BIOASSAY GUIDED ISOLATION OF ANTIOXIDATIVE COMPOUNDS FROM TWO RUTACEOUS SPECIES MELICOPE GLABRA (BLUME) T.G. HARTLEY AND MICROMELUM MINUTUM (G. FORST) WIGHT AND ARN

NUR KARTINEE KASSIM

FS 2013 43
BIOASSAY GUIDED ISOLATION OF ANTIOXIDATIVE COMPOUNDS FROM TWO RUTACEOUS SPECIES MELICOCPE GLABRA (BLUME) T.G. HARTLEY AND MICROMELUM MINUTUM (G. FORST) WIGHT AND ARN

By

NUR KARTINEE KASSIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy.

December 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Research on the application, characteristics and sources of natural antioxidants especially phenolic had received great interest as synthetic antioxidants were reported to give adverse health effects. Melicope glabra (Blume) T.G.Hartley and Micromelum minutum (G. Forst.) Wight and Arn. (Rutaceae) are edible plants of the Rutaceae family. Both plants are traditionally used in the treatment of various diseases and known to contain a number of rutaceous compounds such as coumarins, lignans and alkaloid. To date, the reports on the bioactive compounds responsible for their medicinal properties are very limited. Thus, the search to identify bioactive compounds particularly as antioxidant agent from these unexplored plants are really significant. A bioassay-guided isolation technique by 1, 1-diphenyl-2-dipicrylhydrazyl (DPPH) radical was used to locate and identify the presence of antioxidant components in various extracts of these plants. The three extracts (hexane, ethyl acetate and methanol) of M. glabra were screened for antioxidant properties by four different assays; DPPH free radical scavenging, oxidation of β-carotene and linoleic acid, oxygen radical antioxidant capacity (ORAC) and total phenolic content (TPC). The results showed that the ethyl acetate and methanol extracts possessed very good antioxidant potential and were selected for activity-guided fractionation. The DPPH IC$_{50}$ values obtained for ethyl acetate and methanol extracts were 24.81 and 13.01µg/mL with the antioxidant activity of 99.5 and 93.0% on the β-carotene bleaching assay as compared to α-tocopherol (100%). They also gave high ORAC values (1521 and 2182 µmol TE/g) for the former and latter, respectively. The column chromatographic separation on active extracts gave five active fractions namely ME 21, ME 24, ME 31, MM 13 and MM 16 with the DPPH IC$_{50}$ values of 17.22, 58.98, 30.21, 17.72 and 49.13 µg/mL respectively. The methanolic extract of M. minutum also exhibited good antioxidant activities against radical scavenging, β-carotene bleaching and ORAC assays by
exhibiting values of 54.3 µg/mL, 55.19% and 5123 µmol TE/g respectively. The *M. minutum* fraction gave the DPPH IC$_{50}$ of 168.9 µg/mL and ORAC value of 5.75%. Phytochemical investigation on *Melicope glabra* active fractions led to the isolation of ten compounds including one lignan sesamin (36), a number of coumarin derivatives (umbelliferone (37), scopoletin (40), a new pyranocoumarin, glabranin (41), scoporone (42), 6,7,8-trimethoxycoumarin (43) and marmesin (44)) together with two new glycosides (3-β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy) cinamate (38) and 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside (39)). Meanwhile, phytochemical study on *M. minutum* methanol bark extract successfully yielded one lignan sesamin (45) which was previously isolated from the earlier plant, two new coumarins (hydramicromelinin (46) and micromelinin (47)) along with three glycosides (marmesin glycoside (48), maltose (49) and sucrose (50)). Five of the compounds were identified as new since there has been no previous reports on these compounds. The structure elucidation of the isolates were characterized by different spectroscopic techniques such as UV (ultraviolet), IR (infrared), MS (mass spectra), NMR (nuclear magnetic resonance) and comparison with published data. The isolated compounds, sesamin (36), umbelliferone (37), scopoletin (40), glabranin (41), 3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy) cinamate (38) and 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside (39) displayed DPPH IC$_{50}$ values of 2508.63, 810.02, 413.19, 240.20, 323.78 and 124.13 µg/mL respectively. In the assessment of antioxidant activities by β-carotene bleaching assay on the isolated compounds, sesamin (36) displayed the most potent antioxidant with the antioxidant activity of 95.9%. The antioxidant activity observed for other compounds (glabranin (41), umbelliferone (37) and scopoletin (40)) were 74.9, -44.0 and -54.2 % respectively. Umbelliferone (37) and scopoletin (40) showed slightly prooxidant activities. Two isolated compounds from *M. minutum* namely hydramicromelinin (46) and marmesin glycoside (48) were also exhibited prooxidant behavior with the antioxidant activity of -116.35 and -34.18%, respectively. The measurement of scavenging activity by ORAC method revealed umbelliferone (37) as highly potential antioxidant agent with the ORAC value 24,965 µmol TE/g compared to ascorbic acid (5785 µmol TE/g). Hydramicromelinin (46) also showed strong antioxidant activity with the ORAC value of 5539 µmol TE/g. The ORAC values recorded for other compounds; glabranin (41), scopoletin (40), sesamin (36) and marmesin glycoside (48) were 2883, 2007, 2319 and 4031 µmol TE/g respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan untuk ijazah Doktor Falsafah

PEMENCILAN KOMPONEN ANTIOXIDATIF BERPANDUKAN AKTIVITI BIO ASAI DARI DUA RUTACEAE SPESIS MELICOPA GLOBRA (BLUME) T.G.HARTLEY DAN MICROMELUM MINUTUM (G. FORST.) WIGHT DAN ARN

