SWEET CORN (ZEA MAYS L.) SEED GERMINATION AND PRODUCTION UNDER WATER AND NITROGEN DEFICIT UNDER GLASSHOUSE CONDITIONS

ALI SHAHRIARI

FP 2013 69
SWEET CORN (ZEA MAYS L.) SEED GERMINATION AND PRODUCTION UNDER WATER AND NITROGEN DEFICIT UNDER GLASSHOUSE CONDITIONS

By

ALI SHAHRIARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

May 2013
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright @ Universiti Putra Malaysia
DEDICATION

I dedicate this thesis to my beloved family,
especially my wife and
My children
(Pooya and Mohammad Hosein)
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

SWEET CORN (ZEA MAYS L.) SEED GERMINATION AND PRODUCTION UNDER WATER AND NITROGEN DEFICIT UNDER GLASSHOUSE CONDITIONS

By

ALI SHAHRIARI

May 2013

Chairman: Associate Professor Adam B. Puteh, PhD
Faculty: Agriculture

Water and nitrogen deficits limit plant performance and subsequently reduce the yield potential in corn. The effect of osmotic potentials (MPa) on sweet corn was evaluated during seed germination in the laboratory and the effects of water and different nitrogen rates were evaluated under field conditions. Seeds of eight sweet corn varieties (Hybrid 968, Hybrid 969, Hybrid 926, Hybrid 8800, Hybrid 3922, Hybrid 2328, Masmadu and Thai Super Sweet) were germinated in Petri dishes containing polyethylene glycol (PEG) at concentrations equivalent to -0.2, -0.5, -0.7, -1.2 and -1.4 MPa osmotic potential. The results showed that proline content in the seedling and mean germination time increased with increasing osmotic potential. However, germination percentage (GP), germination index (GI), coefficient of velocity of germination (CVG), root length (RL) and root
diameter (RD) were reduced with increasing osmotic potential. Two hybrids of sweet corn, hybrid 968 and 926, were subsequently planted under rain shelter and water deficits were imposed at vegetative, tasseling and both at vegetative and tasseling stages, with nitrogen rates at 40, 120 and 200 kg ha\(^{-1}\). The reproductive growth stage was more sensitive to water deficit and reduced nitrogen rates compared with the vegetative growth stage for all varieties. Water and nitrogen deficit during vegetative and reproductive growth stages reduced ear size (ES), kernel weight per ear (KWE), number of kernel per ear (NKE) and 1000-kernel weight (1000-KW). The number of rows per ear (RE) was affected under nitrogen deficit. Water deficit and nitrogen rates of less than 200 kg/ha, at both vegetative and reproductive stages, reduced plant height, number of leaves, leaf area index (LAI), crop growth rate (CGR), chlorophyll content and dry matter. Relative water content, photosynthesis rate and stomatal conductivity values were significantly influenced under water deficit and nitrogen deficit. Pollen number was reduced when plants were imposed to water and nitrogen deficit. However, pollen viability was only affected under water deficit. Water deficit for short periods did not affect shoot nitrogen concentration, but nitrogen concentration in shoot was reduced under nitrogen deficit. The study indicated that proline content in seedling was increased when germination occur at low osmotic potentials. Ear weight m\(^2\) under adequate moisture conditions needs higher nitrogen to produce optimum yield than under stress conditions. Therefore, sweet corn varieties under vegetative drought require 120 kg ha\(^{-1}\) of applied nitrogen to obtain optimum seed yield.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PERCAMBAHAN DAN PENGELUARAN BIJI BENIH JAGONG MANIS (ZEA MAYS L.) PADA KEADAAN DEFICIT AIR DAN NITROGEN DALAM RUMAH KACA

