EFFECTS OF MYCORRHIZAL INOCULATION ON GROWTH OF ACACIA SPP. PLANTED ON BEACH RIDGES INTERSPERSED WITH SWALES (BRIS) SOILS IN SETIU, TERENGGANU, MALAYSIA

PATAHAYAH MANSOR

FH 2012 28
EFFECTS OF MYCORRHIZAL INOCULATION ON GROWTH OF ACACIA SPP. PLANTED ON BEACH RIDGES INTERSPERSED WITH SWALES (BRIS) SOILS IN SETIU, TERENGGANU, MALAYSIA

By

PATAHAYAH MANSOR

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

February 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF MYCORRHIZAL INOCULATION ON GROWTH OF ACACIA SPP. PLANTED ON BEACH RIDGES INTERSPERSED WITH SWALES (BRIS) SOILS IN SETIU, TERENGGANU, MALAYSIA

By

PATAHAYAH MANSOR

February 2012

Chairman: Associate Professor Mohamad Azani Alias, PhD

Faculty: Forestry

Problematic soils such as Beach Ridges Interspersed Swales (BRIS) can be rehabilitated through planting of fast-growing and non site-demanding tree species. BRIS is an excessively drained soil, dominated by sand and has higher surface soil temperature, thus only selected species with the ability to tolerate harsh conditions can survive planting with minimal tending input on this site. Acacia species is one the best candidates for planting in such soil conditions and environments. It has the capability to fix the atmospheric nitrogen through root nodules and its roots can also form association with both ectomycorrhiza (ECM) and endomycorrhiza (AM).

A 2.0-ha planting trial of Acacia spp. consisting of Acacia mangium, A. auriculiformis and the hybrid of both species, was established on Jambu series soil in Setiu, Terengganu, Malaysia. The aims of this trial were to determine the most suitable species of Acacia and the best mycorrhizal treatment for planting on BRIS soils. The trial consisted of four treatments i.e., T1-arbuscular mycorrhiza (AM)
inoculum application, T2-ectomycorrhizal inoculum (ECM) application, T3-AM + ECM application and T4-uninoculated control. All treatments were replicated four times. Survival rate and total height of the plants were monitored at three monthly intervals for the first year and at six-monthly interval thereafter up to 48 months. During the final measurement at 48 months, 48 plants, which represented 4 plants for each treatment, were destructively harvested for determination of biomass accumulation and nutrient uptake. Soil and root samples from each plot were also sampled for mycorrhizal assessment.

At one year after planting, the relative growth rate of *A. mangium* was significantly (p<0.05) higher compared to the other two species. *A. mangium* showed best performance when arbuscular mycorrhiza was applied to, either in single or combination with ectomycorrhiza. However, growth of *A. auriculiformis* and *Acacia* hybrid were improved with the application of ectomycorrhiza. After 48 months out-planted, the *Acacia* hybrid showed the significantly (p<0.05) highest mean height followed by *A. auriculiformis* and *A. mangium*. The average mean height for the *Acacia* hybrid, *A. auriculiformis* and *A. mangium* were 711 cm, 453 cm and 390 cm respectively.

Based on the chemical analysis of the foliage, the level of macronutrient concentrations were almost equal for all treatments except for N. Higher N concentration was observed in *A. mangium* of all treatments. This could be the influence from nitrogen fixing ability, which we expect to differ for each species.

Root of inoculated AM showed the persistence of AM fungi in the plant roots and occurrence of AM fungal spores in the rhizosphere. The AM colonization found to
be highest on *A. mangium* root and the spores were most abundance in the *A. mangium* rhizosphere, which ranged from 18 to 50 spores per 100g soil. However, no ECM presence was detected on roots of all treatments.

The mean total biomass was highest in *Acacia* hybrid, but comparable for *A. mangium* and *A. auriculiformis*. Total biomass for *Acacia* hybrid, *A. mangium* and *A. auriculiformis* were ranged from 23.65 kg to 31.21 kg, 11.76 kg to 15.79 kg and 8.69 kg to 16.21 kg, respectively. The biomass distribution in the plant parts for all species found to concentrated most in the stem, followed by the root, branches and the least in the leaves. The stem biomasses of all species ranged from 38.3 to 49.6 %.

