DETECTION OF BETA-AGONIST RESIDUES IN MEAT USING ENZYME LINKED IMMUNOSORBENT ASSAY AND GAS CHROMATOGRAPHY MASS SPECTROMETRY

By

P. JEYALETCUMI A/P S. PONNIAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Masters of Science November 2003
DEDICATION

Dedicated to my mother, Retnam Thambipillai,

my husband, Kanesan Sathianathan

my sons, Thivagar and Gajendra
Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

DETECTION OF BETA-AGONIST RESIDUES IN MEAT USING ENZYME LINKED IMMUNOSORBENT ASSAY AND GAS CHROMATOGRAPHY MASS SPECTROMETRY

By

P. Jeyaletchumi a/p S. Ponniah

November 2003

Chairman: Associate Professor Sharifah Kharidah bt. Syed Muhammad, Ph.D.

Faculty: Food Science and Biotechnology

The prevalence, type and concentration of beta-agonist residues in the liver and meat of three types of livestock animals i.e. goats, cattle and swine were studied using Gas Chromatography-Mass Spectrometry. Beta-agonist residues were only detected in swine with a prevalence of 16.6% in meat and 20% in liver sampled. The concentration of beta-agonist residues in the positive samples ranged between 1ng/g to 9ng/g. The performance of the multi-residue analysis method used was assessed through recovery studies and found to be varied among the beta-agonists wherein terbutaline showed the highest recovery values (78-83%) whereas salbutamol showed the lowest recovery values (22% -31%). The coefficient of variation (C.V.) had values between 1-12% which indicate acceptable variation for the method.
In the second phase of this study, three ELISA test-kits, i.e. Randox ELISA beta-agonist test kit, Euro-Diagnostica beta-agonist test kit and Ridascreen beta-agonist test kit were evaluated for screening of meat and liver for beta-agonist residues in fortified and field incurred tissue samples. It was found that the Randox beta-agonist test kit was more suitable as a screening tool due to its accuracy, ease of use and lower cost. The test-kit was able to detect beta-agonists at the minimum level of detection as claimed by the suppliers. The performance of the method as assessed through recovery rates of the beta-agonists in fortified samples was satisfactory with a low coefficient of variation (1-3%). Reproducibility, as measured through the coefficient of correlation was also satisfactory. For field-incurred positive samples, the test kit showed a sensitivity of 100% and a low rate of false positives (less than 10%) for goat and cow tissues. However a high rates of apparent false positives (50%-65%) was obtained for tissues of swine.

The third phase of the study evaluated the cross-reactivities of the antibodies within the three test kits to other veterinary drugs normally administered to swine. It was found that sulfachlorpyridazine; sulfamethaxine; penicillin G and amantidine cross-reacted with all three ELISA test kits to give a positive response.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi syarat keperluan untuk Ijazah Master Sains

PENGENALPASTIAN KANDUNGAN RESIDU BETA-AGONIST
DALAM DAGING MENGUNAKAN KAEDAH ‘ENZYME-LINKED
IMMUNOSORBENT ASSAY’ DAN ‘GAS CHROMATOGRAPHY-
MASS SPECTROMETRY’

oleh

P. Jeyaletchumi a/p S. Ponniah

November 2003

Pengerusi : Profesor Madya Sharifah Kharidah bt. Syed Muhammad, Ph.D.

Fakulti : Sains Makanan dan Bioteknologi

Kehadiran, jenis dan kandungan residu beta-agonist di dalam daging dan hati
tiga jenis haiwan ternakan iaitu lembu, kambing dan khinzir telah dikaji dengan
menggunakan peralatan ‘ Gas Chromatography Mass Spectrometry’. Residu beta-agonist
cuma dapat dikesan pada tisu khinzir, iaitu sebanyak 16.6% daripada daging dan 20%
daripada hati yang disampel. Kandungan beta-agonist di dalam sampel positif berada
dalam julat 1ng/g hingga 9ng/g. Keberkesanan kaedah multi-residu yang digunakan telah
diuji menggunakan kajian ‘recovery’ dan didapati berbeda antara beta-agonist yang
berlainan, iaitu terbutalin menunjukkan nilai ‘recovery’ tertinggi (78 –83%) sementara
salbutamol menunjukkan nilai ‘recovery’ terendah (22-31%). Nilai koefisi variasi berada
di antara 1-12% yang menunjukkan variasi yang boleh diterima bagi kaedah yang
digunakan.
Dalam fasa kedua kajian ini, tiga peralatan ujian ELISA, iaitu peralatan ujian Randox; peralatan ujian Euro-Diagnostica dan peralatan ujian Ridascreen telah dibandingkan bagi pengskrinan residu beta-agonist dalam sampel tisu yang difortifikasi dan ‘field-incurred’. Didapati bahawa peralatan ujian Randox paling sesuai sebagai alat pengskrinan kerana ia lebih jitu, mudah digunakan dan murah. Peralatan ujian ini dapat mengesan residu beta-agonist pada tahap pengesanan minima seperti yang diakui oleh pembekal. Keberkesanan kaedah seperti yang dinilai melalui kadar ‘recovery’ beta-agonist yang difortifikasi didapati memuaskan dengan kadar koefisi variasi yang rendah (1-3%). ‘Reproducibility’ yang diukur melalui koefisi korrelasi juga didapati memuaskan. Bagi sampel positif yang ‘field-incurred’, ujian peralatan menunjukkan sensitiviti 100% dan kadar positif palsu yang rendah (kurang dari 10%) untuk tisu kambing dan lembu. Bagaimanapun, kadar positif palsu yang tinggi (50-65%) didapati bagi tisu khinzir.