Oleh

ALI SHAHRIARI

Mei 2013

Pengerusi: Prof. Madya Adam B. Puteh, PhD
Fakulti: Pertanian

Kekurangan air dan nitrogen berpotensi mengurangkan hasil untuk tanaman jagung. Kesan osmotik (MPa) pada jagung manis telah dinilai semasa percambahan benih di makmal dan kesan air serta kadar nitrogen yang berbeza telah dinilai di lapangan. Lapan varieti benih jagung manis (Hybrid968, Hybrid969, Hybrid926, Hybrid8800, Hybrid3922, Hibrid 2328, Masmadu dan Thai super manis) dicambah di dalam Petri yang mengandungi polietilen glikol (PEG) pada kepekatan-0.2, -0.5, -0.7, -1.2 dan -1.4 potensi osmosis (Mpa). Keputusan menunjukkan bahawa kandungan prolin dalam anak benih dan min masa percambahan (MGT) meningkat dengan peningkatan potensi osmosis. Walau
bagaimanapun, peratusan percambahan (GP), indeks percambahan (GI), pekali halaju percambahan (CVG), panjang akar (RL) dan diameter akar (RD) telah berkurang dansebabkan oleh peningkatan potensi osmotik (MPa). Dua hibrid (hibrid 968 dan 926) telah ditanam dalam beg polietilen di tempat perlindungan hujan dan defisit air telah dilakukan pada peringkat vegetatif, berbunga dan atau kedua-duanya dengan kadar nitrogen pada 40, 120 dan 200 kg ha\(^{-1}\). Defisit air dan nitrogen dilaksanakan semasa peringkat pertumbuhan vegetatif dan pembiakan. Saiz Ear (ES), berat kernel satu Ear (KWE), jumlah kernel satu tongkol (NKE) dan 1000 - kernel berat (1000-KW) telah diukur. Hasil pemerhatian didapati setiap tongkol (RE) telah terjejas pada defisit nitrogen. Bagi defisit air dan defisit nitrogen, peringkat reproduktif lebih sensitif daripada peringkat vegetatif. Defisit air dan kadar defisit nitrogen pada 200 kg ha\(^{-1}\), peringkat vegetatif dan pembiakan, mengurangkan ketinggian pokok, bilangan daun, LAI, CGR, kandungan klorofil dan bahan kering. Kandungan air relatif, kadar fotosintesis dan nilai-nilai konduktan stomata sangat dipengaruhi di bawah defisit air dan defisit nitrogen. Bilangan debunga berkurangan apabila percambahan dikenakan defisit air dan nitrogen. Walau bagaimanapun, daya maju debunga hanya terjejas di bawah defisit air. Didapati juga defisit air bagi tempoh yang singkat tidak mempengaruhi kandungan nitrogen pada pucuk tetapi kepekatan nitrogen dalam pucuk berkurangan di bawah defisit nitrogen. Kajian menunjukkan bahawa kandungan proline bagi anak benih telah meningkat apabila percambahan berlaku pada potensi osmosis rendah. Kadar Fotosintesis, jumlah debunga dan nilai-nilai konduktan stomata berkurang dalam air dan defisit nitrogen. Berat Ear setiap m² dalam keadaan lembap yang mencukupi memerlukan nitrogen yang tinggi
untuk mengeluarkan hasil yang optimum berbanding dengan keadaan stres. Oleh itu, varieti jagung manis bawah vegetatif drought (VD) 120 kg ha\(^{-1}\) nitrogen gunaannya adalah memadai.
ACKNOWLEDGEMENTS

First and foremost, I wish to express my utmost thank and gratitude to Almighty Allah SWT for his blessings and giving me the ability and capacity to complete this dissertation.

I wish also to express my most sincere gratitude and deepest appreciation to my supervisor, Associate Professor Dr. Adam B Puteh, for his kindness, continuous support, fruitful advice and invaluable guidance, and for encouraging and inspiring me during the period of this study.

I am also very grateful to other members of my supervisory committee, Professor Dr. Ghizan B Saleh and Associate Professor Dr. Anuar B Abdul Rahim for their kindness, support, constructive comments, very helpful suggestions and insights which contributed to many aspects of this study and improved the quality of this dissertation.