Oleh

NUR KARTINEE KASSIM

Disember 2013

Pengerusi: Professor Mawardi Rahmani, PhD
Fakulti: Sains

Kajian ke atas kegunaan, ciri-ciri dan sumber antioksidan semulajadi terutamanya sebatian fenolik telah mendapat perhatian yang meluas memandangkan antioksidan sintetik dilaporkan memudaratkan kesihatan. Melicope glabra (Blume) T.G. Hartley dan Micromelum minutum (G. Forst.) Wight dan Arn. (Rutaceae) adalah tumbuhan yang boleh dimakan tergolong dalam keluarga Rutaceae Kedua-dua tumbuhan ini digunakan secara tradisional bagi merawat pelbagai penyakit dan diketahui mengandungi beberapa sebatian rutaceous seperti coumarins, lignan dan alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap khasiat perubatan adalah sangat terhad. Oleh itu, penyelidikan bertujuan mengenalpasti sebatian bioaktif terutamanya sebagai ejen antioksidan daripada tumbuhan yang belum diterokai ini adalah sangat berfaedah. Satu teknik pemencilan antioksidan berpandukan aktiviti 1,1-difenil-2-dipikrilhidrazil (DPPH) radikal telah digunakan untuk mencari dan mengenal pasti kehadiran komponen antioksidan dalam pelbagai ekstrak tumbuh-tumbuhan ini. Tiga M. glabra ekstrak (heksana, etil asetat dan metanol) disaring untuk sifat antioksidan menggunakan empat ujian yang berbeza; DPPH memerangkap radikal bebas, pengoksidaan, β-karotena, oksigen kapasiti antioksidan radikal (ORAC) dan jumlah kandungan fenolik (TPC). Keputusan ujian antipengoksidaan menunjukkan ekstrak etil asetat dan metanol mempunyai potensi antipengoksidaan yang kuat dan telah terpilih untuk fraksinasi aktiviti berpandu. Nilai IC\textsubscript{50} DPPH yang diperolehi oleh etil asetat dan ekstrak metanol adalah masing-masing 24.81 dan 13.01μg/mL dengan aktiviti antioxidan sebanyak 99.5 dan 93.0% ke atas perubahan warna β-karotena berbanding α-tokoferol (100%). Tumbuh-tumbuhan ini turut memberi nilai ORAC yang tinggi iaitu 1521 dan 2182 μmol TE/g. Pemisahan kromatografi turus ke atas ekstrak-ekstrak aktiv ini telah menghasilkan lima fraksi aktif iaitu ME 21, ME 24, ME 31, MM 13 dan 16 MM dengan nilai IC\textsubscript{50} masing-masing sebanyak 17.22, 58.98, 30.21, 17.72 dan 49.13 μg/mL. Ekstrak metanol M. minutum juga

iv
menunjukkan aktiviti antioksidan yang baik terhadap memerangkap radikal, β-karotena pelunturan dan asai ORAC radikal dengan mempamerkan nilai masing-masing iaitu 54.3 μg/mL, 55.19% dan 5123 μmol TE/g. Fraksi dari M. minitum memberikan nilai IC₅₀ 168.9 μg/ml dan nilai ORAC sebanyak 5.75%. Penyelidikan fitokimia ke atas fraksi-fraksi aktif M. glabra membawa kepada pemencian sepuluh sebatian termasuk satu lignan sesamin (36), beberapa terbitan koumarin (umbelliferon (37), skopoletin (40), satu piranokoumarin baharu, glabranin (41), skoparone (42), 6,7,8-trimetoksilkoumarin (43) dan marmesin (44) bersama-sama dengan dua glikosida baru 3-(β-D-galaktopiranosoil)-O-(2-hidrosil-4-methilenedioksil) cinammate (38) dan 22-hidroksilfurost-5-ena-(6→O)α-metilalanil-3-O-β-glukopiranosaide (39). Sementara itu, kajian fitokimia ke atas M.minitum ekstrak metanol kulit berjaya menghasilkan satu lignan sesamin (45) yang sebelum ini telah dicenakan daripada tumbuhan yang pertama, dua koumarin baharu (hidramikromelinin (46) dan mikromelinin(47)) bersama-sama dengan tiga glikosida (glikosida marmesin (48), maltosa (49) dan sukrosa (50)). Lima daripada sebatian ini telah dikenal pasti sebagai baharu kerana tidak ada laporan terdahulu mengenai sebatian ini. Struktur kesemua sebatian dikenalpasti berdasarkan teknik spektroskopi yang berbeza seperti UV (ultralembayung), IR (inframerah), MS (jisim spektrum), NMR (resonans magnetik nuklear) dan juga perbandingan dengan data yang diterbitkan. Beberapa sebatian terpencil, sesamin (36), umbelliferon (37), skopoletin (40), glabranin (41), 3-(β-D-galaktopiranosoil)-O-(2-hidrosil-4-methilenedioksil) cinammate (38) dan 22-hidroxsilfurost-5-ena-(6→O)α-metilalanil-3-O-β-glukopiranosaide (39) memaparkan nilai IC₅₀ DPPH masing-masing iaitu 2508.63, 810.02, 413.19, 240.20, 323.78 dan 124.13 μg/mL mendedahkan sifat antioksidan mereka. Penilaian aktiviti antioksidan oleh cerahkan pelunturan β-karotena pada sebatian-sebatian terpencil, telah menunjukkan sesamin (36) sebagai agen antioksidan yang paling kuat dengan nilai aktiviti antioksidan sebanyak 95.9%. Aktiviti antioksidan yang diperhatikan bagi sebatian-sebatian lain (glabranin (41), umbelliferon (37) dan skopoletin (40)) masing-masing adalah 74.9, -44.0 dan -54.2%. Umbelliferon (37) dan skopoletin (40) menunjukkan sedikit aktiviti prooksidan. Dua sebatian terpencil daripada M.minitum iaitu hidramikromelinin (46) dan glikosida marmesin (48) telah mempamerkan aktiviti prooksidan dengan perencatan peratus masing-masing -116.35% dan -34.18%. Pengukuran aktiviti memerangkap dengan kaedah ORAC mendapati umbelliferon (37) sebagai agen antioksidan yang berpotensi tinggi dengan nilai ORAC 24.965 μmolTE/g berbanding asid ascorbik (5785 μmolTE/g). Hidramikromelinin (46) juga menunjukkan aktiviti antioksidan yang kuat dengan nilai ORAC 5539 μmol TE/g. Nilai-nilai ORAC yang dicatatkan pada sebatian lain; glabranin (41), skopoletin (40), sesamin (36) dan glikosida marmesin (48) masing-masing adalah 2883, 2007, 2319, 4031, 4948 dan 3802 μmol TE/g.
ACKNOWLEDGEMENTS