Nutrient uptake was calculated based from the biomass accumulation. The nutrient uptake for all elements (N, P, K, Ca and Mg) was highest in *Acacia* hybrid and the dual mycorrhizal (ECM and AM) application found to significantly (p<0.05) enhanced the uptake of N, P and K in this species.

In conclusion, based on the study, *Acacia* hybrid showed the best growth performance followed by *A. mangium* and *A. auriculiformis* when planted on BRIS soil. Different *Acacia* species however, showed different response towards different mycorrhizal inoculum. *A. mangium* performed best when applied with arbuscular mycorrhizal inoculum while application of ectomycorrhizal inoculum and combination of ectomycorrhiza and arbuscular mycorrhizas to *A. auriculiformis* and *Acacia* hybrid would improve their growth in BRIS soil. Therefore, the application mycorrhizas in plantation of forest tree species especially in the problematic and
degraded soil are recommended. However, further study should be conducted to select the best mycorrhizal strain to be used and compatible with the tree host.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN INOKULASI MIKORIZA KE ATAS PERTUMBUHAN ACACIA SPP. YANG DITANAM DI ATAS TANAH BRIS (BEACH RIDGES INTERSPERSED WITH SWALES) DI SETIU, TERENGGANU, MALAYSIA

Oleh

PATAHAYAH MANSOR

Februari 2012

Pengerusi : Profesor Madya Mohamad Azani Alias, PhD

Fakulti : Perhutanan

Tanah bermasalah seperti tanah BRIS (Beach Ridges Interspersed with Swales) boleh dipulihkan melalui penanaman spesis pokok cepat tumbuh dan menuntut tapak yang baik untuk pertumbuhan. BRIS adalah tanah yang berlebihan disalirkan, didominasi oleh pasir dan mempunyai permukaan suhu tanah tinggi, sekaligus hanya spesis tertentu sahaja yang sesuai ditanam yang mana mampu bertoleransi dengan keadaan persekitaran yang melampau dan input penjagaan yang minima. Spesis dari kumpulan Akasia merupakan calon terbaik untuk ditanam di tanah dan persekitaran seperti ini. Ia mempunyai keupayaan untuk menetapkan nitrogen dari atmosfera melalui nodul akar dan akarnya juga boleh membentuk persatuan dengan kedua-dua jenis ekto- (ECM) dan endomikoriza (VAM).

Satu percubaan seluas 2.0 hektar penanaman Acacia spp. yang terdiri daripada Acacia mangium, A. auriculiformis dan hibrid antara kedua-dua spesis tersebut (Acacia hybrid), telah ditubuhkan pada tanah siri Jambu di Setiu, Terengganu.
Tujuan percubaan ini adalah untuk menentukan spesis Akasia yang paling sesuai untuk ditanam dan rawatan mikoriza yang terbaik untuk penanaman di tanah BRIS. Percubaan ini melibatkan empat rawatan mikoriza iaitu, T1-aplikasi mikoriza arbuskular (VAM) sahaja, T2- aplikasi ektomikoriza (ECM) sahaja, T3-aplikasi kombinasi VAM + ECM dan T4-kawalan (tanpa inoulasi). Semua rawatan diulang sebanyak empat kali. Kadar kemandirian dan pertumbuhan seperti tinggi dan diameter dipantau pada setiap 3 bulan untuk tahun pertama dan pada selang enam bulan selepas itu hingga ke 48 bulan. Semasa pengukuran akhir pada umur 48 bulan, sebanyak 48 pokok, yang mana mewakili 4 pokok dari setiap rawatan, telah ditebang untuk penentuan biojisim dan penyerapan nutrien. Tanah dan akar dari setiap plot juga disampel untuk penilaian mikoriza.