Fasa ketiga kajian ini telah menilai ‘cross-reactivity’ di antara antibodi di dalam ketiga-tiga peralatan ujian tersebut dengan dadah veterinar lain yang biasanya diberi kepada haiwan khinzir. ‘Sulfachlorpyridazine’, ‘sulfamethazine’, penicillin G dan amantidin didapati saling bertindak dengan antibodi didalam ketiga-tiga peralatan ujian ELISA untuk memberi respon positif.
ACKNOWLEDGEMENTS

The author wishes to express her most sincere appreciation and gratitude to the Chairman of her Supervisory Committee, Professor Madya Dr. Sharifah Kharidah binti Syed Muhammed of the Department of Food Science, Faculty of Food Science and Biotechnology for her invaluable guidance and encouragement throughout the project. She is also very grateful to her co-supervisors, Y.Bhg. Professor Dato’ Dr. Abdul Salam Abdullah from the Faculty of Veterinary Science, and Dr. Nazimah binti Sheikh Abdul Hamid from the Department of Food Science, Faculty of Food Science and Biotechnology, and her former co-supervisor, Dr. K. K. Ganapathy from the Faculty of Veterinary Science for their constructive comments towards the preparation of this thesis.

Sincere thanks are also extended to Y.Bhg. Datuk Dr Hajjah Harrison bt. Abdul Aziz, Director of the Food Quality Division of the Ministry of Health for providing the funding to carry out this project; Dr. Sulaiman bin Che Rus, Director of the Public Health Institute for his invaluable support and advice; Puan Zaleenah Zainuddin of the Klang Food Quality Control Laboratory and Dr. Yahya Muhammed of the Petaling Jaya Regional Veterinary Laboratory for permitting the use of the laboratory facilities for carrying out this project; Professor Aishah Abdul Latiff of Universiti Sains Malaysia Doping Laboratory and Mr.Hooi Jee Lok of the Chemistry Department for providing practical training on the usage of Gas Chromatography-Mass Spectrometry.
Special thanks is also expressed to the Malaysian Department of Public Services and the Ministry of Health for making it possible for her to undergo her Master of Science programme at Universiti Putra Malaysia.
I certify that an Examination Committee have met on November 8, 2003, to conduct the final examination of P.Jeyaletchumi a/p S.Ponniah on her Master of Science thesis entitled “Detection of Beta-agonist Residues in Meat Using Enzyme-linked Immunosorbent Assay and Gas Chromatography-Mass Spectrometry” in accordance with Universiti Putra Malaysia (Higher Degree) Act 1980 and Universiti Putra Malaysia (Higher Degree) Regulations 1981. The Committee recommended that the candidate be awarded the relevant degree. The Committee Members for the candidate are as follows:

SHARIFAH KHIRIDAH SYED MUHAMMAD, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

DATO’ DR. ABDUL SALAM ABDULLAH, Ph.D.
Professor,
 Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

NAZIMAH SHEIKH ABDUL HAMID, Ph.D.
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

ABDUL MANAF ALI, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI (Ph.D.)
Professor/Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date of Viva : 8th of November, 2003
The thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

SHARIFAH KHRIDAH SYED MUHAMMAD, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

DATO’ DR. ABDUL SALAM ABDULLAH, Ph.D.
Professor,
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

NAZIMAH SHEIKH ABDUL HAMID, Ph.D.
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

AINI IDERIS (Ph.D.)
Professor/ Dean,
School of Graduate Studies,
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