In the name of Allah, the most Gracious and the most Merciful

First and foremost, I would like to express my deepest appreciation to my supervisor, Prof. Dr. Mawardi Rahmani for his excellent supervision, intellectual advice and very kind attentions throughout the course of the project. It has been a great pleasure and wonderful learning experience. My sincere thanks is also extended to Prof. Dr. Amin Ismail for his invaluable assistance and guidance particularly in antioxidant research. I would also like to express my thanks to Prof. Dr. Mohd Aspollah Sukari for his assistance and cooperation.

My special appreciation to all my laboratory mates, Faiqah, Nazil, Nadiah, Kamilah, Maizatul, Aizat and Windra for their contribution and encouragement in carrying out my research work. My thanks also extended to technical staff, En. Mohd Johadi, En. Fadli, Cik Sharina, En. Zainal dan Pn. Rusnani from Chemistry Dept. UPM for their assistance. I would like to also record my appreciation to Prof Dr. Mahiran Basri, Director of Centre of Foundation for Agricultural Science and the staff for the encouragement and enjoyable social academic environment. My thanks also goes to Prof. Dr. Aminah Abdullah and Dr. Khalid Musa of UKM for the kind reception in their antioxidant laboratory.

Lastly, a very special thanks to my dearest husband and four children, Dr. Iskandar Mohd Zain, Maryam Shuhada, Luqman Hadi, Nur Ain Safiyah and Muaz Hakim for their patience, encouragement, understanding and love. My sincere gratitude goes to my parents; Tn Hj. Kassim and Pn. Hjh Siti Nor, parent-in-law and siblings for their constant prayers and moral support.
Approval
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of . The members of the Supervisory Committee were as follows:

Mawardi Rahmani, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Amin Ismail, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

Mohd Aspollah Sukari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)
Declaration Form

Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

the research conducted and the writing of this thesis was under our supervision;
supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________
Name of Chairman of Supervisory Committee:

Signature: ________________________
Name of Member of Supervisory Committee:

Signature: ________________________
Name of Member of Supervisory Committee:

Signature: ________________________
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 Objectives of Study 1

2 LITERATURE REVIEW
 2.1 The Rutaceae plants 4
 2.2 Coumarins and Lignans 4
 2.3 Biosynthesis Pathways of Coumarins and Lignans 5
 2.4 Genus of Melicope
 2.4.1 Melicope in traditional medicine 10
 2.4.2 Phytochemical studies in Melicope 11
 2.4.3 Biological activities of Melicope 16
 2.5 Genus of Micromelum
 2.5.1 Micromelum in traditional medicine 17
 2.5.2 Phytochemical studies in Micromelum 20
 2.5.3 Biological activities of Micromelum 22
 2.6 Free radicals and antioxidant 24
 2.7 Antioxidant assay
 2.7.1 Assays associated with electron and radical scavenging 28
 2.7.1.1 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay. 28
 2.7.1.2 Oxgen radical absorbance capacity (ORAC) 29
 2.7.2 Assays associated with lipid peroxidation 31

3 MATERIALS AND METHODS
 3.1 Instruments 34
 3.2 Chemicals and reagents 34
 3.3 Chromatographic Methods 35
3.3.1 Column chromatography
3.3.2 Planar Chromatography
3.3.3 Preparative Thin Layer Chromatography (PTLC)
3.3.4 Analytical Thin Layer Chromatography (TLC)

3.4 Assay guided isolation and characterization of the chemical constituents from *Melicope glabra*

3.4.1 Plant materials
3.4.2 Preparation of the crude extracts
3.4.3 DPPH-assay guided fractionation and isolation of compounds from ethyl acetate extract
 - Isolation of sesamin (36)
 - Isolation of umbelliferone (37)
 - Isolation of 3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy) cinamate (38)
 - Isolation of 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3 O-β-glucopyranoside (39)

3.4.4 DPPH-assay guided fractionation and isolation of compounds from methanol extract
 - Isolation of scopoletin (40)
 - Isolation of glabranin (41)
 - Isolation of scoparone (42)
 - Isolation of 6, 7, 8 trimethoxycoumarin (43)
 - Isolation of marmesin (44)

3.5 Assay guided isolation and characterization of the chemical constituents from *Micromelum minutum*

3.5.1 Plant material
3.5.2 Preparation of the crude extracts
3.5.3 Isolation of chemical constituents from methanol extract of *Micromelum minutum*
 - Isolation of hydromicromelinin (46)
 - Isolation of micromelinin (47)
 - Isolation of marmesin glycoside (48)
 - Isolation of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)
 - Isolation of sucrose (50)