Satu tahun selepas di tanam, A. mangium menunjukkan kadar pertumbuhan relatif yang lebih tinggi dan bererti (p<0.05) berbanding A. auriculiformis dan Acacia hybrid. A. mangium menunjukkan prestasi yang terbaik apabila mikoriza arbuskular (VAM) telah digunakan, samada secara tunggal atau kombinasi dengan ektomikoriza. Walau bagaimanapun, A. auriculiformis dan Acacia hybrid telah menunjukkan peningkatan pertumbuhan dengan adanya aplikasi ektomikoriza (ECM). Selepas 48 bulan, Acacia hybrid telah menunjukkan purata ketinggian yang bererti (p<0.05), diikuti A. auriculiformis dan A. mangium. Purata ketinggian bagi Acacia hybrid, A. auriculiformis dan A. mangium ialah 711cm, 453cm dan 390cm masing-masing.

Berdasarkan analisis kimia daun, tahap kepekatan makronutrien hampir sama rata untuk semua rawatan kecuali N. Kepekatan N yang tinggi dapat diperhatikan dalam
A. mangium pada semua rawatan. Ini mungkin pengaruh daripada kemampuan penetapan nitrogen yang dijangka berbeza untuk setiap spesis.

Akar yang diinokulasi AM menunjukkan kehadiran AM dalam akar pokok dan kewujudan spora AM di tanah sekitaran akar. Kolonisasi AM didapati tertinggi pada akar A. mangium dan spora juga paling banyak dalam tanah sekitaran akar A. mangium dengan julat 18 hingga 50 spora setiap 100g tanah. Walaubagaimanapun, tiada kehadiran ECM dikesan pada akar bagi semua rawatan.

Purata jumlah biojisim tertinggi didapati pada Acacia hybrid, tetapi hampir menyamai bagi A. mangium dan A. auriculiformis. Purata jumlah biojisism bagi Acacia hybrid, A. mangium dan A. auriculiformis adalah dalam julat 23.65 kg ke 31.21 kg, 11.76 kg ke 15.79 kg dan 8.69 kg ke 16.21 kg, masing-masing. Taburan biojisim bagi setiap pokok untuk semua spesis didapati tertumpu pada bahagian batang, diikuti oleh akar, ranting dan paling sedikit pada daun. Biojisim batang bagi semua spesis adalah dalam julat 38.3 ke 49.6 %.

Penyerapan nutrien dikira berdasarkan pada pengumpulan biojisim. Penyerapan nutrien untuk N, P, K, Ca dan Mg adalah tertinggi dalam Acacia hybrid dan kombinasi aplikasi dua mikoriza (ECM dan AM) ditemui dengan bererti (p<0.05) meningkatkan penyerapan N, P dan K dalam spesis ini.

Kesimpulannya, berdasarkan kajian ini, Acacia hybrid menunjukkan pertumbuhan yang terbaik diikuti oleh A. mangium dan A. auriculiformis apabila ditanam ditanah BRIS. Walaubagaimanapun, spesis Akasia yang berlainan, menunjukkan tindakbalas
yang berbeza terhadap inokulum mikoriza yang berlainan. *A. mangium* menunjukkan
pertumbuhan terbaik dengan aplikasi AM manakala aplikasi ECM dan kombinasi
AM dan ECM pada *A. auriculiformis* dan *Acacia* hybrid membantu memperbaiki
pertumbuhan mereka di tanah BRIS. Oleh itu, aplikasi mikoriza untuk perladangan
pokok hutan terutamanya di tanah bermasalah dan terdegradasi adalah disyorkan.
Walaubagaimanapun, kajian lanjut perlu dijalankan bagi memilih jenis mikoriza
yang terbaik dan sesuai dengan pokok perumah.
ACKNOWLEDGEMENTS

Alhamdulillah, and praise to Allah the Almighty, by whose Grace and Permission that I was able to complete this thesis.

I would like to express my sincere gratitude to my Supervisory Committee Chairman Assoc. Prof. Dr. Mohd. Azani Alias of the Faculty of Forestry, Universiti Putra Malaysia (UPM) for being helpful, patient and constructive in guiding me to complete this work. My thanks are also due to my committee member for his invaluable guidance and advice, Assoc. Prof Dr. Mohd. Zaki Hamzah of Faculty of Forestry, UPM. This appreciation also goes to Dr. Ab. Rasip Ab. Ghani, Dr. Lee Su See and Dr Wan Rasidah Abd Kadir from Forest Research Institute Malaysia.

