UNIVERSITI PUTRA MALAYSIA

IN VITRO PROPAGATION AND MOLECULAR CHARACTERIZATION
OF SOMACLONAL VARIATION IN PHALAENOPSIS GIGANTEA

SAMIRA SAMARFARD

FP 2013 62
IN VITRO PROPAGATION AND MOLECULAR CHARACTERIZATION OF SOMACLONAL VARIATION IN PHALAENOPSIS GIGANTEA

By

SAMIRA SAMARFARD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

IN VITRO PROPAGATION AND MOLECULAR CHARACTERIZATION OF SOMACLONAL VARIATION IN PHALAENOPSIS GIGANTEA

By

SAMIRA SAMARFARD

May 2013

Supervisor: Associate Professor Mihdzar Abdul Kadir, PhD

Faculty: Agriculture

Phalaenopsis gigantea (Elephant's Ear orchid) is the largest species of Phalaenopsis genus originating from the lowland forests of Malaysia and Indonesia. Deforestation and over-collection have resulted in the extinction of this orchid. P. gigantea has the potential of producing beautiful hybrids and currently research on micropropagation using plant growth regulators of this orchid is ongoing. Chitosan is an environmentally friendly carbohydrate polymer and has been reported to stimulate growth of some plant species, including orchids. Multiplication was undertaken through in vitro inoculation of PLBs in liquid New Dogashima medium (NDM) and Vacin and Went (VW) medium supplemented with different concentrations of chitosan (0, 5, 10, 15, 20 and 25 mg/L) during 8 weeks of culture. The best response was established at 10 mg/L of chitosan supplementation in both media with the mean number of 177 and 147 PLBs formed on VW and NDM, respectively. After 6 weeks of culture in liquid media, some PLBs differentiated producing juvenile leaves and
the best response was obtained on NDM at 20 mg/L chitosan with mean number of 66 leaves. To establish an efficient treatment combination in semi solid culture for enhancing PLBs multiplication and subsequent shoot regeneration, solid NDM and VW medium supplemented with various concentrations of chitosan (0, 5, 10, 15, 20 and 25 mg/L) and thidiazuron (TDZ) (0, 0.1, 0.5 mg/L) were used. The optimum treatment for PLB multiplication in solid medium was NDM at 10 mg/L chitosan in combination with 0.1 mg/L TDZ with the mean number of 353 PLBs after 20 weeks of cultivation. NDM containing 10 mg/L chitosan and 0.1 mg/L TDZ showed a 19-fold increase in fresh weight. Whilst, the efficiency of shoot regeneration in semi solid VW was higher than NDM and the best response was observed on VW in addition with 10 mg/L chitosan and 0.5 mg/L TDZ (16), VW at 20 mg/L chitosan (15) and VW including 15 mg/L chitosan and 0.5 mg/L TDZ (13). In order to assess the genetic fidelity among initial PLBs and proliferated PLBs obtained at the end of each two week's sub-culture from the optimum treatment (10 mg/L chitosan). Eight inter-simple sequence repeat (ISSR) primers were finally selected from 10 used for initial screening. The ISSR primers generated 55 clear band classes with 0% polymorphism. The somaclonal variations among mother plant (MP) and PLBs from the sub-cultures of optimum treatment in PLB multiplication (solid NDM supplemented with 10 mg/L chitosan and 0.1 mg/L TDZ) have been estimated. The primers selected produced 67 bands with 11 of it being polymorphic. The highest number of polymorphic bands (3) was obtained using primers I65 and I2 with 27.3% polymorphism. It was found that no genetic changes occurred among mother plant and PLBs after 4, 8 and 12 weeks of culture. After 16 and 20 weeks of culture, PLBs were 95% and 80% similar to MP, respectively. In summary, the present report expressed that the addition of 10 mg/L chitosan in liquid medium could provide a
promising *in vitro* culture system to stimulate PLBs proliferation without any somaclonal variation up to 16 weeks of culture. The incorporation of 10 mg/L chitosan and 0.1 mg/L TDZ in solid NDM was also efficient for PLB proliferation. However, it resulted in 20% dissimilarity with the mother plant after 20 weeks of culture.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBIAKAN IN VITRO DAN PENCIRIAN MOLEKUL VARIASI SOMAKLONAL PHALAENOPSIS GIGANTEA