(P. Jeyaletchumi a/p S. Ponniah)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>5</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>7</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>19</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I GENERAL INTRODUCTION</td>
<td>20</td>
</tr>
<tr>
<td>II LITERATURE REVIEW</td>
<td>26</td>
</tr>
<tr>
<td>Introduction To Beta-Agonists</td>
<td>26</td>
</tr>
<tr>
<td>Physical And Chemical Properties</td>
<td>28</td>
</tr>
<tr>
<td>Uses Of Beta-Agonists In Veterinary Therapy</td>
<td>29</td>
</tr>
<tr>
<td>Pharmacokinetics Of Beta-Agonists</td>
<td>30</td>
</tr>
<tr>
<td>Abuse Of Beta-Agonists</td>
<td>32</td>
</tr>
<tr>
<td>Effects Of Beta-Agonists On Growth And Composition</td>
<td>35</td>
</tr>
<tr>
<td>Cattle Performance And Carcass Traits</td>
<td>35</td>
</tr>
<tr>
<td>Sheep Performance And Carcass Traits</td>
<td>36</td>
</tr>
<tr>
<td>Pig Performance And Carcass Traits</td>
<td>37</td>
</tr>
<tr>
<td>Effects Of Beta-Agonists On Eating Quality</td>
<td>39</td>
</tr>
<tr>
<td>Effects Of Cooking On Beta-Agonists</td>
<td>40</td>
</tr>
<tr>
<td>Toxicology Of Beta-Agonists</td>
<td>40</td>
</tr>
<tr>
<td>Livestock Industry In Malaysia</td>
<td>42</td>
</tr>
<tr>
<td>Regulatory Status of Beta-Agonists</td>
<td>45</td>
</tr>
<tr>
<td>International Regulatory Status</td>
<td>45</td>
</tr>
<tr>
<td>Malaysian Regulatory Status</td>
<td>46</td>
</tr>
<tr>
<td>Current Detection Rates For Beta-Agonist Residues In Meats</td>
<td>49</td>
</tr>
<tr>
<td>Sampling For Residues Of Beta-Agonists</td>
<td>51</td>
</tr>
<tr>
<td>Selection Of Tissues For Sampling For Residues of Beta-agonists</td>
<td>54</td>
</tr>
<tr>
<td>Methods For Determination Of Beta-Agonist Residues In Meats</td>
<td>54</td>
</tr>
<tr>
<td>Chemical Methods of Assay</td>
<td>55</td>
</tr>
<tr>
<td>Immunoassay</td>
<td>56</td>
</tr>
<tr>
<td>Combination Of Chemical And Immunoassay</td>
<td>56</td>
</tr>
</tbody>
</table>
III DETERMINATION OF THE PREVALENCE, TYPE AND CONCENTRATION OF BETA-AGONIST RESIDUES IN MEAT AND LIVER USING IMMUNOAFFINITY COLUMN GAS CHROMATOGRAPHY-MASS SPECTROMETRY 74

Introduction 74
Materials And Methods 76
 Chemicals 76
 Food Samples 76
 Sample Preparation 77
 Preparation Of Standard For Calibration 78
 Preparation Of Standard For Spiking 78
 Preparation Of Reagent Blank 80
 Spiking For Recovery Studies 80
 IAC Clean-Up 80
 Derivatisation Of Samples 81
 Derivatisation Of Standards 81
 Quantification Using GC-MS 83
 Comparative Study 87
Statistical Analysis 87
Results And Discussion 87
 Recovery Values 89
Conclusions 93

IV COMPARISON OF THREE RAPID TEST KITS FOR DETECTION OF BETA-AGONIST RESIDUES IN TISSUES IN FORTIFIED AND FIELD-INCURRED SAMPLES 94

Introduction 94
Materials and Methods 99
 Chemicals 99
 Food samples 100
 Preparation of standards for fortification 100
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method for Randox beta-agonist ELISA test kit SU1248</td>
<td>102</td>
</tr>
<tr>
<td>Method for Euro-diagnostica test kit</td>
<td>104</td>
</tr>
<tr>
<td>Method for Ridascreen test kit</td>
<td>107</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>111</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>111</td>
</tr>
<tr>
<td>Conclusions</td>
<td>137</td>
</tr>
</tbody>
</table>

V EVALUATION OF CROSS-REACTIVITY OF OTHER COMPOUNDS WITH BETA-AGONIST ELISA TEST KIT | 138 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>138</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>139</td>
</tr>
<tr>
<td>Chemicals</td>
<td>139</td>
</tr>
<tr>
<td>Preparation of standards</td>
<td>140</td>
</tr>
<tr>
<td>Method for Randox beta-agonist ELISA test kit SU1248</td>
<td>144</td>
</tr>
<tr>
<td>Method for Euro-diagnostica test kit</td>
<td>144</td>
</tr>
<tr>
<td>Method for Ridascreen test kit</td>
<td>144</td>
</tr>
<tr>
<td>Result and Discussion</td>
<td>144</td>
</tr>
<tr>
<td>Conclusions</td>
<td>148</td>
</tr>
</tbody>
</table>

VI GENERAL CONCLUSIONS AND RECOMMENDATIONS | 149 |

BIBLIOGRAPHY | 155 |

BIOGRAPHICAL SKETCH | 186 |