I would like to thank Associate Professor Dr. Mohamad Bin Lassim and Associate Professor and Dr. Jamal B Talib for their helpful recommendations. I would also like to thank my friends, Abolfath Moradi and Ali Baghdadi for their help during this study.

Finally yet importantly, I wish to express my deepest gratitude to my wife and lovely sons “Pooya and Mohammad Hosein” for their endless encouragements, patience and sacrifices who helped me finish this study.
I certify that a Thesis Examination Committee has met on (31 May 2013) to conduct the final examination of Ali Shahriari on his thesis entitled “Sweet Corn (Zea Mays L.) Seed Germination and Production under Water and Nitrogen Deficit under Glasshouse Conditions” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Ridzwan b Abd Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Uma Rani Sinnah, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Ahmad Husni b Mohd Haniff, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Md. Solaiman Ali Fakir, PhD
Professor
Bangladesh Agricultural University
Bangladesh
(External Examiner)

NORITAHOMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 2 August 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Adam B. Puteh, PhD
Associate Professor
Faculty of Agriculture
University Putra Malaysia
(Chairman)

Ghizan B Saleh, PhD
Professor
Faculty of Agriculture
University Putra Malaysia
(Member)

Anuar B Abdul Rahim, PhD
Associate Professor
Faculty of Agriculture
University Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

ALI SHAHRIARI

Date: 31 May 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**

 2.1 Plant stress
 2.1.1 General aspects of water stress in plants
 2.1.2 Plant water deficit responses
 2.1.3 Effect of water deficit on seed germination

 2.2 Nitrogen deficiency in plants

 2.3 Combination of water and nitrogen deficit
 2.3.1 Effects of water and nitrogen deficit on morphology of corn
 2.3.1.1 Effect on leaf area index (LAI)
 2.3.1.2 Effect on plant growth
 2.3.1.3 Effects on crop growth rate (CGR)
 2.3.1.4 Effects on dry matter accumulation (DM)
 2.3.2 Effects of water and nitrogen deficit on physiology of corn
 2.3.2.1 Effect on relative water content (RWC)
 2.3.2.2 Proline accumulation under water deficit
 2.3.2.3 Effect on chlorophyll content
2.3.2.4 Effects on photosynthesis rate 22
2.3.2.5 Effects on stomatal conductance 23
2.3.2.6 Effects on internal CO₂ concentration 24
2.3.2.7 Effects on pollen viability 25
2.3.2.8 Effects on pollen production 27
2.3.3 Effects of water and nitrogen deficit on yield and yield components of corn 27
2.3.3.1 Effects on yield 27
2.3.3.2 Effect on yield components 31

3 SWEET CORN SEED GERMINATION AND SEEDLING PERFORMANCE IN RESPONSE TO DIFFERENT OSMOTIC POTENTIALS 33
3.1 Introduction 33
3.2 Materials and methods 35
 3.2.1 Determination of germination percentage, mean germination time, coefficient velocity of germination and germination index 36
 3.2.2 Determination of total root length and average root diameter 37
 3.2.3 Determination of proline content 38
 3.2.4 Statistical analysis 38
3.3 Results 39
 3.3.1 Germination characteristics 39
 3.3.2 Germination percentage (GP) 40
 3.3.3 Mean germination time (MGT) 41
 3.3.4 Coefficient velocity of germination (CVG) 42
 3.3.5 Germination index (GI) 42
 3.3.6 Root characteristics 43
 3.3.7 Total root length 44
 3.3.8 Average root diameter 45
 3.3.9 Proline content of seedlings 46
 3.3.10 Correlation among germination parameters and proline content 48
3.4 Discussion 49
3.5 Conclusion 53
4 MORPHOLOGICAL AND PHYSIOLOGICAL RESPONSE OF SWEET CORN TO WATER AND NITROGEN DEFICIT 54

