *Electrochemistry*, 70, 449-452.
- Adams, D. M., Brus, L., Chidsey, C. E. D., Creager, S., Creutz, C., Kagan, C. R., Kamat, P. V., Lieberman, M., Lindsay, S., Marcus, R. A., Metzger, R. M., Michel-Beyerle, M. E., Miller, J. R., Newton, M. D., Rolison, D. R., Sankey, O., Schanze, K. S., Yardley, J. and Zhu, X. (2003). Charge Transfer on the Nanoscale: Current Status. J Chem Phys B, 107, 6668-6697.
- Alagarasi, A. (2011). Introduction to Nanomaterials.
- Alivisatos, A. P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. *Journal of Physical Chemistry*, 100, 13226-13239.
- Almeida, T. (2010). Hydrothermal Synthesis and Characterisation of α-Fe₂O₃ NanorodsUniversity of Nottingham.
- Asbury, J. B., Hao, E., Wang, Y., Ghosh, H. N. and Lian, T. (2001). Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films. J. Phys. Chem. B, 105, 4545-4557.
- Banerje, S. and Mellema, J. (1974). A new method for the determination of paleointensity from A.R.M properties of rocks. *Earth Planet. Sci. Lett.*, 23(2), 177-184.
- Banerjee, A. N. (2011). The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO₂-based nanostructures. *Nanotechnology, Science and Applications, 4*, 35-36.
- Bannerji, S., Muraleedharan, Tyagi and Raj. (2006). Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy. *Current Science*, 90.
- Bauer, S., Pittrof, A., Tsuchiya, H. and Schmuki, P. (2011). Size-effects in tio₂ nanotubes: Diameter dependent anatase/rutile stabilization. *Electrochem. Commun.*, 13, 538-541.
- Bavykin, D. V., Parmon, V. N., Lapkin, A. A. and Walsh, F. C. (2004). The effect of hydrothermal conditions on the mesoporous structure of TiO₂ nanotubes. *14*, 3370-3377.
- Beydoun, D., Amal, R., Low, G. and McEvoy, S. (1999). Role of nanoparticles in photocatalysis. *J Nanopart Res*, *1*, 439-458.

- Bhattacharyya, S., Pucci, A., Zitoun, D. and 495711, A. G. A. N. (2008). One-pot fabrication and magnetic studies of Mn-doped TiO₂ nanocrystals with an encapsulating carbon layer. *Nanotechnology*, *19*, 495711.
- Braun, J. H., Baidins, A. and Marganski, R. F. (1992). TiO₂ pigment technology: a review. *Prog. Org. Coat*, 20, 105-138.
- Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. (2005). Chemistry and properties of nanocrystals of different shapes. *Chemical Reviews*, 105, 1025-1102.
- Chen, X., Lou, Y., Dayal, S., Qiu, X., Krolicki, R., Burda, C., Zhao, C. and Becker, J. (2005). Doped semiconductor nanomaterials. J Nanoscience Nanotechnology, 5, 1408-1420.
- Chuanwang, G. (2004). Preparation and Evaluation of Photoluminescent NanomaterialsMaster, National University of SingaporeNational University Of Singapore
- Clark, W. and Broadhead, P. (1970). Opticalabsorptionandphotochromisminirondoped rutile. *J Phys C Solid State Phys*, *3*, 1047-1050.
- Coey, J. M. D., Venkatesan, M. and Fitzgerald, C. B. (2005). Donor impurity band exchange in dilute ferromagnetic oxides. *nature materials*, *4*, 173.
- Dai, G. A. (1998). study of the sensing properties of thin film sensor to trimethylamine. *Sens Actuators B Chem*, 53, 8-12.
- Deng, Q. R., Xia, X. H., Guo, M. L., Gao, Y. and Shao, G. (2011). Mn-doped TiO₂ nanopowders with remarkable visible light photocatalytic activity. *Materials Letters*, 65, 2051-2054.
- Dharma, J. and Pisal, A. (2009). Simple method of Measuring the Band Gap Energy Value of TiO₂ in the Powder Form using a UV/Vis/NIR Spectrometer. *Perkin Elmer*.
- Du, G. H., Chen, Q., Che, R. C., Yuan, Z. Y. and Peng, L.-M. (2001). Preparation and structure analysis of titanium oxide nanotubes. *Applied Physics Letters*, 79, 3702.
- Enright, B. and Fitzmaurice, D. (1996). Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film. *J Chem Phys*, *100*, 1027-1035.
- Ezema, F. and Nwankwo, U. (2011). Effect of Concentration of Mn Dopant Ions on the Structural and Optical Properties of Zinc Oxide Crystals. *Journal of nanomaterials and biostructures*, 6, 271-278.

