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The  Ordinary  Least  Square  (OLS)  estimator  is  the  best  regression  

estimator  if  all  the  assumptions  are  met.  However,  the  presence  of  

missing  data  and  outliers  can  distort  the  Ordinary  Least  Squares  

estimation  and  increase  the  variability  of  the  parameters  estimates. The  

main  focus  of  this  research  is  to  take  remedial  measure  in  missing  data 

in regression in  the  presence  of  outliers. In regression analysis, the 

dependent variable (Y) is a function of the independent variable X. Thus, in 

regression, outliers and missing values can come in both X and Y directions.    

It is very common to use the OLS base Random Regression Imputation (RRI) 

when missing values are in Y direction. This RRI seems to be a good method 

if there are no outliers in the data. Unfortunately, this estimate performs poorly 

in the presence of outliers. It is because the RRI is OLS base imputation 
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method and OLS is largely affected by outliers. As such, we  modified  an  

OLS  base  Random  Regression Imputation  (RRRI)  methods  by 

incorporating the robust MM estimate which is less affected by outliers. The 

proposed method is compared with some well-known methods of estimating 

missing data.  The  results  of  the  study   signify  that  the  RRRI  method  

outperforms  the  existing  methods  in  the  presence  of  outliers.  Since in 

regression, outliers and missing data can come in both directions, we also  

considered  a  situation  in  which  observations  are  missing  in  the  X  

explanatory  variable.  In this respect, the Dummy Variable (DV) approach is 

one of the best approaches to predict the missing data model.  However, this 

approach also becomes poor in the presence of outliers. As  an  alternative,  

Robust  Inverse  Regression  Technique  is  proposed  to  get  the  better  

estimate.  By  examining  the  real  data  and  Monte  Carlo  Simulation  

studies,  it  revealed  that  our  proposed  robust  methods  perform  better  than  

the  classical  methods.     
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Penganggar Kuasa Dua Terkecil Biasa (KDTB) adalah penganggar regresi 

yang paling baik sekiranya semua andaian dipenuhi. Walau bagaimanapun 

kehadiran data hilang dan titik terpencil boleh memesongkan anggaran Kuasa 

Dua Terkecil Biasa dan meningkatkan kebolehubahan penganggaran 

parameter. Fokus utama kajian ini ialah untuk mengambil langkah pembetulan 

terhadap data hilang dalam regresi dengan kehadiran titik terpencil. Dalam 

analisis regresi, pemboleh ubah bersandar (Y) adalah fungsi kepada 

pembolehubah tak bersandar X. Oleh itu, dalam data regresi, titik terpencil  

dan nilai hilang boleh wujud pada arah X dan Y. Penggunaan Imputasi 

Regresi Rawak (IRR) yang berasaskan Kaedah Kuasadua Terkecil Biasa 

(KKTB) sering digunakan apabila nilai hilang pada arah Y. Kaedah IRR 

merupakan kaedah yang baik jika titik terpencil  tiada dalam data.  Malangnya, 

penganggar ini lemah sekiranya wujud titik terpencil . Ini kerana IRR adalah 

kaedah imputas yang berasaskan KDTB dan KDTB sangat dipengaruhi oleh 

titik terpencil. Oleh itu kami telah mengubahsuai kaedah Imputasi Regresi 

Rawak (IRR) yang berasaskan KDTB dengan menggabungkan penganggar 

MM teguh yang kurang dipengaruhi oleh titik terpencil. Kaedah yang 
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dicadangkan ini dibandingkan dengan kaedah penganggar data hilang yang 

terkenal. Hasil kajian menunjukkan kaedah IRR mengatasi kaedah sedia ada 

bagi data yang mengandungi titik terpencil. Oleh keruna dalam regresi, titik 

terpencil dan data hilang boleh berada di kedua-dua arah, kami turut 

mengambil kira situasi dengan cerapan hilang dalam  pemboleh ubah tak 

bersandar X. Dalam hal ini, pendekatan Pemboleh ubah Dami (PD) 

merupakan suatu pendekatan yang paling baik bagi meramal model data 

hilang. Walau bagaimanapun, pendekatan ini menjadi lemah dengan kehadiran 

titik terperncil. Sebagai alternatif, Teknik Regresi Teguh Songsang 

dicadangkan bagi mendapatkan anggaran yang lebih baik. Dengan mengkaji 

data sebenar dan kajian Simulasi Monte Carlo, kaedah teguh yang kami 

cadangkan didapati lebih baik berbanding kaedah-kaedah yang lama. 
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CHAPTER 1 