4.1 Introduction 54

4.2 Materials and methods 56
 4.2.1 Site description and experimental design 56
 4.2.2 Soil preparation for planting 57
 4.2.3 Cultural practices for sweet corn establishment 58

4.3 Parameters measured 59
 4.3.1 Plant height (cm) 59
 4.3.2 Number of leaves 59
 4.3.3 Leaf area index (LAI) 59
 4.3.4 Crop growth rate (CGR; g g\(^{-1}\) day\(^{-1}\)) 60
 4.3.5 Dry matter (DM) 60
 4.3.6 Proline content 61
 4.3.7 Leaf relative water content (RWC) 61
 4.3.8 Pollen viability (%) 62
 4.3.9 Pollen production 63
 4.3.10 Chlorophyll content 63
 4.3.11 Photosynthesis rate (\(\mu\)molm\(^{-2}\)s\(^{-1}\)) and stomata conductance (mmolm\(^{-2}\)s\(^{-1}\)) 64
 4.3.12 Nitrogen content in shoots (%) 64
 4.3.13 Statistical analysis 64

4.4 Results 65
 4.4.1 Morphological parameters 65
 4.4.1.1 Plant height 65
 4.4.1.2 Number of leaves 68
 4.4.1.3 Leaf area index (LAI) 70
 4.4.2 Biomass accumulation 73
 4.4.2.1 Crop growth rate (CGR) (g m\(^{-2}\) day\(^{-1}\)) 73
 4.4.2.2 Dry matter (DM) 76
 4.4.3 Proline content 79
 4.4.4 Relative water content (RWC) 81
4.4.5 Pollen viability
4.4.6 Pollen numbers
4.4.7 Chlorophyll content
4.4.8 Photosynthesis rate (µmolm²s⁻¹)
4.4.9 Stomatal conductance (mmolm⁻²s⁻¹)
4.4.10 Nitrogen content in shoots and soil
 4.4.10.1 Shoot nitrogen concentration (%)
 4.4.10.2 Soil nitrogen content (%)
4.4.11 Correlation among the morphological parameters
4.4.12 Correlation among the physiological parameters
4.5 Discussion
4.6 Conclusion

5 YIELD AND YIELD COMPONENTS OF SWEETCORN GROWN UNDER WATER AND NITROGEN DEFICIT
5.1 Introduction
5.2 Material and methods
5.3 Parameters measured
 5.3.1 Statistical analysis
5.4 Results
 5.4.1 Yield and yield components
 5.4.2 Ear weight m⁻² (EWm⁻²) (g)
 5.4.3 Rows per ear (RE)
 5.4.4 Ear size (ES)
 5.4.5 Kernel weight per ear (KWE)(g)
 5.4.6 Number of kernels per ear (NKE)
 5.4.7 1000-kernel weight (1000-KW) (g)
 5.4.8 Correlation among yield and yield component parameters
5.5 Discussion
5.6 Conclusion

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion
6.2 Recommendation for future research