- Feng, X., Zhai, J. and Jiang, L. (2005). The Fabrication and Switchable Superhydrophobicity of TiO₂ Nanorod Films. *Material science*, 44, 5115-5118.
- Fujishima, A. and Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. *Nature*, 238, 37-38.
- Fujishima, A., N.Rao, T. and Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemmistry and Photobiology, 1, 1-21.
- Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dyesensitized solar cells *Journal of Photochemistry and Photobiology A: Chemistry*, 164, 3-14.
- Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414, 338-344.
- Hayashi, k., Nakamura, M., Makita, Y., Fujiwara, R., Kori, T. and Ishimura, K. (2011). Synthesis and photocatalytic activity of sea urchin-shaped rutile TiO2 nanocrystals. *Mater. Lett,* 65, 3037-3040.
- Hong-mei, L., Min, L., Yang-su, Z. and Tong-cheng, H. (2010). Coexistence of antiferromagnetic and ferromagnetic in Mn-doped anatase TiO₂ nanowires. J. *Cent. South Univ. Technol*, 17, 239-243.
- Jing, L., Yuan, F., Hou, H., Xin, B., Cai, W. and Fu, H. (2005). Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. *Science China Chemistry*, 48, 25-30.
- Jitputti, J., Suzuki, Y. and Yoshikawa, S. (2008). Synthesis of TiO₂ nanowires and their photocatalytic activity for hydrogen evolution. *Catalysis Communications*, 9, 1265-1271.
- Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K. (1999). Titania Nanotubes Prepared by Chemical Processing. *Advanced Materials*, 11, 1307.
- Kavitha, M., Gopinathan, C. and Pandi, P. (2013). Synthesis and Characterization of TiO₂ Nanopowders in Hydrothermal and Sol-Gel Method. *Internatinal journal of Advancements in Research & Technology*, 2(4), 102-108.
- Kenneth, S. (2004). Energy Dispersive Spectrometry of Common Rock Forming Minerals. *Kluwer Academic Pulishers*, 225.
- Kiatkittipong, K. (2012). Synthesis of Titania/Titanate Nanostructures for Photocatalytic Applications. Doctor of Philosophy, The University of New South Wales.
- Kim, K., Park, Y., Lee, J., Choi, S., Lee, H., SKim, C. and Park, J. Y. (2007). J. Magn. Magn. Mater, 316, 215.

- Layman, P. (1996). Outlook brightens for titanium dioxide following recent business pickup. *4*, 13-14.
- Leweyehu, M. (2009). Synthesis and photoluminescence study of ZnO nanowires/nanorods. Master of Science, University of Aveiro.
- Lia, X. Z., Lia, F. B., Yang, C. L. and G, W. K. (2001). Photocatalytic activity of WO_x-TiO₂ under visible light irradiation. *Journal of Photochemistry and Photobiology A: Chemistry*, 141, 209-217.
- Linsebigler, A. L., Lu, G. and Yates, J. T. (1995). Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results. *Chemical Reviews*, 95, 735-758.
- Liqianga, J., Yichuna, Q., Baiqia, W., Shudana, L., Baojianga, J., Libina, Y., Fu Weia, Honggang, F. and Jiazhong, S. (2006). Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. *Solar Energy Materials & Solar Cells*, 90, 1773-1787.
- Liu, B., Wen, L. and Zhao, X. (2007). The photoluminescence spectroscopic study of anatase TiO₂ prepared by magnetron sputtering. *materials Chemistry and Physics*, 106, 350-353.
- Lucky, R. A. (2008). Synthesis Of TiO₂-Based Nanostructured Materials Using A Sol-Gel Process In Supercritical CO₂Doctor of Philosophy The University of Western Ontario Ontario.
- Mali, S. S., Shinde, P. S., Betty, C. A., Bhosale, P. N., Lee, W. J. and Patil, P. S. (2011). Nanocoral architecture of TiO₂ by hydrothermal process: Synthesis and characterization. Applied Surface Science 2011, 257, 9737–9746. *Applied Surface Science*, 257, 9737-9746.
- Murray, C. B. and Kagan, C. R. (2000). Synthesis And Characterization Of Monodisperse Nanocrystals And Close-Packed Nanocrystal Assemblies. *Materials Sccience 30*, 545-610.
- Nozik, A. and Memming, R. (1996). Physical chemistry of semiconductor-liquid interfaces. *J Chem Phys*, 100, 13061-13078.
- O'Regan, B. and Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. *Nature*, *353*, 737-740.