Oleh

SAMIRA SAMARFARD

Mei 2013

Pengerusi: Profesor Madya Mihdzar Abdul Kadir, PhD

Fakulti: Pertanian

Phalaenopsis gigantea (orkid telinga gajah) adalah spesies terbesar dalam genus *Phalaenopsis* yang berasal dari hutan tanah pamah di Malaysia dan Indonesia. Penebangan hutan dan pengumpulan orkid yang berleluasa telah menyebabkan spesies ini, *P. gigantea* pupus. Orkid ini berpotensi untuk menghasilkan hibrid yang cantik dan kajian pembiakan mikro keatas orkid ini sedang dijalankan dengan giat. Chitosan merupakan polimer karbohidrat mesra alam dan telah dilaporkan untuk merangsang pertumbuhan beberapa spesies tumbuhan, termasuk orkid. Peningkatan multiplikasi PLBs telah dijalankan secara *in vitro* melalui inokulasi PLBs dalam medium cecair New Dogashima (NDM) dan medium Vacin dan Went (VW) yang ditambah dengan chitosan (0, 5, 10, 15, 20 dan 25 mg/L) pada kepekatan yang berlainan sepanjang 8 minggu dikultur. Respons terbaik telah dicapai dengan penambahan chitosan sebanyak 10 mg/L dalam kedua-dua media dengan purata PLBs masing-masing sebanyak 177 dan 147 dalam VW dan NDM. Selepas 6 minggu pengkulturan dalam media cecair, beberapa PLBs telah membentuk daun juvana dan
respons terbaik telah diperolehi dalam NDM pada 20 mg/L chitosan dengan purata sebanyak 66 daun. Medium pepejal NDM dan VW yang ditambah dengan pelbagai kepekatan chitosan (0, 5, 10, 15, 20 dan 25 mg/L) dan thidiazuron (TDZ) (0, 0.1, 0.5 mg/L) telah digunakan untuk mendapatkan satu rawatan kombinasi yang cekap dalam kultur pepejal yang berupaya meningkatkan multiplikasi PLBs dan penjanaan semula pucuk. Rawatan optimum bagi multiplikasi PLBs dalam medium pepejal adalah NDM dengan kombinasi 10 mg/L chitosan dan 0.1 mg/L TDZ dengan purata 353 PLBs selepas 20 minggunpengkulturan. Medium NDM pejal yang mengandungi 10 mg/L chitosan dan 0.1 mg/L TDZ telah menghasilkan peningkatan 19 kali ganda dalam berat segar PLB. Sementara itu, keberkesanan penjanaan semula pucuk dalam VW pepejal adalah lebih tinggi daripada NDM dan respons terbaik telah diperhatikan pada VW dengan penambahan 10 mg/L chitosan dan 0.5 mg/L TDZ (16). VW dengan penambahan 20 mg/L chitosan (15) dan VW dengan penambahan 15 mg/L chitosan dan 0.5 mg/L TDZ (13). Lapan inter-simple sequence repeat’ (ISSR) telah dipilih daripada sepuluh yang digunakan dalam penyaringan awaldan penentuan ketulenan genetik diantara PLBs induk berbanding dengan PLBs yang diperoleh pada akhir setiap dua minggu sub-kultur daripada rawatan optimum (10 mg/L chitosan) sepanjang pengkulturan. Primer ISSR telah menjana 55 jalur yang jelas dengan polimorfisma sebanyak 0%. Variasi somaklonal dalam kalangan tumbuhan induk (MP) dan PLBs sekunder daripada sub-kultur rawatan optimum multiplikasi PLB yang berbeza (NDM pepejal yang ditambah dengan 10 mg/L chitosan dan 0.1 mg/L TDZ) telah dianggarkan. Lapan primer ISSR menghasilkan 67 jalur dengan 11 jalur polimorfik. Bilangan jalur polimorfik terbanyak (3) telah diperoleh menggunakan primers I65 dan I2 dengan polimorfisma sebanyak 27.3%. Perubahan genetik tidak berlaku dalam kalangan tumbuhan induk dan PLBs sekunder selepas 4,
8 dan 12 minggu dikultur. Terdapat sebanyak 95% dan 80%, persamaan di antara PLBs yang dimultiplikasi dengan PLB induk selepas 16 dan 20 minggu dikultur, masing-masing. Secara kesimpulan, laporan ini menyatakan bahawa penambahan 10 mg/L chitosan dalam medium cecair boleh merangsang proliferasi PLBs kultur in vitro tanpa menyebabkan variasi somaklonal selama 16 minggu. Penggabungan 10 mg/L chitosan dan 0.1 mg/L TDZ dalam NDM pepejal juga berkesan untuk percambahan PLBs. Walau bagaimanapun, ia menyebabkan perbezaan sebanyak 20% dengan tumbuhan induk selepas 20 minggu dikultur.
ACKNOWLEDGEMENTS