REFERENCES 140
APPENDICES 163
BIODATA OF STUDENT 164
LIST OF PUBLICATIONS 165
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Mean Squares from analysis of variance of germination characteristics of different sweet corn varieties and different water potential</td>
<td>39</td>
</tr>
<tr>
<td>3-2</td>
<td>Mean Squares from analysis of variance of root characteristics of sweet corn under different varieties and different osmotic potential</td>
<td>44</td>
</tr>
<tr>
<td>3-3</td>
<td>Mean Squares from analysis of variance of seedling proline content of sweet corn different varieties and different osmotic potential</td>
<td>46</td>
</tr>
<tr>
<td>3-4</td>
<td>Pearson correlation between germination parameters and proline content</td>
<td>48</td>
</tr>
<tr>
<td>4-1</td>
<td>Details of different water deficit treatments</td>
<td>57</td>
</tr>
<tr>
<td>4-2</td>
<td>Details of different nitrogen treatments</td>
<td>57</td>
</tr>
<tr>
<td>4-3</td>
<td>Details of different varieties</td>
<td>57</td>
</tr>
<tr>
<td>4-4</td>
<td>Soil physical and chemical properties of the polybags</td>
<td>58</td>
</tr>
<tr>
<td>4-5</td>
<td>Mean Squares from analysis of variance of plant height of sweet corn under different water deficit, varieties and nitrogen deficit</td>
<td>66</td>
</tr>
<tr>
<td>4-6</td>
<td>Mean Squares from analysis of variance of number of leaves of sweet corn under different water deficit, varieties and nitrogen deficit</td>
<td>68</td>
</tr>
<tr>
<td>4-7</td>
<td>Mean Squares from analysis of variance of leaf area index(LAI) of sweet corn under different water deficit, varieties and nitrogen deficit</td>
<td>71</td>
</tr>
<tr>
<td>4-8</td>
<td>Mean Squares from analysis of variance of crop growth rate of sweet corn under different water deficit, varieties and nitrogen deficit</td>
<td>74</td>
</tr>
<tr>
<td>4-9</td>
<td>Mean Squares from analysis of variance of dry matter of sweet corn under different water deficit, varieties and nitrogen deficit</td>
<td>77</td>
</tr>
<tr>
<td>4-10</td>
<td>Mean Squares from analysis of variance of relative water content (RWC) and proline content of sweet corn under different water deficit, varieties and nitrogen deficit</td>
<td>80</td>
</tr>
</tbody>
</table>
4-11 Mean interaction effects of different irrigation treatments, nitrogen levels and varieties on relative water content (RWC) and proline content of sweet corn.

4-12 Mean Squares from analysis of variance of pollen number and pollen viability of sweet corn under different water deficit, varieties and nitrogen deficit

4-13 Mean Squares from analysis of variance of chlorophyll content of sweet corn under different water deficit, varieties and nitrogen deficit

4-14 Mean Squares from analysis of variance of photosynthesis rate and stomata conductance of sweet corn under different water deficit, varieties and nitrogen deficit

4-15 Mean Squares from analysis of variance of shoot nitrogen concentration of sweet corn under different water deficit, varieties and nitrogen deficit

4-16 Mean Squares from analysis of variance of soil nitrogen concentration of sweet corn under different water deficit, varieties and nitrogen deficit

4-17 Pearson correlation between morphological parameters observations

4-18 Pearson correlation between physiological parameters observations

5-1 Mean Squares from analysis of variance of yield and yield components of sweet corn under different water deficit, varieties and nitrogen deficit

5-2 Mean effects of different irrigation treatment, nitrogen levels and varieties on number kernel per ear and 1000-kernel weight of sweet corn.

5-3 Pearson correlation between yield and yield components
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Germination percentage at different osmotic potential of different sweet corn varieties. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>3-2</td>
<td>Mean germination time at different osmotic potential of different sweet corn varieties. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>3-3</td>
<td>Coefficient velocity of germination (CVG) at different osmotic potential of different sweet corns varieties. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>3-4</td>
<td>Germination index at different osmotic potential of different sweet corns varieties. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>3-5</td>
<td>Total root length at different osmotic potential of different sweet corn varieties. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>3-6</td>
<td>Average root diameter at different osmotic potential of different sweet corn varieties. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>3-7</td>
<td>Proline content in seedling at different osmotic potential of different sweet corn varieties. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>4-1</td>
<td>Effects of irrigation treatments on plant height. Vertical bar represents ± SE.</td>
</tr>
<tr>
<td>4-2</td>
<td>Effects of nitrogen levels of sweet corns on height plant. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.</td>
</tr>
<tr>
<td>4-3</td>
<td>Effects of nitrogen levels of sweet corns on number of leaves. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>4-4</td>
<td>Effects of varieties of sweet corns on number of leaves. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>4-5</td>
<td>Effects of irrigation treatments on leaf area index (LAI). Vertical bar represents ± SE</td>
</tr>
<tr>
<td>4-6</td>
<td>Effects of different nitrogen levels on leaf area index (LAI) in sweet corns. Vertical bar represents ± SE</td>
</tr>
<tr>
<td>4-7</td>
<td>Effects of varieties of sweet corns on leaf area index (LAI). Vertical bar represents ± SE</td>
</tr>
</tbody>
</table>
4-8 Effects of irrigation treatments on crop growth ratio (CGR). Vertical bar represents ± SE.

