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December 2004 
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The atmospheric pollution has lead to the research and development of a variety of 

sensors using different materials and technologies particularly for low cost and lower 

operating temperatures.  An n-type semiconducting oxide such as tin oxide (SnO2) is 

one of the most important and extensively used materials for the detection of gases.   

 

In this project, the I-V characteristic and thermal diffusivity of pure SnO2 and SnO2-

CuO was studied.  The I-V characteristic was measured using two-probe technique 

while the thermal diffusivity was measured using a photoflash method.  The X-Ray 

Diffraction was used for identification of the phase in the sample and Scanning 

Electron Microscopy (SEM) was used to provide supportive evidence for the factor 

causing the changes of the parameters included.  These methods are important to 

confirm the existence of SnO2 peaks which is critical to CO2 gas. 

 

It was found that the I-V characteristics of sensor materials remain linear in a 

temperature range of 27 0C � 340 0C both in air and CO2 environment.  Sensor 

sensitivity was found to be dependent on temperature.  Pure SnO2 showed maximum 
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sensitivity (~2.5) at operating temperature 300 0C.  Operating temperature is defined 

as the temperature that gas sensor give a maximum reaction (sensitivity) with tested 

gas.  With addition of CuO into SnO2, the gas sensing temperature and electrical 

conductivity of the sensor was found to decrease.  The operating temperature also 

rapidly decreased from 300 0C (pure SnO2) to 220 0C (addition of 40 mol% CuO).  It 

is also observed that the annealing process has lowered the operating temperature of 

the sensor from 220 0C (sample as prepared) to 180 0C (samples annealed 600 0C, 

700 0C and 800 0C).  The effect of gas pressure on operating temperature did not 

change with increasing gas pressure but it showed higher sensitivity at higher gas 

pressure.  The sensor response time was also studied as a function of SnO2 

composition and gas pressure.  It was found that by increasing the gas pressure, the 

sensor response time decreased. The addition of CuO also has lowered the response 

time of SnO2 from 10 minutes to 6 minutes.  We found that 60 mol% SnO2 - 40 

mol% CuO system which annealed at 600 0C, 700 0C and 800 0C has the best sensing 

properties and lower operating temperature at 180 0C.  In this study, thermal 

diffusivity of SnO2 - CuO system and 60 mol% SnO2 - 40 mol% CuO system was in 

range of 1.4 to 7.8 x10-2 cm2/s.   
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Peningkatan pencemaran alam sekitar telah menggalakkan penyelidikan dan 

pembangunan dalam menghasilkan pelbagai pengesan (sensor) daripada bahan-bahan 

yang berbeza untuk mengurangkan kos dan menghasilkan pengesan pada suhu 

operasi yang rendah.  Semikonduktor jenis n seperti Oksida Stanum (SnO2) adalah 

satu bahan yang selalu digunakan dalam mengesan gas. 

 

Dalam projek ini, ciri-ciri arus-voltan dan penyerapan terma ke atas SnO2 and CuO-

SnO2 telah dikaji.  Ciri-ciri arus-voltan ini dikaji menggunakan kaedah dua penduga 

sementara penyerapan terma dikaji menggunakan kaedah sinaran flash kamera.  

Belaun sinar-X telah digunakan untuk mengenal pasti fasa-fasa bahan di dalam 

sampel dan Elektron Mikroskop (SEM) telah digunakan bagi menyokong faktor 

perubahan parameter yang diukur.  Kaedah-kaedah ini penting untuk memastikan 

kewujudan SnO2 di mana ia penting di dalam tindak balas gas CO2. 