Pawlizak, S. (2009), from http://www.uni-leipzig.de

- Peikins, W. (1986). Fourier Transform-Infrared Spectroscopy. *Topic in Chemical Instrumentation*, 63(1), 5-10.
- Peining, Z., Nair, A. S., Shengyuan, Y. and Ramakrishna, S. (2011). TiO₂-mwcnt rice grain-shaped nanocomposites: Synthesis, characterization and

photocatalysis. Mater. Res. Bull. 2011, 46, 588–595. Mater. Res. Bull, 46, 588-595.

- Peng, D., Fa-Min, L., Chuang-Cang, Z., Wen-Wu, Z., Huan, Z., Lu-Gang, C. and Le-Gui, Z. (2010). Structure, room-temperature magnetic and optical properties of Mn-doped TiO₂ nano powders prepared by the sol–gel process. *chinese physics*, 19, 118102.
- Poulios, I., Kositzi, M. and Kouras, A. (1998). Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions. J Photochem Photobiol A Chem, 115, 175-183.
- Qinghong, Z. and Gao, L. (2003). Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile TiO₂. *Langmuir*, 19, 967-971.
- Quan, X., Yang, S., Ruan, X. and Zhao, H. (2005). Preparation of titania nanotubes and their environmental applications as electrode. *Environ Sci Technol, 39*, 3770-3775.
- Radecka, M., Zahrzewska, K., Czternastek, H., ski, T. S. and Debrus, S. (1993). The influence of thermal annealing on the structural, electrical and optical properties of TiO₂. *Appl Surf Sci*, 65-66, 227-234.
- Rahima, L. (2008). Synthesis Of Tio₂-Based Nanostructured Materials Using A Sol-Gel Process In Supercritical Co₂. Doctor of Philosophy, The University of Western Ontario London, Ontario, Canada.
- Richard, B. (1993). Ferromagnetism. IEEE Press Classic Reissue.
- Salvador, A., Pascual-Marti, C., M., Adell, J. R., Requeni, A. and March, J. G. (2000). Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J. Pharm. Biomed. Anal, 22, 301.
- Smith, L., Kuncic, Z., Ostrikov, K. K. and Kumar, S. (2012). Nanoparticles in cancer imaging and therapy. *journal of nanomaterial*, 1-7.
- Tang, H. (1994). Electronic Properties of Anatase TiO2 Investigated by Elec- trical and Optical Measurements on Single Crystals and Thin Films. Lausanne, France: Département de physique, Ecole polytechnique fédérale de Lausanne EPFL.
- Tomoko, K., Masayoshi, H., Akihiko, H., Toru, S. and Koichi, N. (1998). Formation of Titanium Oxide Nanotube. *Langmuir*, *14*, 3160-3163.
- Tryk, D. A., Fujishima, A. and Honda, K. (2000). Recent topics in photoelectrochemistry: achievements and future prospects. *Electrochimica Acta*, 45, 2363-2376.