My acknowledgment is also extended to Dr. Abd. Rahman Kassim of Forest Management and Ecology, FRIM and Dr. Victor Neto of Faculty of Forestry, UPM for their assistance in data analysis.

I also like to thank the staffs of Mycology and Pathology Unit, and Soil Chemistry Unit, FRIM for helping me in the data collection and during my laboratory works. My thanks are also due to Rosazlin Abdullah, Mohd Fakhri Ishak, Siti Munawarah Abd. Hafid, Dr. Mohd. Farid Ahmad, Nor Azlin Mohd. Fauzi, Khairul, Hazlina and several other individuals from the Faculty of Forestry and FRIM who has contributed in one way or another to this work.
The financial support from Ministry of Natural Resources and Environment and IRPA grants (Grant No. 01-02-04-0056-EA001) from the Ministry of Science, Technology and Environment is all deeply appreciated, without which this study could not have been carried out successfully.

Last but not least, my deepest thanks to my husband Rosdi, and my lovely children, Muhammad Hafidz, Muhammad Haziq, Muhammad Hakeem, Muhammad Haris and Nureen Asiah and all family members both in Kedah and Terengganu for their constant love, guidance, encouragement and continuous prays.
I certify that a Thesis Examination Committee has met on 23rd February 2012 to conduct the final examination of Patahayah Mansor in her thesis entitled “Effects of Mycorrhizal Inoculation on Growth of Acacia spp. Planted on Beach Ridges Interspersed With Swales (BRIS) Soils in Setiu, Terengganu, Malaysia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Ahmad Ainuddin b. Nuruddin, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Azmy b. Mohamed, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
/Internal Examiner

Mohd Nazre Saleh @ Japri, PhD
Faculty of Forestry
Universiti Putra Malaysia
/Internal Examiner

Aminuddin Mohamad, PhD
Professor
International School of Forestry
Universiti Malaysia Sabah
Malaysia
/External Examiner

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28th June 2012
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohamad Azani Alias, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Mohd Zaki Hamzah, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

PATAHAYAH MANSOR

Date: 23 February 2012
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 6

2.1 BRIS Soils 6
2.1.1 The Formation of BRIS Soils 7
2.1.2 Classification of BRIS Soils 8
2.1.3 BRIS Soil Characteristics 9
2.1.4 Planting Activities on BRIS Soils 10

2.2 The Mycorrhizas 12
2.2.1 Mycorrhizal Types 12
2.2.2 The Ectomycorrhizae 13
2.2.3 The Endomycorrhizae 14

2.3 Factors Affecting Mycorrhizal Development in Root and Soils 15
2.3.1 Soil Physical Properties 16
2.3.2 Soil Chemical Properties 17
2.3.3 Soil Biological Properties 19

2.4 Effect of Mycorrhizal on Plant 20
2.4.1 Nutrient Release and Uptake 20
2.4.2 Effect of Mycorrhiza on Plant Growth 21
2.4.3 Mycorrhizas as Biological Protector 23
2.4.4 Soils Water Uptake by Plants 23
2.4.5 Soil Physical Properties 24

2.5 Background of Planted Species 25
2.5.1 Acacia mangium Willd. 26
2.5.2 Acacia auriculiformis Ex. Cunn. Ex Bath 27
2.5.3 Acacia hybrid 28

2.6 Acacia and Their Symbiotic Associations 30
2.6 Mycorrhizal Research and Application in Forestry 31
3 MATERIALS AND METHODS
3.1 Background of the study site 34
 3.1.1 Vegetation 36
3.2 Preparation of Planting Stocks 37
3.3 Preparation of Planting Media 38
3.4 Fungal Inoculum 38
 3.4.1 Ectomycorrhizal Inoculum 38
 3.4.2 Arbuscular Mycorrhizal Inoculum 39
3.5 Experimental Design 40
3.6 Planting 42
3.7 Mycorrhizal Root Infection and Spore Count 42
 3.7.1 Percentage of AM Colonisation 42
 3.7.2 AM Spore Count 43
 3.7.3 ECM Root Infection 43
3.8 Growth Measurement 44
3.9 Root Sampling 44
3.10 Biomass Determination 45
3.11 Chemical Analysis of Soil and Plant Tissue 46
3.12 Data Analysis 47