3.6 *In vitro* assessment of antioxidant activities

3.6.1 TLC-DPPH antioxidant screening
3.6.2 DPPH radical-scavenging assay and antioxidant activity index determination
3.6.3 Linoleic acid/β-Carotene bleaching assay
3.6.4 Determination of oxygen radical absorbance capacity (ORAC)
3.6.5 Determination of total phenolic content
3.6.6 Statistical Analysis
4 RESULTS AND DISCUSSION

4.1 Structure elucidation of compounds from Melicope glabra

4.1.1 Structure of 3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy) cinamate (38) 48

4.1.2 Structure of 22-hydroxyfurost-5-ene-(6-→O)-α-methylalanyl-3-O-β-glucopyranoside (39) 50

4.1.3 Structure of glabranin (41) 64

4.1.4 Structure of sesamin (36) 80

4.1.5 Structure of umbelliferone (37) 94

4.1.6 Structure of scopoletin (40) 104

4.1.7 Structure of scoparone (42) and 6,7,8-trimethoxy coumarin (43) 111

4.1.8 Structure of marmesin (44) 118

4.2 Structure elucidation of compounds from Micromelum minutum

4.2.1 Structure of hydramicromelinin (46) 131

4.2.2 Structure of micromelinin (47) 140

4.2.3 Structure of marmesin glycosides (48) 142

4.2.4 Structure of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49) 153

4.2.5 Structure of sucrose (50) 162

4.2.6 Structure of sesamin (45) 174

4.3 Antioxidant capacity of Melicope glabra and its chemical constituents

4.3.1 Radical scavenging activities of the Melicope glabra extracts and its fractions 174

4.3.2 Antioxidant activity by β-carotene bleaching method and total phenolic content (TPC) on the Melicope glabra extracts and fractions 185

4.3.3 Oxygen radical capacity (ORAC) on Melicope glabra extracts 197

4.3.4 Antioxidant capacity of the isolated compounds from Melicope glabra. 199

4.4 Antioxidant capacity of Micromelum minutum and their respective chemical constituents 201

4.5 The relationship between the structure of molecules and antioxidant capacity 210

5 CONCLUSIONS 217

BIBLIOGRAPHY 218

APPENDICES 220

BIODATA OF STUDENT 240

LIST OF PUBLICATIONS 242
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical compounds identified from various Melicope species</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Biological activities of selected Melicope species</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Micromelum species in traditional medicine</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical constituents identified from various Micromelum species</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Biological activities of selected Micromelum species</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Several antioxidants and their mechanisms of action</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Selected studies on natural antioxidants</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>1H-NMR (400 MHz, CDCl$_3$) and 13C-NMR (400 MHz, CDCl$_3$) spectral data of 3-(β-D-galactopyranosil)-O-(2-hydroxy-4-methylenedoxy) cinammat (38)</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>1H-NMR (600 MHz, CDCl$_3$) and 13C-NMR (150 MHz, CDCl$_3$) spectral data of 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside (39)</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>1H-NMR (500 MHz, CDCl$_3$) and 13C-NMR (125 MHz, CDCl$_3$) spectral data of glabranin (41)</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>1H-NMR (400 MHz, CD$_3$COCD$_3$) and 13C-NMR (100 MHz, CD$_3$COCD$_3$) spectral data of sesamin (36)</td>
<td>97</td>
</tr>
<tr>
<td>4.5</td>
<td>1H-NMR (400 MHz, CD$_3$COCD$_3$) and 13C-NMR (100 MHz, CD$_3$COCD$_3$) spectral data of umbelliferone (37)</td>
<td>106</td>
</tr>
<tr>
<td>4.6</td>
<td>1H-NMR (500 MHz, CDCl$_3$) and 13C-NMR (125 MHz, CDCl$_3$) spectral data of scopoletin (40)</td>
<td>113</td>
</tr>
<tr>
<td>4.7</td>
<td>1H-NMR (600 MHz, CD$_3$COCD$_3$) and 13C-NMR (150 MHz, CD$_3$COCD$_3$) spectral data of scoparone (42) and 6, 7, 8-trimethoxy coumarin (43)</td>
<td>121</td>
</tr>
<tr>
<td>4.8</td>
<td>1H-NMR (500 MHz, CDCl$_3$) and 13C-NMR (125 MHz, CDCl$_3$) spectral data of marmesin (44)</td>
<td>133</td>
</tr>
<tr>
<td>4.9</td>
<td>1H-NMR (500 MHz, CD$_3$OD) and 13C-NMR (125 MHz, CD$_3$OD) spectral data of hydramicromelinin (46)</td>
<td>145</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>1H-NMR (500 MHz, CD$_3$OD) and 13C-NMR (125 MHz, CD$_3$OD) spectral data of micromelinin (47)</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>1H-NMR (500 MHz, CD$_3$OD) and 13C-NMR (125 MHz, CD$_3$OD) spectral data of marmesin glycoside (48)</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>1H-NMR (500 MHz, CDCl$_3$) and 13C-NMR (125 MHz, CDCl$_3$) spectral data of maltose (49)</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>1H-NMR (500 MHz, CD$_3$OD) and 13C-NMR (125 MHz, CD$_3$OD) spectral data of sucrose (50)</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>DPPH scavenging activities of the Melicope glabra extracts at different assay-guided separation stages</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Total phenolic contents and antioxidant activities of extracts and fractions, glabranin as assessed with β-carotene bleaching and ORAC assays.</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Antioxidant activity of glabrinin, umbelliferone, scopoletin, sesamin, 3-O-(Z)-3-(1,3 benzodioxol-5-y1) acryl-β-D-galactopyranose and 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Antioxidant activity (%) of extract, fraction and pure compounds of Micromelum minutum (100 µg/mL)</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Possible biosynthetic route towards coumarins</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Biosynthesis pathway of linear and angular furanocoumarins</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Biosynthesis pathway of pyranocoumarins</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Biosynthesis pathway of lignan</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Leafy twig of Melicope glabra</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Micromelum minutum</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Alkaloids derivatives from Micromelum species</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Structure of micromolide (35)</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Major sources of free radicals in the body and the consequences of free radical damage</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>Natural antioxidants</td>
<td>26</td>
</tr>
<tr>
<td>2.11</td>
<td>The mechanisms of DPPH radical accept hydrogen from an antioxidant</td>
<td>29</td>
</tr>
<tr>
<td>2.12</td>
<td>The AAPH reaction in ORAC assay</td>
<td>30</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic diagram of antioxidant reaction in ORAC assay</td>
<td>31</td>
</tr>
<tr>
<td>2.14</td>
<td>The free radical mechanism of lipid peroxidation</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>DPPH- assay directed isolation of compounds from M. glabra.</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>UV spectrum of (3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy) cinammate (38)</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>IR spectrum of (3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy) cinammate (38)</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>EIMS spectrum of 3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy) cinammate (38)</td>
<td>51</td>
</tr>
</tbody>
</table>
4.5 HRESIMS of 3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedeyoxy) cinammmate (38) 52
4.6a The tautomeric interconversion of 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 54
4.6b Selected HMBC and NOESY correlations 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 54
4.7 1H-NMR spectrum of 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 55
4.8 Expanded 1H-NMR spectrum of 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 56
4.9 13C-NMR spectrum of 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 57
4.10 HMQC spectrum of 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 58
4.11 HMBC spectrum 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 59
4.12 COSY spectrum 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 60
4.13 NOESY spectrum of 3-(β-D-galactopyranosyl)-O- (2-hydroxy-4-methylenedeyoxy) cinammmate (38) 61
4.14 Expanded NOESY spectrum of 3-(β-D-galactopyranosyl) -O-(2-hydroxy-4-methylenedeyoxy) cinammmate (38) 62
4.15 Mass spectrum fragmentation pattern of 3-(β-D-galactopyranosyl) -O-(2-hydroxy-4-methylenedeyoxy) cinammmate(38) 63
4.16 UV spectrum 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β- glucopyranoside (39) 64
4.17 IR spectrum 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β -glucopyranoside (39) 65
4.18 EIMS spectrum of 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside (39) 65