4-9 Effects of nitrogen levels of sweet corns on crop growth ratio (CGR). Vertical bar represents ± SE.

4-10 Effects of irrigation treatments on dry matter (DM).

4-11 Effects of nitrogen levels of sweet corns on dry matter (DM).

4-12 Interactive effects of nitrogen levels on proline content. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

4-13 Interactive effects of water deficit and varieties on proline content. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

4-14 Interactive effects of water deficit and nitrogen levels of hybrid 968 on relative water content (RWC). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

4-15 Interactive effects of water deficit and nitrogen levels of hybrid 926 on relative water content (RWC). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

4-16 Interactive effects of water deficit and nitrogen levels of hybrid 968 on pollen viability. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

4-17 Interactive effects of water deficit and nitrogen levels of hybrid 926 on pollen viability. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

4-18 Interactive effects of water deficit and nitrogen levels on pollen number. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

4-19 Interactive effects of water deficit and varieties on pollen number. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

4-20 Effects of nitrogen levels of sweet corns on chlorophyll content. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

xxi
Effects of varieties of sweet corns on chlorophyll content. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Effects of irrigation treatments on photosynthesis rate. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Effects of nitrogen levels on photosynthesis rate. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels on Stomatal conductance. Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

The effects of water deficit on nitrogen concentration on leaves. Vertical bar represents ± SE.

The effects of nitrogen levels on nitrogen concentration on leaves. Means for each treatment with same letters are not significantly different by LSD at 0.05.

The effects of nitrogen levels on nitrogen concentration (N C.) in soil. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels of sweet corns on ear weight per m². Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and varieties of sweet corns on ear weight per m². Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels of hybrid 968 on ear weight per m² (EWm-2). Vertical bar represents ± SE.

Interactive effects of water deficit and nitrogen levels of hybrid 926 on ear weight m² (EWm-2). Vertical bar represents ± SE.

Effects of nitrogen levels of sweet corns on rows per ear (RE). Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels of sweet corns on rows per ear (RE). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.
Interactive effects of water deficit and nitrogen levels of sweet corns on ear size (ES). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and varieties of sweet corns on ear size (ES). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels of sweet corns on kernel weight per ear (KWE). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels of hybrid 968 on number of kernel per ear (NKE). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels of hybrid 926 on number of kernel per ear (NKE). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels of hybrid 968 on 1000-kernel weight (1000-KW). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.

Interactive effects of water deficit and nitrogen levels of hybrid 926 on 1000-kernel weight (1000-KW). Vertical bar represents ± SE. Means for each treatment with same letters are not significantly different by LSD at 0.05.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The calibration of SPAD actual to Chlorophyll concentration</td>
<td>163</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

MPa Mega Pascal
OP Osmotic potential
PEG Polyethylene glycol
GP Germination percentage
MGT Mean germination time
CVG Coefficient velocity of germination
GI Germination index
RL Root length
RD Root diameter
EWm^{-2} Ear weight m^{-2}
RE Rows per ear
ES Ear size
KWE Kernel weight per ear
NKE Number of kernel per ear
1000-KW 1000- Kernel weight
DAP Days after planting
CGR Crop growth ratio
RWC Relative water content
NL Number of leaves
PH Plant height
DM Dry matter
VD Vegetative drought
TD Tasseling drought
(V+T)D Vegetative and tasseling drought
LAI Leaf area index
H Hybrid
SE Standard error
IKI Iodine potassium iodide
mL milliliters
INTRODUCTION

Maize (*Zea mays* L.) is one of the main agricultural crops in the family Poaceae, which is ranked as the third important crop after wheat and rice. Due to its high adaptability, it is well distributed and highly productive in most cultivable agricultural lands in the world. It produces high total dry matter and the grain contains various nutritious substances such as carbohydrates, proteins and edible oil.