First and foremost I would like to express my gratitude to THE ALMIGHTY ALLAH the most Benevolent, Merciful and Compassionate, for giving me the utmost strength, patience, HIS grace and mercy to have this work completed.

I am very grateful to my supervisor Associate Professor Dr. Mihdzar Abdul Kadir from Department of Agriculture Technology, Faculty of Agriculture and member of my supervisory committee, Associate Professor Dr. Saleh Kadzimin from Department of Crop Science, Faculty of Agriculture for valuable suggestions, guidance and for the support given throughout this research. I also would like to extend my gratitude to the internal and external examiners who evaluated my thesis thoroughly and gave constructive comments to improve the quality of my thesis.

I would like to extend my heartiest appreciation and my deepest thanks to my dear father Hossein Samarfard and my beloved mother Parvaneh Ziaratian for their encouragement, kindness, moral as well as financial support that sustained me throughout my study and life.

Profound gratitude is also extended to Universiti Putra Malaysia (UPM), especially Faculty of Agriculture and Department of Agriculture Technology for the facilities available to conduct experiments and to acquire knowledge.

I would like to convey my appreciation to all my labmates from Agrotechnology Laboratory especially to Sang Mi Eum for sharing her knowledge, friendship throughout this research. Finally, my special thanks to my dear friends Dr Hossein
Kamaladini, Mahmoud Danaie, Fatemeh Haddadi and Naghmeh Nejat for sharing their knowledge and moral support.
I certify that a Thesis Examination Committee has met on 10 May 2013 to conduct the final examination of Samira Samarfard on her thesis entitled “In vitro Propagation and Molecular Characterization of Somaclonal Variation in *Phalaenopsis gigantea*” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Halimi bin Mohd Saud
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Maheran Abdul Aziz, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal examiner)

Uma Rani Sinniah, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal examiner)

Abdul Rahman Milan, PhD
Senior Lecturer
Malaysian Agricultural Research and Development Institute (MARDI)
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 2 August 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of requirement for degree of Master of Science. The members of the Supervisory Committee were as follows:

Mihdzar Abdul Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Saleh Kadzimin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SAMIRA SAMARFARD

Date: 10 May 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>V</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>X</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW
 2.1 Orchidaceae
 2.2 Genus Phalaenopsis
 2.3 Phalaenopsis gigantea (Elephant’s Ear orchid)
 2.4 Orchid Propagation
 2.4.1 Sexual
 2.4.2 Asexual
 2.5 In Vitro Propagation of Phalaenopsis
 2.6 Multiplication of Protocorm Like-Bodies (PLBs)
 2.7 Culture Medium
 2.8 Plant Growth Regulators
 2.9 Chitosan as Plant Growth Stimulator
 2.9.1 Chitosan Composition
 2.9.2 Properties and Solubility of Chitosan
 2.9.3 The Application of Chitosan in Agriculture
 2.9.4 The Effects of Chitosan on Orchids
 2.10 Somaclonal variation
 2.10.1 Definition and Importance of Somaclonal Variation
 2.10.2 The Sources of Somaclonal Variation
 2.10.3 Somaclonal Variation in Phalaenopsis Orchids
 2.11 Detection of Somaclonal Variation
 2.11.1 Morphological Detection
 2.11.2 Physiological and Biochemical detection
 2.11.3 Cytological Methods
 2.11.4 Proteins and Isozymes
 2.11.5 Molecular Detection
 2.12 Advantages of Inter Simple Sequence Repeat (ISSR)
 2.13 ISSR Studies in Orchids
3 IN-VITRO PROLIFERATION OF PHALAENOPSIS GIGANTEA PROTOCORM-LIKE BODIES (PLBs) BY CHITOSAN AND THIDIAZURON SUPPLEMENTATION