xvii
4.19 HRESIMS spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)

4.20 Selected HMBC correlations of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)

4.21 1H-NMR spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)

4.22 Expanded 1H-NMR spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)(steroidal part)

4.23 Expanded APT NMR spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)

4.24 Expanded HSQC spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)

4.25 Expanded COSY spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)

4.26 Expanded HSQC spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)

4.27 HMBC spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (39)

4.28 Expanded HMBC spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (sugar part) (39)

4.28a Expanded HMBC spectrum of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3-O-β-glucopyranoside (steroidal part) (39)

4.29 Mass fragmentation pattern of 22-hydroxyfurost-5-ene-(6→O) -α-methylalanyl-3 O-β-glucopyranoside (39)

4.30 UV spectrum of glabranin (41)

4.31 IR spectrum of glabranin (41)

4.32 EIMS spectrum of glabranin (41)

4.33 HRESIMS spectrum of glabranin (41)

4.34 Selected HMBC correlations in glabranin (41)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.35</td>
<td>1H-NMR spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.35a</td>
<td>Expanded 1H-NMR spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.35b</td>
<td>Expanded 1H-NMR spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.36</td>
<td>13C-NMR spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.37</td>
<td>DEPT spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.38</td>
<td>HMQC spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.39</td>
<td>HMBC spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.39a</td>
<td>Expanded HMBC spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.40</td>
<td>COSY spectrum of glabranin (41)</td>
</tr>
<tr>
<td>4.41</td>
<td>Mass spectrum fragmentation pattern of glabranin (41)</td>
</tr>
<tr>
<td>4.42</td>
<td>UV spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.42a</td>
<td>Infrared spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.43</td>
<td>EIMS spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.44</td>
<td>1H-NMR spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.45</td>
<td>13C-NMR spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.46</td>
<td>DEPT spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.47</td>
<td>HMQC spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.47a</td>
<td>COSY spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.48</td>
<td>HMBC spectrum of sesamin (36)</td>
</tr>
<tr>
<td>4.49</td>
<td>UV spectrum of umbelliferone (37)</td>
</tr>
<tr>
<td>4.50</td>
<td>IR spectrum of umbelliferone (37)</td>
</tr>
<tr>
<td>4.51</td>
<td>EIMS spectrum of umbelliferone (37)</td>
</tr>
<tr>
<td>4.52</td>
<td>1H-NMR spectrum of umbelliferone (37)</td>
</tr>
<tr>
<td>Page</td>
<td>Spectrum Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>4.53</td>
<td>13C-NMR spectrum of umbelliferone (37)</td>
</tr>
<tr>
<td>4.54</td>
<td>COSY spectrum of umbelliferone (37)</td>
</tr>
<tr>
<td>4.55</td>
<td>HMQC spectrum of umbelliferone (37)</td>
</tr>
<tr>
<td>4.56</td>
<td>UV spectrum of scopolin (40)</td>
</tr>
<tr>
<td>4.57</td>
<td>Infrared spectrum of scopolin (40)</td>
</tr>
<tr>
<td>4.58</td>
<td>EIMS spectrum of scopolin (40)</td>
</tr>
<tr>
<td>4.59</td>
<td>1H-NMR spectrum of scopolin (40)</td>
</tr>
<tr>
<td>4.60</td>
<td>13C-NMR spectrum of scopolin (40)</td>
</tr>
<tr>
<td>4.61</td>
<td>HMQC spectrum of scopolin (40)</td>
</tr>
<tr>
<td>4.62</td>
<td>COSY spectrum of scopolin (40)</td>
</tr>
<tr>
<td>4.63</td>
<td>UV of spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.64</td>
<td>IR of spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.65</td>
<td>EIMS spectrum of scoparone (42)</td>
</tr>
<tr>
<td>4.66</td>
<td>EIMS spectrum of 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.67</td>
<td>1H-NMR spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.68</td>
<td>Expanded 1H-NMR spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.69</td>
<td>13C-NMR spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.70</td>
<td>COSY spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.71</td>
<td>HMQC spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.72</td>
<td>Expanded HMQC spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.73</td>
<td>HMBC spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.74</td>
<td>Expanded HMBC spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
<tr>
<td>4.75</td>
<td>Expanded HMB spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)</td>
</tr>
</tbody>
</table>
4.76 UV spectrum of marmesin (44)
4.77 IR spectrum of marmesin (44)
4.78 EIMS of marmesin (44)
4.79 Selected HMBC correlations of marmesin (44)
4.80 1H-NMR spectrum of marmesin (44)