4 RESULTS AND DISCUSSION
4.1 Climate 48
4.2 Soil Properties 49
4.3 Effect of Mycorrhizal Inoculation on Soil Mycorrhizal Properties 50
 4.3.1 Root Colonisation 50
 4.3.2 Mycorrhizal Spores in Soils 56
4.4 Effect of Mycorrhizal on Plant Growth 58
 4.4.1 Survival Rate 58
 4.4.2 Height 60
 4.4.3 Diameter 63
 4.4.4 Plant Biomass 69
4.5 Effect of Mycorrhiza on Soil Chemical Properties 73
4.6 Effect of Mycorrhizal Inoculation on Nutrient Content and Uptake by Plant 74
 4.6.1 Foliar Chemical Content 74
 4.6.2 Plant Nitrogen Concentration and Uptake 76
 4.6.3 Plant Phosphorus Concentration and Uptake 79
 4.6.4 Plant Potassium Concentration and Uptake 80
 4.6.5 Plant Calcium Concentration and Uptake 81
 4.6.6 Plant Magnesium Concentration and Uptake 82

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 84

REFERENCES 88
APPENDICES 98
BIODATA OF THE STUDENT 99
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The characteristics of seven mycorrhizal types</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Arbuscular mycorrhizal spore abundance per 100g soil in the four blocks and arbuscular mycorrhizal root infection rate in the different acacia species given different mycorrhizal treatment- T1: arbuscular mycorrhizal (AM) inoculum application only, T2: ectomycorrhizal inoculum (ECM) application only, T3: AM+ECM application and T4: uninoculated control)</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean total height (hₜ) and percentage survival of Acacia spp. on BRIS soil with different mycorrhizal treatments (T1: treated with ectomycorrhizas inoculum, T2: treated with arbuscular mycorrhizas, T3: treated with combination of arbuscular and ectomycorrhizas inoculum, and T4: without any mycorrhizal treatment) 1-year after planting on BRIS soil at Setiu, Terengganu</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>F-ratios for main effects and interactions from an analysis of variance due to mycorrhizal treatment and block effect on the relative growth rates of Acacia auriculiformis, A. mangium and Acacia hybrid up to 48 months</td>
<td>61</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean root, stem branches and total biomass of Acacia spp. on BRIS soil with different mycorrhizal treatments (T1: treated with ectomycorrhizas inoculum, T2: treated with arbuscular mycorrhizas, T3: treated with combination of arbuscular and ectomycorrhizas inoculum, and T4: without any mycorrhizal treatment) 48 months after planting on BRIS soil at Setiu, Terengganu</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Chemical properties of the the BRIS soils at Setiu, Terengganu and of the fully composted mesocarp fiber used in the experiment before planting (n.a. data not available)</td>
<td>74</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean foliage nutrients concentration levels of mycorrhizal and non-mycorrhizal treated Acacia spp</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>F-ratios for main effects and interactions from an analysis of variance due to mycorrhizal treatment and block effect on nutrients (N,P,K, Ca, Mg) uptake of Acacia auriculiformis, A. mangium and Acacia hybrid</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>An ectomycorrhizal morphotype of Acacia (left) and a cross-section of ectomycorrhizal root tip showing fungal mantle and Hartig net (right)</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Map showing the location of FRIM Sub-station and the research plot in Setiu, Terengganu, Peninsular Malaysia</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>A 17 year-old stand of A. auriculiformis on BRIS soil at FRIM’s Setiu Sub-station</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Layout of sub-plot in a block and the treatment combination arrangement</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Layout of the study plots and location of each replicate in the study site</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean annual rainfall at FRIM’s Setiu Sub-station during 2003-2010. Data was missing for the year 2009 due to technical problem of the data logger</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>The soil profile of the Jambu Series in FRIM sub-station, Setiu, Terengganu</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Presence of the vesicles of VAM in A. mangium stained root treated with T1 (VAM only)</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Absence of AM in A. mangium stained root with treated with T4 (Control)</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Root sectioning of A. mangium showed the absent of ectomycorrhizal infection.</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Root showing the presence of Tomentella ectomycorrhizas, with brown root tips</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>Root showing the presence of Tomentella ectomycorrhizas, on Acacia hybrid of T2 treatment</td>
<td>54</td>
</tr>
<tr>
<td>4.8</td>
<td>Two AM viable spores (shown in arrow) recorded from soil rhizosphere under Acacia spp. planted on Bris Soil.</td>
<td>57</td>
</tr>
</tbody>
</table>
4.9 Height Increment of the three Acacia spp. with different mycorrhizal treatments (T1: treated with arbuscular mycorrhizas, T2: treated with ectomycorrhizas inoculum, T3: treated with combination of arbuscular and ectomycorrhizas inoculum, and T4: without any mycorrhizal treatment) 1-year after planting on BRIS soil at Setiu, Terengganu