 

Didapati bahawa ciri-ciri arus voltan adalah lurus dalam julat suhu 27 0C � 340 0C 

sama ada di udara atau CO2.  Tindak balas sensor didapati bergantung kepada suhu.  
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SnO2 menunjukkan tindak balas maksimun (~2.5) pada suhu 300 0C.  Suhu tindak 

balas di definisikan sebagai suhu di mana sensor gas bertindak balas secara 

maksimum (sensitiviti) dengan gas yang diuji.  Penambahan CuO ke dalam SnO2 

mengurangkan suhu tindak balas dan kekonduksian elektrik.  Suhu tindak balas 

berkurang daripada 300 0C (SnO2) kepada 220 0C (dengan penambahan 40 mol% 

CuO).  Proses rawatan haba juga mengurangkan suhu tindak balas daripada 220 0C 

(sampel yang disediakan) kepada 180 0C (sampel yang melalui perawatan haba pada 

suhu 600 0C, 700 0C and 800 0C).  Masa tindak balas oleh SnO2 berubah dengan 

komposisi bahan dan tekanan gas.  Dengan meningkatnya tekanan gas, masa bagi 

sensor bertindak balas dengan gas berkurang.  Penambahan CuO kepada SnO2 telah 

mengurangkan tindak balas masa SnO2 daripada 10 minit kepada 6 minit.  Didapati 

bahawa sistem 60 mol% SnO2 - 40 mol% CuO yang melalui perawatan haba pada 

suhu 600 0C, 700 0C and 800 0C mempunyai ciri-ciri pengesan terbaik dan suhu 

tindak balas paling rendah pada  180 0C.  Dalam kajian ini kadar serapan terma bagi 

sistem SnO2 - CuO dan sistem 60 mol% SnO2 - 40 mol% CuO ialah dalam julat 1.4 

to 7.8 x 10-2 cm2/s.   
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 

1.1 Introduction 

 

In recent years, world awareness on environmental problems continue to increase.  

The continuous release to the atmosphere of chemical pollutants, originating mainly 

from combustion processes, is the main cause of the deterioration of environmental 

quality.   The development of new methods to monitor polluted gases in the air is of 

primary concern for the knowledge of the extension of the environmental 

deterioration.  Measurements of gas concentrations in air are being carried out mostly 

by analytical instruments, which are precise, but also very costly.  They often cannot 

be placed on-site and need long periods for data acquisition.  Thus they are not 

suitable for on-line gas monitoring (Traversa et al., 1998).   

 

Since the demonstration of almost 50 years ago (Zakrzewska, 2001, Sberveglieri, 

1995) that the adsorption of gas on the surface of a semiconductor can bring about a 

significant change in the electrical resistance of the materials, there has been a 

sustained and successful effort to make use of this change for the purpose of gas 

detection (Kohl, 1990).  From that time, a great amount of research was carried out 

in order to realize commercial semiconducting devices for gas detection 

(Sberveglieri, 1995, Brattain and Bardeen, 1953).   
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Semiconducting gas sensors using SnO2 have been studied extensively since it was 

first proposed in 1962 (Seiyama et al., 1962).  The development of gas sensors to 

monitor the toxic and combustible gases is imperative due to the concerns for 

environmental pollution and the safety requirements for the industry (Chang et al., 

2002).  The sensors are used as the active part of gas and fire alarm system as well as 

for measuring or detecting the concentration of combustibles or other gas in the air 

(Mizsei, 1995).   

 

In general, sensor provides an interface between the electronic equipment and the 

physical world typically by converting non-electrical physical or chemical quantities 

into electrical signals.  The fundamental sensing principle relies on the change of 

conductivity of the sensors when they are exposed to certain target gases at moderate 

temperatures.  Ponce et al. in 2003 said that gas sensors based on semiconducting 

metal oxides are devices which present a change in the resistivity with the gas 

exposure and the sensing mechanism involves an electrical conductance change 

caused by gas adsorption on the chemical surface. 