4.81 13C-NMR of spectrum of marmesin (44)
4.82 DEPT spectrum of marmesin (44)
4.83 COSY spectrum of marmesin (44)
4.84 HMQC spectrum of marmesin (44)
4.85 HMBC spectrum of marmesin (44)
4.86 Fragmentation pattern of marmesin (44)
4.87 Flow chart of DPPH guided isolation of antioxidant compounds from *Micromelum minutum*.
4.88 UV spectrum of hydamicromelinin (46)
4.89 IR spectrum of hydamicromelinin (46)
4.90 EIMS of hydamicromelinin (46)
4.91 HRESIMS spectrum of hydamicromelinin (46)
4.92 Selected HMBC correlations of hydamicromelinin (46) and structure of hydamicromelin A (55)
4.93 1H-NMR spectrum of hydamicromelinin (46)
4.94 13C-NMR spectrum of hydamicromelinin (46)
4.95 DEPT spectrum of hydamicromelinin (46)
4.96 HMQC spectrum of hydamicromelinin (46)
4.97 HMBC spectrum of hydamicromelinin (46)
4.98 COSY spectrum of micromelinin (47)
4.99 Mass spectrum fragmentation pattern of hydramicromelinin (46)
4.100 UV spectrum of micromelinin (47)
4.101 IR spectrum of micromelinin (47)
4.102 EIMS spectrum of micromelinin (47)
4.103 HRESIMS spectrum of micromelinin (47)
4.103a Selected HMBC correlations of micromelinin (47) and structure of micromelin (25)
4.104 1H-NMR spectrum of micromelinin (47)
4.105 13C and APT NMR spectrum of micromelinin (47)
4.106 HMQC spectrum of micromelinin (47)
4.107 HMBC spectrum of micromelinin (47)
4.108 COSY spectrum of micromelinin (47)
4.109 IR spectrum of marmesin glycoside (48)
4.110 UV spectrum of marmesin glycoside (48)
4.111 EIMS spectrum of marmesin glycoside (48)
4.112 HRESIMS spectrum of marmesin glycoside (48)
4.113 Selected HMBC correlations of marmesin glycoside (48)
4.114 1H-NMR spectrum of marmesin glycoside (48)
4.115 Expanded 1H NMR spectrum of marmesin glycoside (48)
4.116 13C- NMR spectrum of marmesin glycoside (48)
4.117 DEPT spectrum of marmesin glycoside (48)
4.118 DQFCOSY spectrum of marmesin glycoside (48)
4.119 Expanded DQFCOSY-NMR spectrum of marmesin glycoside (48)
4.120 HMQC spectrum of marmesin glycoside (48)
4.121 HMBC spectrum of marmesin glycoside (48)
4.122 IR spectrum of 4-O-α-D-glucopyranosyl-D-glucose(maltose) (49)
4.123 HRESIMS spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)
4.124 EIMS spectrum of 4-O-α-D-glucopyranosyl-D glucose(maltose) (49)
4.125 Selected HMBC correlations of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)
4.126 ¹H NMR spectrum of 4-O-α-D-glucopyranosyl-D-glucose(maltose) (49)
4.127 ¹³C-NMR spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)
4.128 DEPT spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)
4.129 COSY spectrum of (4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)
4.130 HMQC spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)
4.131 HMBC spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)
4.132 Fragmentation of 4-O-α-D-glucopyranosyl-D-glucose(maltose) (48)
4.133 IR spectrum of sucrose (50)
4.134 EIMS spectrum of sucrose (50)
4.135 Selected HMBC and NOESY correlations of sucrose (50)
4.136 ¹H-NMR spectrum of sucrose (50)
4.137 Expanded ¹H-NMR spectrum of sucrose (50)
4.138 APT NMR spectrum of sucrose (50)
4.139 COSY spectrum of sucrose (50)
4.140 HMQC spectrum of sucrose (50)
4.141 Expanded HMQC spectrum of sucrose (50)
4.142 HMBC spectrum of sucrose (50) 194
4.143 Expanded HMBC spectrum of sucrose (50) 195
4.144 NOESY spectrum of sucrose (50) 196
4.145 Scavenging effect of M. glabra extracts on DPPH radical 198
4.146 TLC paper stained with 800 mM DPPH solution in methanol 199
4.147 Rapid evaluation of β-carotene bleaching on TLC paper under visible light. 201
4.148 Fluorescence decay curves of fluorescein induced by AAPH 203
4.149 TLC paper stained with 800 µM DPPH solution in methanol 206
4.150 Fluorescence decay curves of fluorescein induced by AAPH in the presence of umbelliferone, glabranin, sesamin and scopoletin 208
4.151 Antioxidant activity of 3-(β-D-galactopyranosil)-O-(2-hydroxy-4-methylenedehoxy) cinamate (38), 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside (39), fractions (ME 24 and ME 31), ethyl acetate extract (EtOAc), ascorbic acid, α-tocopherol and BHT as assessed with β-carotene bleaching method at different incubation period 209
4.152 Comparison of antioxidant strength between compounds (38), (39) and ethyl acetate extract with ascorbic acid in β-carotene bleaching assay 209
4.153 Scavenging effect of M. minutum methanol extract and its fraction. 210
4.154 Antioxidant activity of M. minutum methanol extract and its fraction 211
4.155 The ORAC measurement of hydramicromelinin (46), marmesin glycoside (48), methanol extract and ascorbic acid 212
4.156 Structure of sesamin (36) and oxygenated coumarins isolated from stem bark of Melicope glabra and Micromelum minutum (Rutaceae) 213
4.157 Structure of glycosides isolated from stem bark of Melicope glabra and Micromelum minutum 214
4.158 Schematic diagram of umbelliferone (37) free radical formation 215
4.159 Schematic diagram of ascorbic acid free radical formation 216
LIST OF ABBREVIATIONS