4.10 Mean height of the three Acacia spp. with different mycorrhizal treatments (T1: treated with arbuscular mycorrhizas, T2: treated with ectomycorrhizas inoculum, T3: treated with combination of arbuscular and ectomycorrhizas inoculum, and T4: without any mycorrhizal treatment) 48 months after planting on BRIS soil at Setiu, Terengganu

4.11 Mean diameter at breast height (dbh) of the three Acacia spp. with different mycorrhizal treatments (T1: treated with arbuscular mycorrhizas, T2: treated with ectomycorrhizas inoculum, T3: treated with combination of arbuscular and ectomycorrhizas inoculum, and T4: without any mycorrhizal treatment) 48 months after planting on BRIS soil at Setiu, Terengganu.

4.12 A. mangium, six months after out-planted

4.13 A. mangium 48 months after out-planted

4.14 A. auriculiformis, six months after out-planted

4.15 A. auriculiformis 48 months after out-planted

4.16 Acacia hybrid 48 months after out-planted

4.17 Biomass distribution (in percentage) in plant part of Acacia spp.

4.18 Total biomass distribution (in kg) in plant part of Acacia spp.

4.19 N uptake by three Acacia spp. inoculated with different mycorrhizal treatment

4.20 P uptake by three Acacia spp. inoculated with different mycorrhizal treatment

4.21 K uptake by three Acacia spp. inoculated with different mycorrhizal treatment

4.22 Ca uptake by three Acacia spp. inoculated with different mycorrhizal treatment

xix
4.23 Mg uptake by three *Acacia* spp. inoculated with different mycorrhizal treatment
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>asl</td>
<td>Above Sea Level</td>
</tr>
<tr>
<td>AM</td>
<td>Arbuscular mycorrhiza</td>
</tr>
<tr>
<td>Anon</td>
<td>Anonymous</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BRIS</td>
<td>Beach Ridges Interspersed with Swales</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>cec</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>dbh</td>
<td>Diameter at Breast Height</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>ECM</td>
<td>Ectomycorrhiza</td>
</tr>
<tr>
<td>FAO</td>
<td>Food Agriculture Organization</td>
</tr>
<tr>
<td>FDPM</td>
<td>Forestry Department Peninsular Malaysia</td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest Research Institute Malaysia</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GLM</td>
<td>Generalized Linear Model</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>K</td>
<td>Kalium/Potassium</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>KOH</td>
<td>Kalium hydroxide/potassium hydroxide</td>
</tr>
<tr>
<td>m³</td>
<td>Cubic meter</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The current major issue in Malaysian forestry is the environmental issue. An adverse effect of massive forested land conversion to agriculture, together with up stream logging, constitutes one of the two challenges. Depletion of wood resources represents the second major issue in Malaysian forestry. Various industry analyst and researchers have forecast that in the post-2000 period Malaysia will suffer a deficit in log supply, compared to the demand for logs from timber processing industries (FAO, 1997). It is expected that there will be a likely average shortfall of about 3.85 million m³ per year from 2006 onward (FAO, 2005).