    INTRODUCTION 

 

1.1 Research Background  

Missing data occurs frequently in many fields; for example, surveys often 

contain missing observation caused by the person being interviewed not 

understanding the question correctly. The  presence  of  outliers  and  missing  

data  make  a  huge  interpretative  problem  in  data  analysis.  In the content of 

the regression model, missing variables occur in both dependent and 

independent variables. Let us suppose a model 

 

                          𝑌𝑖 =  𝛽0 +  𝛽1𝑥𝑖 + 𝜀𝑖 ,          𝑖 = 1, … , 𝑛  with   𝜀𝑖 ∼iidN(0, 𝜎2)      (1.1) 

If  missing  observation  is   present  in  the  independent  variables  (X)  or 

dependent  variable  (Y),  we  will  get  the  biased  estimate  of   the  parameters  

𝛽0  𝑎𝑛𝑑  𝛽1  and  also  the  biased  standard  error  of  the  parameters. However, 

the problem becomes more serious if there exists some unusual observations that 

we often call outlier.  It  makes  a  huge  interpretative  problem   in  the  model  

as  the  parameters  estimate  of  the  model  is  affected  by  outliers.    

 

For dealing with the outliers in the context of regression model, we have some 

robust estimators such as M-Estimator, MM-Estimator, 𝐿1 - norm Estimator,   

LTS-Estimator,  LMS-Estimator, etc.  Unfortunately,  to  the  best  of  our  

knowledge,  no  efficient  method  is  available  when  both  outliers  and 

missing  data  come  together  in  a  data  set.  In  regression  analysis,  the  

missing  value  is  estimated  based  on  random  regression  or  regression  

imputation.  However,  these  imputation  methods  are  not  reliable in  the  

presence  of  outliers  since  these  imputation  methods  are  based  on  Ordinary  

Least  Squares  (OLS).  

 

In  this  research,  the  major  question  that  comes  to  our  mind  is,  ‘Are  the 

OLS  based  imputation estimator  robust in  the  presence  of  outliers’?  The 

answer is probably, ‘No’.  The reason is that the classical OLS is greatly affected 

by outliers (Marrona, 2006; Rousseuw, 2003).  We  proposed  to  estimate  the  

missing  data  by  using  robust  regression  approaches.  The  performance  of  

our  proposed  methods  would  be  evaluated  by  Monte  Carlo  simulation  

approach and  real  data  analysis. We  would  be  inclined  to propose  our  

robust  methods  based  on  the  existing  robust  estimator  such  as  MM-

Estimator.  Our  proposed  methods  would  estimate  the  missing  data  in  the  

presence  of  outliers. 

 

 

1.2  Importance and Motivation  of  the  Study 

Missing data is a common problem in many researches.  Information  is  usually  

missing  in  some  variables  for  some  cases  in  a  typical  data  set  and  most  
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data  analysis  procedures  are  designed  for  corrected  samples.  However,  

standard  methods  are  not  directly  applicable  if  there  are missing  data.   

It  is  important  to  know  why  missing  data  is  a  problem.  The  most  serious  

concern  is  that  missing  data  can  bring  bias  into  estimates  derived  from  a  

statistical  model  (Schafer,1997;  Alison,  2002).  In  addition,   missing  data  

can  lead  to  a  loss  of  information  and  statistical  power  (Little  and  Rubin,  

2002).  Also,  another  problem  is  that  missing  data  makes  common  

statistical  methods  difficult  to  apply.  Finally, missing data causes a waste in 

valuable resources. Due  to  all  these  reasons,  missing  data  gives  problems  in  

various  fields  of  research.   

Many  times,  difficulties  arise  when  practitioners  try  to  apply  Ordinary   

Least  Squares  regression  estimation  to  real  world  data  which  have  some 

missing  observation  and  outliers.  Model  adequacy  diagnostics  show  poor 

Ordinary  Least  Squares  fit  because  of  missing  observation  and  outliers.  