α
 alpha
β
 beta
δ
 chemical shift in ppm
λ_{max}
 maximum wavelength in mm
ε
 molar absorptivity
^{13}\text{C}
 carbon -13
AAPH
 2,2-Azobis(2-amidino-propane)
APT
 Attached Proton Test
CDCl_{3}
 deuterated chloroform
CD_{3}OD
 deuterated methanol-d_{4}
CD_{3}COCD
 deuterated acetone-d_{6}
COSY
 Correlated Spectroscopy
DQF COSY
 Double Quantum Filtered COSY
DEPT
 Distortionless Enhancement by Polarization Transf
DPPH
 1,1'-diphenyl-2-picrylhydrazyl
EtOAC
 ethyl acetate
EIMS
 Electron Impact Mass Spectrometry
GC-MS
 Gas Chromatography-mass spectroscopy
^{1}\text{H}
 proton
HMBC
 Heteronuclear Multiple Bond Connectivity
HMQC
 Heteronuclear Multiple Quantum Coherence
HREIMS
 High resolution electron ionization mass spectral
IC₅₀ Inhibition Concentration at 50 percent

<code>t</code> triplet

<code>s</code> singlet

<code>m</code> multiplet

<code>bd</code> broad doublet

<code>bs</code> broad singlet

MeOH methanol

m.p melting point

MS Mass Spectrum

m/z mass per charge

NMR Nuclear Magnetic Resonance

OD Optical density

ORAC Oxygen Radical Capacity

ROS reaction oxygen species

SD standard deviation

TLC Thin Layer Chromatography

IR Infrared

UV Ultraviolet
CHAPTER I

INTRODUCTION

The use of plants as medicines in health care have been recognized for thousands of years (Samuelsson, 2004). Among the traditional medicinal systems are Ayurvedic, Unani and Chinese. These systems have contributed to some important drug discoveries and led to the isolation of active compounds. Drug discovery from medicinal plants such as the isolation of morphine from opium had already begun as early as 19th century (Kinghorn, 2001; Samuelsson, 2004). Some of the early drugs for instance cocaine, codeine, digitoxin, and quinine are still in use today (Newman et al., 2000; Butler, 2004; Samuelsson, 2004).

The strategies for drug discovery research from natural products which include plants, animals or microorganisms have evolved quite significantly over the last few decades. The older strategies focus on the chemistry of the compounds from natural sources, but not on the activity. However, the present strategies are more focused on the biological activities of the plants and on isolation of target compound(s) rather than trying to isolate all compounds presence in extracts. Thus, the application of appropriate chemical, biological or physical assays are necessary to be incorporated in the extraction and isolation protocol in order to pinpoint the target compound(s) from complex mixtures in natural product extracts. Collection may involve species with known biological activity (e.g., traditionally used herbal remedies) for which active compound(s) have not been isolated and identified.

In a natural products drug discovery program, bioassay plays an important role. A bioassay will be used to guide fractionation of a crude material towards isolation of the pure bioactive compounds. The ability of assay activity-guided fractionation and isolation techniques to give high throughput screening for biological activities of the plants helped the phytochemists to renew its interest in plants as potential sources of new drugs. For these purposes, bioassay tests must be simple, rapid, reliable, reproducible, sensitive, meaningful and, most importantly, predictive. To date, bioassays available are more robust, specific and sensitive to even as low as nanogram amounts of test samples. Most of the modern bioassays are using microplate readers which require only small amounts of extracts, fractions or compounds.

Among the typical assays used in natural product screening are 2,2-diphenyl-1-picrylhydrazyl (DPPH) and antibacterial serial dilution assays. Previous studies on ten Chinese medicinal plants extracts with traditional reputations for CNS (Central Nervous System) activities were tested in a series of radio-ligand receptor binding assays, including adrenoceptor (α1, α2, β), 5-HT (1,1A, 1C, 2), opiate, benzodiazepine, ion channels (Ca++, K+), dopamine (1, 2), adenosine 1, muscarinic, Na+/K+ ATPase and GABA (A, B) receptors. Bioactivity-guided fractionation resulted in the isolation of individual active compounds including indole alkaloids, proanthocyanins, flavonoids and triterpenes (Phillipson, 1995; Phillipson, 1999b).