3.1 Introduction 29

3.2 Materials and Methods 31

3.2.1 PLB Proliferation in Liquid Media 31

3.2.1.1 PLB Induction from Leaf Segment 31

3.2.1.2 Chitosan Preparation 32

3.2.1.3 Media Preparation 32

3.2.1.4 Proliferation Condition 33

3.2.1.5 Parameters Recorded 33

3.2.1.6 Experimental Design and Statistical Analysis 33

3.2.2 PLB Proliferation and Shoot Formation on Solid Media 34

3.2.2.1 Explants and Media Preparation 34

3.2.2.2 Treatment Combination 34

3.2.2.3 Culture Conditions 36

3.2.2.4 Parameters Observed 36

3.2.2.5 Experimental Design and Statistical Analysis 36

3.3 Results and Discussion 37

3.3.1 Effects of Chitosan and Liquid Media on PLBs Proliferation 37

3.3.2 Effect of Chitosan on Differentiation 42

3.3.3 Effect of Chitosan on the Fresh Weight of PLBs 44

3.3.4 Effect of Chitosan and TDZ Combination on PLB Proliferation 46

3.3.5 Effect of Chitosan and TDZ Combination on Fresh Weight of PLBs 51

3.3.6 Effect of Chitosan and TDZ Combination on shoot Formation 54

4 DETECTION OF SOMACLONAL VARIATION BY INTERSIMPLE SEQUENCE REPEAT DURING PROLIFERATION OF PHALAENOPSIS GIGANTEA

4.1 Introduction 59

4.2 Materials and Methods 61

4.2.1 Detection of Somaclonal Variation 61

4.2.2 Extraction of Genomic DNA 62

4.2.3 Screening of ISSR Primers 63

4.2.4 PCR Amplification and Gel Scoring 64

4.2.5 Analysis of ISSR Data 65

4.3 Results and Discussion 66

4.3.1 Assessment of Genetic Stability of PLBs from Optimum Liquid Culture 66
4.3.2 Assessment of Genetic Stability of PLBs from Optimum Solid Culture
4.3.3 Genetic Similarity and Multivariate Analysis

5 GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES 81
APPENDICES 98
BIODATA OF STUDENT 105
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Different concentrations and combinations of chitosan and TDZ</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean number of leaves after 8 weeks of culture</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of chitosan and TDZ combination (mg/L) on total fresh weight of PLBs after 20 weeks of cultivation in semi solid NDM and VW</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>List of 10 ISSR primers used for initial screening and amplification of DNA</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Sequences of screened primers used in ISSR analysis for genetic stability of the PLBs</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Total number and size range of amplified ISSR bands and number of polymorphic fragments induced by MP and PLBs achieved from different sub-cultures of optimum treatment</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of ISSR amplified products from six samples of P. gigantea PLBs</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Similarity matrix of the somaclonal variation between mother plant and PLBs from different subcultures of optimum treatment</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>43</td>
</tr>
<tr>
<td>3.5</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>48</td>
</tr>
<tr>
<td>3.8</td>
<td>55</td>
</tr>
<tr>
<td>3.9</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>72</td>
</tr>
</tbody>
</table>

Figure 3.1: PLB Induction from leaf segment of donor plant after 4 weeks of culture (bar=2mm)

Figure 3.2: (a) Swollen protocorm after 2 weeks of culture (bar = 4mm), (b) PLB multiplication after 3 weeks of culture (bar = 20 mm)

Figure 3.3: Effect of media type and chitosan concentrations (mg/L) on mean number of PLBs obtained after eight weeks of culture

Figure 3.4: PLB and leaf formation (a) PLB multiplication after 5 weeks of culture in NDM at 20 mg/L chitosan (bar = 20 mm). (b) The leaf formation from mature PLBs after 8 weeks of culture (bar = 20 mm)

Figure 3.5: Effect of chitosan concentrations (mg/L) on total fresh weight of PLB’s after eight weeks of culture in liquid NDM and VW medium

Figure 3.6: PLBs obtained after 20 weeks of in vitro culture in solid NDM supplemented with 10 mg/L chitosan and 0.1 mg/L of TDZ (bar = 20mm)

Figure 3.7: Effect of chitosan and TDZ combination (mg/L) on mean number of PLBs after 20 weeks of culture in solid NDM and VW medium

Figure 3.8: Shoot formation after 20 weeks of culture in VW medium with (a) 10 mg/L chitosan and 0.5 mg/L TDZ and (b) 20 mg/L chitosan (bar = 20mm).