The  need  to  determine  the  performance  of  OLS  is  demanding  due  to  the 

quick  development  of  alternative  robust  estimators.  Opportunities  are  also  

available  for  the  development  of  improved  robust  estimators.  Even  then,   

progress  continues  to  be  made  in  making  algorithms  for  robust  methods   

ready  for  implementation  when  Ordinary  Least  Squares  fail.  It  is  ideal   

that  improved  methods  be  computationally  practical  and  available  in  many 

software  such  as  R,  S-Plus,  etc. 

In  regression  analysis,  when  missing is in  the  response  variable  Y,  the  

Random  Regression  Imputation (RRI)  is  usually  used  (Little  and  Rubin,  

1987).  Unfortunately, this RRI is affected by outliers. This  problem  has  

inspired  us  to  develop  a  new  robust  method  which  is  resistant  to  outliers. 

We  incorporate  the  robust  estimators  in  the  missing  value  imputation  

methods.  We  proposed  to  use  the  Robust  Random  Regression  Imputation 

(RRRI)  instead  of  RRI.  

In  this  thesis,  we  also  consider  the  situation  when  data  missing  is on  X  

direction  and  there  exists  some  outliers  in  the  data.  It  is  very  common  to  

use  the  dummy  variable  regression  approach  when  data  is  missing  in  X  

direction.  However,  this  dummy  variable  regression  approach  also  gives  

biased  estimate  of  parameters  and  biased  standard  error  of  parameters  in  

the  presence  of  outliers.  Thus, we proposed a new alternative robust method.  

Instead  of  dummy  variable  approach,  in  this  situation,  we  proposed  robust  

inverse  regression  to  get  more  reliable  estimates  of  parameters.  

 

1.3 Research  Objectives 

In regression analysis, missing data comes in both X and Y directions together 

with outliers. It is worth mentioning that these types of problems are very 

common in the regression data. Hence, in this thesis, we have two main aims 

which are as follows. 

1. To propose a robust imputation approach when missing values and outliers 

present in the Y direction of the regression data. Since in the presence of 
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outliers, the classical random Regression Imputation (RRI) is affected by 

outliers, we attempt to robustify RRI by using robust MM-estimator in 

order to get the robust estimate of missing data in the presence of outliers.  

 

2. To propose a robust imputation approach when missing values are present 

in X direction and outliers are present in Y direction. It is seen that the 

classical Dummy variable Regression approach is affected by outliers. 

Thus, based on the robust inverse regression methods, we aim to estimate 

the missing values in X direction in the presence of outliers.   

 

3. To get the benefits from our proposed robust imputation methods 

compared to the classical methods, the real data example will be used. We 

also conduct simulation studies and applied both classical and robust 

methods to compare their performance. 

 

 

1.4  Plan of the Study 

This research is organized into five chapters. 

 

Chapter One:  This chapter serves as an introduction to this research.  It  gives  

the  background  of  the  research,  the problem statement,  the  research  

objectives  and  plan  of  the  study. 

 

Chapter Two:  This  chapter  provides  a  brief  review  of  the  literature  of 

missing  data,  the  consequences  of  missing  data,  and  the  techniques  for  its 

estimation.  We  have  also  discussed  some  robust  estimators  which  can  help  

to  estimate  the  missing  data  in  the  presence  of  outliers. 

 

Chapter Three: In this chapter, a modification of the Random Regression 

Imputation (RRI)  approach  is  proposed  which  we  call  Robust  Random  

Regression  Imputation  (RRRI). A set of numerical results proved that the 

Robust Random Regression Imputation  approach  performs well  compared  to  

the  Random  Regression  Imputation  (RRI)  in  the  presence  of  outliers  when  

missing  data  is  present  in  the  dependent  variable. 

  

Chapter Four:  In  this  chapter,  an  alternative  method  of  dummy  variable  

regression  approach  to  estimate  the  missing  data  in  the  independent  

variables  is  proposed.  As an alternative, the inverse regression is used.  Also,  

we  proposed  the  robust  version  of  inverse  regression  which  performs  well  

in  the  presence  of  outliers. 

 

Chapter Five:  This last chapter provides the conclusion and significance of the 

research findings. I thereby also recommend a number of areas for further 

research which could have essential roles in future studies. 
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