The continual development of chromatographic and spectroscopic techniques had facilitated the separation, isolation and identification of the biological active compounds. The Phytochemical Society of Europe (PSE) symposium held at Lausanne, Switzerland in 1994 showed that these analytical techniques were becoming more and more sophisticated.
The NMR techniques like COSY, DQF-COSY and TOCSY were available for establishing connectivities between neighbouring protons. HETCOR, HMQC, HSQC revealed the link between 1H and 13C. HMBC is used for long range heteronuclear correlations over 2–3 bonds. The interaction of 1H-1H through space can be evaluated through NOESY, ROESY and TOCSY (HOHAHA). The 1997 PSE symposium at Uppsala, Sweden also highlighted the application of TLC, HPLC hyphenated techniques (e.g. HPLC-PDA, LC-MS, LC-NMR, LC-MS-NMR) for the separation and structure determination of antifungal and antibacterial plant compounds (Bohlin and Bruhn, 1999).

Plants have many phytochemicals with various bioactivities such as antioxidant, anti-inflammatory and anticancer. The study of plants as source of natural antioxidant compounds with free radical scavenging activity have received great interest from many researchers in the last few years. Previous studies have reported that extracts from natural products, such as fruits, vegetables and medicinal herbs, have positive effects against cancer, compared with chemotheraphy or recent hormonal treatments (Wu et al., 2002). Natural antioxidant derived from plant especially phenolics are considerably important as dietary supplement or food preservatives (Halliwell et al., 1995). The natural antioxidant particularly the polyphenol compounds are reported to be found in plant foods (e.g grapes, berries, olives, soy), herbs (e.g oregano) and spices (e.g cinnamon, cumin, turmeric). The important and common antioxidants for example ascorbic acid (vitamin C), tocopherol (vitamin E) and tocotrienols and beta carotene (precursor of vitamin A) were derived from plant extracts. They play an important role in oxidative defence mechanisms in biological systems and acting as free radical scavenging agents. Many other plant based dietary polyphenolic constituents are found to be more effective antioxidants in vitro than α-tocopherols (vitamins E) or ascorbic acid (vitamin C), and thus might contribute significantly to protective effects in vivo (Rice-Evans et al., 1997; Jayasri et al., 2009).

In our search for bioactive natural products as antioxidant agent, two genus from Rutacea family namely Melicope glabra and Micromelum minutum were chosen for investigation. They were among the richest sources of natural products and have been traditionally used in treating various of illnesses such as cough, fever, pain and infected wound. However, to date, not many reports on the bioactive compounds responsible for their medicinal properties. Presence of a number of rutaceous compounds such as coumarins, lignans and alkaloid in the stem and root bark extracts of the rutacaea family may be the answer. It is undisputable that medicinal plants with wide range of biological activities attributed to plant secondary metabolites are an indication that plants can serve as an excellent pool of bioactive compounds with useful therapeutic properties. Prior knowledge about the indigenous use of certain plants of known chemical composition and biological activities of the various plants constituents and an awareness of compounds that have previously been isolated from them, can be used as a directive in the selection process of potential sources (Cordell, 2000). The search to identify new botanical sources for natural antioxidants from these unexplored plants are considered important as minimum studies on the antioxidative properties of both plants have been reported. Natural antioxidants are believed to have minimum health risks to consumers. Synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tert-butylhydroquinone (TBHQ) which are widely used to prevent oxidation in food products (Shahidi, 2000) were reported to give adverse effects including
enzymatic and lipid alterations in the in vivo test with rodents and monkeys (Branen, 1975). Therefore a part of discussing the characteristic of the isolated compounds, this study also highlighted the antioxidant capacity of the Melicope glabara and Micromelum minutum extracts as well as the isolated compounds. Phytochemical studies on various Melicope species had revealed the occurrence of alkaloids, flavonoids (Komala et al., 2006), acetophenones (Anderson et al., 2007), coumarins, lignans (Latip et al., 1999), dipeptides and terpenoids (Simonsen et al., 2003). Some of these compounds have been demonstrated antibacterial, antifungal, anti-inflammatory and cytotoxic activities (Barrows et al., 2007; Hou et al., 1994; Simonsen et al., 2004.)

In our attempt to isolate antioxidant compounds, bioassay guided method was incorporated into the isolation procedures. Only extracts showing significant biological activity in the bioassays, were subjected to the activity-guided fractionation and each fraction then tested for activities. Various chromatographic techniques were applied for the purification of the active fractions in order to isolate the agents which may be responsible for the bioactivities. The structural elucidation of the isolates were determined by various spectroscopic methods (UV, MS, IR and NMR) and were compared to the literature values. The antioxidant activity of the crudes as well as the isolates were evaluated by measuring the free radical scavenging activity by DPPH rapid dot blot staining and spectrophotometric assay, antioxidant activity by coupled oxidation of β-carotene and linoleic assay, β-carotene bleaching on TLC, oxygen radical absorbance capacity (ORAC) assay and total phenolic contents (TPC) of the active crudes were estimated as gallic acid equivalent using a Folin-Ciocalteau assay.

Objectives of Study

The objectives of this study are:

1. To extract and isolate bioactive compounds from Melicopa glabara and Micromelum minutum by assay guided isolation techniques.
2. To elucidate and identify the structures of the compounds by using modern spectroscopic methods.
3. To investigate the free radical scavenging and antioxidant capacity of the extracts and the isolated compounds.
BIBLIOGRAPHY