- Uchida, S., Chiba, R., Tomiha, M., Masaki, N. and Shirai, M. (2002). Application of titania nanotubes to a dye-sensitized solar cell. *Electrochemistry*, 70, 418-420.
- Viana, M. M., Soares, V. F. and Mohallem, N. D. S. (2010). Synthesis and characterization of TiO₂ nanoparticles. *Ceram.Int*, *36*, 2047-2053.
- Vijayalakshmi, R. and Rajendran, V. (2012). Synthesis and characterization of nano-TiO₂ via different methods. *Scholars Research Library*, *4*, 1183-1190.
- Wang, Y. Q., Hu, G. Q., Duan, X. F., Sun, H. L. and Xue, Q. K. (2002). Microstructure and formation mechanism of titanium dioxide nanotubes. *Chemical Physics Letters*, 365, 427-431.
- Wanga, W., Varghesea, O. K., Paulosea, M., Grimesa, C. A., Wanga, Q. and Dickeya, E. C. (2004). A study on the growth and structure of titania nanotubes. *Journal of Materials Research*, 19, 417-422.
- Wei, M., Konishi, Y., Zhou, H., Sugihara, H. and Arakawa, H. (2004). A simple method to synthesize nanowires titanium dioxide from layered titanate particles. *Chemical Physics Letters*, 400, 231-234.
- Wen, B.-M., Liu, C.-Y. and Liua, Y. (2005). Solvothermal synthesis of ultralong single-crystalline TiO₂ nanowires. *New Journal Chemistry*, 29, 969-971.
- Wijnhoven, J. and Vos, W. L. (1998). Preparation of photonic crystals made of air spheres in titania. *Science*, 281, 802-804.
- Wu, J.-M., Shih, H. C. and Wu, W.-T. (2006). Formation and photoluminescence of single-crystalline rutile TiO₂ nanowires synthesized by thermal evaporation. *Nanotechnology*, *17*, 105-109.

www.nims.go.jp/apfim/soft&hard.html. (2014). Magnetic Materials Unit

- Xiaobo, C. and Samuel, S. M. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. *Chemical Reviews*, 107, 2891-2959.
- Yahya, K. (2010). Characterization of Pure and dopant TiO₂ thin films for gas sensors applications. Doctor of Philosophy, University of Technology.
- Yang, J., Mei, S. and Ferreira, J. M. F. (2001). Hydrothermal synthesis of TiO₂ nanopowders from tetraalkylammonium hydroxide peptized sols. *Materials Science and Engineering: C*, 15, 183-185.
- Yao, B. D., Chan, Y. F., Zhang, X. Y., Zhang, W. F., Yang, Z. Y. and Wang, N. (2003). Formation mechanism of TiO₂ nanotubes. *Applied Physics Letters*, 82, 281.
- Yin, Y. and Alivisatos, A. P. (2005). Introduction to Nanoscale Science and Technology. *Nature*, 437, 664.

- Yu, H. G., Yu, J. G., Cheng, B. and Zhou, M. H. (2006). Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. *Angewandte Chemie*, 44, 1974-1977.
- Yuan, S., Chen, W. and Hu, S. (2005). Fabrication of TiO₂ nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine. *Materials Sccience and Engineering: C*, 25, 479-485.
- Yuranova, T., Mosteo, R., Bandara, J., Laub, D. and Kiwi, J. (2006). Self-cleaning cotton textiles surfaces modified by photoactive SiO₂/ TiO₂ coating. J. Mol. Catal. A-Chem. 2006, 244, 160-167. J. Mol. Catal. A-Chem, 244, 160-167.
- Zallen, R. and Moret, M. P. (2006). The optical absorption edge of brookite TiO₂. Solid state communications. *Solid state communications*, *137*, 154-157.
- Zamiri, R., Zakaria, A., Ahangar, H. A., Zamir, G., Bahari, H. R. and Drummen, G. (2014). Hydrothermal synthesis of Goethite (α-FeOOH) Nanorods in the presence of Ethylenediamine:Thiourea. *journal of nanoparticle research*.
- Zhang, Y. X., Li, G. H., Jin, Y. X., Zhang, Y., Zhang, J. and Zhang, L. D. (2002). Hydrothermal synthesis and photoluminescence of TiO₂ nanowires. *Chemical Physics Letters*, 365, 300-304.
- Zhao, Y., Jin, J. and Yang, X. (2007). Hydrothermal synthesis of titanate nanowire arrays. *Mater. Lett.*, 61, 384–388.
- Zhong-Yong, Y. and Bao-Lian, S. (2004). Titanium oxide nanotubes, nanofibers and nanowires. *Colloids Surf. A*, 241, 173-183.
- Zhou, Y., Cao, L., Zhang, F., He, B. and Li, H. (2003). Lithium insertion into TiO₂ nanotube prepared by the hydrothermal process. *J Electrochem Soc*, 150, 1246-1249.