 

It is well accepted that the sensitivity of a semiconductor oxide gas sensors comes 

from the change of the electrical conductivity of a sensor due to the gas atmosphere 

surrounding the sensor.  The conducting of an n-type semiconductor gas sensor is an 

oxidizing at atmosphere and when the sensor comes into contact with reducing gas 

such as CO, CO2 or H2.  For example, Table 1.1 shows the materials and gas 

response of each gas sensors.  The surface reactions taking place between surface 

oxygen species and reducing gases are believed to play key roles in increasing the 

conductivity of the sensors (Li et al., 1999).   
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Table 1.1: Material gas response and response temperature 

Materials Gas responses Operating temperature 
(0C) 

SnO2 O2, CH4, CO, H2, NH3, C3H8,  
SO2, Cl2 

300 
350 

ZnO CO, H2, NO2 
Benzene, acetone, alcohol 

400 
380 

TiO2 O2, CO, H2,  
SO2, H2S 

500 
450 

WO3 O2, CO, H2, C3H8, NH3 500 
TiNb2O7 CO, H2, C3H8, NH3 380 
CuTa2O6 CO, H2, C3H8 380 
BaTi7Nb4O25 CO, H2, C3H8, NH3 

O2 
520 
720 

CeO2 O2 
CO2 

700-1100 
842 

Ga2O3 O2, H2, CH4, NH3 550 
 

 

1.2 Tin Oxide (SnO2) 

 

n-type semiconducting oxides such as SnO2, ZnO or Fe2O3 have been known for the 

detection of inflammable or toxic gases (Yu and Choi, 1998).  Tin oxide (SnO2) is 

most used as a material for gas sensor applications and it is the most important 

material for commercially manufactured gas sensors.  The molecular structure of 

SnO2 is shown in Figure 1.1.  This sensor has been widely used as a convenient tool 

for detecting inflammable or toxic gases diluted in air (Kocemba et al., 2001, Devi et 

al., 1995, Angelis and Riva, 1995).  As an n-type semiconductor tin oxides, SnO2 

shows very high sensitivity to many reducing gas such H2, CH4, C2H5OH or CO 

(Egashira et al., 1996, Kocemba et al., 2001, Moon et al., 2001).  It is well known 

that there are four different adsorption states of oxygen on the surface of SnO2 

crystals, namely O2, O2
-, O- and O2-.  In the last three types of adsorption state, 

electrons have to be transferred from SnO2 to oxygen atoms or molecules to form the 
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ions.  The electrons are supplied from the conduction band of the SnO2 crystal, and it 

follows that the conductance of SnO2 crystal will change as the adsorption state of 

oxygen changes (Zhang et al., 1998).  Generally, the increase of conductance (or 

decrease of resistance) of SnO2 caused by the surface reactions between surface 

oxygen species and target gas molecules are used to detect the reducing gas 

concentrations (Li and Kawi, 1998, Li et al, 1999).  The most commonly accepted 

model for the operation of n-type semiconductor gas sensor is based on the variation 

in the potential barrier height at the grain boundary which is induced by the change 

in the amount of oxygen adsorbates by the reaction of sample with a gas (Shimizu et 

al., 1998).  These devices are mainly manufactured in three groups: ceramic sensor, 

thin film sensor and thick film sensor (Mukhopadhyay et al., 2000, Kecemba et al., 

2001, Jimenez et al., 1999).  It is well established that the gas sensors based on SnO2 

offer desirable attributes of cost effectiveness, simplicity and high sensitivity.  In this 

study CuO was chosen as a catalyst (Figure 1.2) and it was added into SnO2 to 

increase the sensitivity and lower the operating temperature of the sensor.        

 

 

 

 

 

 

 

 

 

Figure 1.1: The structure of SnO2 
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Figure 1.2: The structure of CuO 

 

1.3 Carbon Dioxide (CO2) 

 

In recent years, a great attention has been paid to the development and application of 

environmental gas CO2 sensors (Liao et al., 2001, Mutschall and Obermeier, 1995).  

CO2 is a typical representative of an acid-base active gas.  It is chemically stable and 

it is difficult to be detected in a sensitive manner by a conventional gas sensor 

(Ishihara et al., 1995).  The increase of CO2 content in the atmosphere has become a 

serious problem around the world and the measurement of CO2 concentration is 

critical in various advanced technologies, such as air conditioning, agriculture, 

biological technology and medical services. Furthermore, monitoring of the CO2 

concentration in atmosphere is also important for environmental monitoring since the 

CO2 concentration in atmosphere has been increasing for decades and has brought 

about atmosphere warming (Ishihara et al., 1995, Jio et al., 2002).  Infrared 
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