Figure 3.9: Effect of chitosan and TDZ combination (mg/L) on mean number of shoots after 20 weeks of culture in solid NDM and VW medium

Figure 4.1: ISSR banding pattern in both multiplied PLBs obtained with optimal chitosan and mother plants of _Phalaenopsis gigantea_ (lane MP is mother plant and lanes 1-4 are multiplied PLBs obtained after subcultures 1-4 with optimal chitosan)

Figure 4.2: ISSR banding pattern in mother plants and multiplied PLBs in NDM at 10 mg/L chitosan and 0.1 mg/L TDZ (lane MP is mother plant, lanes 1-5 are multiplied PLBs obtained after subcultures 1-5 with optimal chitosan)
Dendrogram exhibiting coefficient similarities among 6 samples from different subcultures of *P. gigantea* PLBs by the UPGMA cluster analysis (NTSYS) of the ISSR profiles derived from 8 primers using Jaccard’s similarity coefficient (MP corresponding to Mother Plant and S corresponding to subculture 1-5)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABA</td>
<td>Abscissic Acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BAP</td>
<td>6-Benzylaminopurine</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>CW</td>
<td>Coconut Water</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DNMRT</td>
<td>Duncan New Multiple Range Test</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetra-acetic acid</td>
</tr>
<tr>
<td>ISSR</td>
<td>Inter Simple Sequence Repeat</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>Mm</td>
<td>mili Molar</td>
</tr>
<tr>
<td>NAA</td>
<td>Naphthalene Acetic Acid</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>NDM</td>
<td>New Dogashima Medium</td>
</tr>
<tr>
<td>NTSYS</td>
<td>Numerical Taxonomy and Multivariate Analysis system</td>
</tr>
<tr>
<td>PAL</td>
<td>Phenylalanine Aminio-Lyase</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PLBs</td>
<td>Protocorom-like-bodies</td>
</tr>
<tr>
<td>RAPD</td>
<td>Random Amplified Polymorphic DNA</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>SAMPL</td>
<td>Selective Amplified Microsatellite Polymorphism Length</td>
</tr>
<tr>
<td>SSR</td>
<td>Simple Sequence Repeat</td>
</tr>
<tr>
<td>TDZ</td>
<td>Thidiazuron</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Unweighted Pair Group Method with Arithmetic Mean</td>
</tr>
<tr>
<td>VW</td>
<td>Vacin and Went (tissue culture medium)</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

The family Orchidaceae includes about 7% of all angiosperms and is regarded as one of the largest families of this group. It constitutes more than 25,000 recognized species, propagated around the world exhibiting highest genetic range in tropical areas (Thammasiri, 2002). Most orchid species are dispersed mainly in the Neotropical zone and the majority are epiphytes with many being rupicolous, terrestrial and propagated in marshy regions (Pansarin and Pansarin, 2011). Orchids are esteemed as ornamentals and cut flowers because of their marvelous beauty and long lasting flowers. Currently their production stand as multi-million dollar floral industries in several countries like Singapore, Australia, Thailand, Malaysia and several others (Chugh et al., 2009).

The genus Phalaenopsis is one of the most important epiphytic monopodial orchid, known as the moth orchid due to similarity of the flowers to night active moth butterflies (Nash, 2003), valued for its attractive cut flowers and potted plants (Chai et al., 2002), a long shelf-life and large diversities (Zheng et al., 2008). Commercial production of potted Phalaenopsis exists in Taiwan, China, Netherlands, Germany, United States, and Japan (Griesbach, 2002). About 85–90% of orchid sales among all commercial orchids in the USA are Phalaenopsis because of their easiness of arrangement to meet specific market dates, high wholesale value, and long shelf life (Nash, 2003).
Phalaenopsis gigantea (Elephant’s Ear orchid) is the largest species in the genus, occurring in the lowland forests of Sabah in Malaysia; but deforestation and over-collection have resulted in near extinction of this species (Rodrigues and Kumar, 2009). The species has the capability of producing attractive hybrids (Niknejad *et al.*, 2011). The species name comes from its vast leaf size and propagation is typically performed through the configuration of new buds induced at the bases of mature plants. However, the procedure is much unfrequented due to low number of new buds initiated by a mature plant (Shu-guo, 2008).