Containing 8-15% protein, this plant is considered as a main source of protein, essential for cell growth in human. Apart from pharmaceutical and nutritional applications, maize is also a good source for fuel and feedstock worldwide. It is annually grown as food and as industrial raw material for the production of oil, starch, sugar, syrups and other uses.

According to the United States Department of Agriculture-Foreign Agricultural Services (USDA-FAS, 2010), with the rapid growth in world population, the demand for this product will increase. Based on statistics, corn production increased from 713000 (MT) in 2006 to 835000 (MT) in 2010. The major corn producers are the United States, China, Brazil and Argentina. In Malaysia, corn production increased from 80000 metric tons in 2006 to 95000 metric tons in 2010 (USDA-FAS, 2010).
Agricultural research has been traditionally focused on maximizing yield increases worldwide. However, more attention is now given to the availability of land and water, which appear to be the main limiting factors of production. Consequently, water deficit has recently been experimented as a new strategy in dry regions facing lack of water for crop production (English, 1990; Fereres and Soriano, 2007; Pereira et al., 2002).

As arid and semi-arid lands are naturally under the threat of drought, crop yields are prone to drastic reduction in such areas. This is also the case with lands where the soil has a limited supply of water due to high evapo-transpiration. Presently, in most places on earth, the natural water supply used for irrigation is declining. The prospects for water shortage are explicable in terms of climate changes with temperature increases and shortage of rainfall. Given such circumstances, it is crucial to investigate crop responses to water shortages in specific environments so that appropriate irrigation deficit strategies can be employed for watering plants and improving irrigation efficiency. In this strategy, we can reduce water irrigation for one or two time without significant reducing in production.

In general, crop production requires appropriate amounts of nitrogen and water. As for maize, production is optimized with balanced amounts of these two factors. Hence, water shortage and exhaustive nitrogen use research on yield potential are important issues in maize production. At water deficit, nitrogen rate reduced for reach to maximum crop production.
Proper crop and soil management systems including water conservation, irrigation and water management and fertilizer application can mitigate water shortages, increase productivity and reduce environmental pollution (Herrero et al., 2007). Crop N status at different growth stages and the supply of sufficient amounts of N fertilizer require careful investigation. Better yields and more efficient N-use can be achieved with lowest N losses into the environment (Zhao et al., 2003).

Decreasing osmotic potential reduced seedling growth under PEG solution in *lentil culinaris* (Haq et al. 2010). Tolerant corn to water deficit controlled by genotypes. Tolerance trait to water stress related to water deficit severity and controlled by some morphological and physiological process (Aslam et al. 2006).

Hence, the present study was designed with the main objectives, best time for shortage irrigation deficit, different nitrogen rates and investigating the interaction of production factors on different varieties of sweet corn.
The specific objectives of this thesis were to:

i) Determine germination behavior and proline accumulation in sweet corn seedlings in response to different osmotic potential conditions generated using polyethylene glycol.

ii) Evaluate the effects of water and nitrogen deficits on the morphological and physiological parameters of sweet corn.

iii) Evaluate the effects of water and nitrogen deficits at different crop growth stages on yield and yield component of sweet corn.
REFERENCES

Boroujerdnia, M. and Alemzadeh Ansari, N. (2007). Effect of different levels of nitrogen fertilizer and cultivars on growth, yield and yield components of

Szulc, P. and Waligóra, H. (2010). Response of maize (*zea mays* L.) stay-green type to fertilization with nitrogen ,sulphur, and magnesium part II. Plant development

subjected to moisture stress at different temperatures. *Agronomy journal*, 96(3), 786-791.