Tissue culture techniques have been used not only for rapid propagation on a large scale for orchids, but also for conservation purposes (Murdad *et al.*, 2006). Various explants and combination and concentrations of plant growth regulators have been significant factors for *in vitro* propagation of orchids. However, enhancement of multiplication, total yield and successive maturity into plantlets without mutation rates are most preferred (Pornpienpakdee *et al.*, 2010). Application of some growth stimulators enhances the rate of growth during *in vitro* multiplication. Chitosan is a cationic polymer and N-deacetylated product derivative of chitin which is present in shells of crustaceans and cell wall of fungi. This component is an environmentally friendly carbohydrate polymer and has been reported to stimulate the growth of some plant species, including orchids (Nge *et al.*, 2006). Similar to some other orchids, *Phalaenopsis gigantea* is inherently difficult to propagate and the supplementation of growth stimulants like chitosan and thidiazuron (TDZ) in tissue culture medium can provide an alternative means for multiplication of protocorm-like bodies (PLBs). Propagation through PLB formation is prefered by commercial growers of orchids due to the large number of PLBs that can be obtained within a relatively short period.
of time. There are two rate-limiting steps in mass production of *Phalaenopsis* PLBs: growth and multiplication. These steps require precise cultural conditions including medium composition and growth regulation, and it is necessary to reduce the time for growth and multiplication of PLBs (Park *et al*., 1996).

The process of sub-culturing is an important stage in order to produce more PLBs and subsequent plantlet regeneration. However, excessive sub-culturing can result in unpredictable mutations. Somaclonal variations can occur due to several reasons such as types of tissue culture media, plant growth regulators and their concentrations, explant types and number of sub-culturing cycles (Reuveni *et al*., 1986). The use of some synthetic PGRs at sub and supra-optimal concentrations was reported to be effective in inducing somaclonal variations in some crops (Martins *et al*., 2004). The occurrence of somaclonal variation is an important issue in plant tissue culture especially in ornamental plants because it can result in the production of undesirable off-types. The assessment of somaclonal variation by using molecular markers like Inter Simple Sequence Repeat (ISSR) will give indication on the limit to the number of sub cultures and duration of cultures.

The present study was conducted to optimize PLB multiplication of *Phalaenopsis gigantea* with chitosan and TDZ supplementation in different growth media. The study was also conducted to detect the genetic stability between mother plant and PLBs obtained from different sub-cultures of the optimal treatments. Inter Simple Sequence Repeats (ISSR) molecular technique has been applied in order to verify the genetic fidelity of PLBs produced during the process of multiplication in *Phalaenopsis gigantea*. Therefore, the study focuses on the following objectives:
(1) To determine the optimum chitosan concentration for promoting PLB proliferation in two types of liquid medium.

(2) To determine the optimum chitosan and TDZ combination for enhancing PLBs proliferation on two types of solid medium.

(3) To assess genetic stability of PLBs produced from different subcultures of optimum treatment by the Inter Simple Sequence Repeats (ISSR).
REFERENCES

embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. *Theoretical and Applied Genetics* 77: 325-331.

Vanda coerulea, an endangered orchid using thidiazuron. Plant Cell, Tissue
and Organ Culture. 289-293.

Reuveni, O. and Israeli, Y. (1990). Measures to reduce somaclonal variation in in

the number of subcultures on somoclonal variation in micropropagated

Roy, J. and Banerjee, N. (2003). Induction of callus and plant regeneration from
shoottip explants of Dendrobium fimbriatum Lindl var. oculatum Hk. F.

mediated protocorm-like body induction from shoot-tips of Dendrobium chrysotoxum Lindl. (Orchidaceae). Plant Cell, Tissue and Organ Culture 90:
31-33.

Proceedings of the 5th plant tissue and cell culture. 683-684.

micropropagated bananas (Musa spp.). In Vitro Cellular & Developmental
Biology - Plant 39: 551-556.

various polyamines on production of protocorm-like bodies in orchid

Detection of somaclonal variations in tissue cultured-derived date palm plants
using iso-enzyme analysis and RAPD fingerprints. Biologia Plantarum 43:
347-351.