Forestry Department of Peninsular Malaysia (FDPM) has devised few strategies in order to make up for the impending deficit in timber production. They are, first, to carry out silvicultural treatments in logged over areas at a rate consistent with the annual logging rate; second, to treat and regenerate all previously logged areas and third, to set up forest plantations using fast growing quality timber tree species over short-term rotations of about 15 years.

With the timber supply crisis looming ahead, it was felt that Malaysia should concentrate on few selected species in order to ensure the success of its forest plantation programme. Malaysia had identified forest plantation development as a viable and sustainable method to produce high-value commercial timber to supplement the raw material requirement of the wood based processing industry in
the country (Anonymous, 2008). Therefore a task force has been initiated by the
Ministry of Plantation Industries and Commodities to oversee and streamline the
programme. The technical Committee is responsible for providing comprehensive
technical advice to the private sector pertaining the species for plantation
programme.

There are more than 40 forest trees species have been identified to have potential for
forest plantation purposes. Of the total, 14 species have been short-listed for forest
plantation project based on timber and fiber utilization aspects, i.e. for furniture,
general utility, specific uses and reconstituted wood. Among those 14 species, eight
were identified as suitable for the forest plantation programme namely Malaysian
Rubberwood (*Hevea brasiliensis*), *Acacia* spp. (*Acacia* hybrid), African Mahogany
(*Khaya ivorensis/Khaya senegalensis*), Teak (*Tectona grandis*), Sentang
(*Azadirachta excelsa*), Kelempayan (*Neolamarckia cadamba*), Batai (*Paraserianthes
falcataria*) and Binuang (*Octomeles sumatrana*) (MTIB, 2010).

The Government through the Malaysian Timber Industry Board (MTIB) has
established a Special Purpose Vehicle (SPV) to coordinate a funding scheme which
will attract more investors to plant forest trees. A strategic forest plantation
programme embarked in 9th Malaysian Development Plan (9MP) eventually allow an
annual harvest of at least 25,000 hectares of timber, based on projection of a 15 year
rotation, from 2022 onward. This is to ensure the availability of raw materials
particularly sawn timber for the benefit of the wood industry. From the 25,000
hectares, it is projected that 5 million cubic meter of wood can be harvested
annually. To implement this programme, about 2.8 million hectares of land area in
Malaysia have been identified to become potential forest plantation area. This included the state lands and degraded soils area. Planting trees or rehabilitation of highly degraded forest sites is a part of forestry activities undertaken to fulfill Sustainable Forest Management in Malaysia (Malaysian Timber Council, 2007).

Degraded land areas would be reforested and under-stocked forests would be line planted. A lot of degraded or under-utilized land is found in the country and it was estimated about 2% of Malaysia’s land area. A total of 153,900 ha of degraded forest land in the country have been identified for the purpose of forest plantation. This potential land included the marginal soils of ex-tin mining land, shifted cultivation areas and BRIS (Beach Ridges Interspersed with Swales) soils.

It is estimated that about 162,000 ha of Peninsular Malaysia is covered with BRIS soil. This soil has very limited usage for agriculture due to high percentage of sand fractions which exceed 95% and high soil surface temperature, ranging from 40 °C to 50 °C (Abdul Wahab, 1984). This soil is inherently poor in nutrients due to the low percentage of clay and organic materials. Very little progress has been made to rehabilitate BRIS soil except for some work by Malaysian Agriculture Research and Development Institution (MARDI) and Forest Research Institute Malaysia (FRIM) lately. It is estimated that only 5-10% of this land area is being utilized, with the majority being left idle. One means to rehabilitate these soils is by planting pioneer, fast growing timber tree species, which can tolerate with the harsh conditions before the introduction of other high value commercial timber species.
As referred to Parrotta et al. (1997), the choice of fast growing timber trees should meet certain criteria. The species preferred should have regularly available seeds, rapid growth over a short rotation, can be easily handled in the nursery, low maintenance cost, and high tolerance to poor soil and relatively free from pest and disease (Appanah and Weinland, 1993). Among those tree species, tree from the Leguminosae family was chosen. This is because species of this family group, beside their economic potential, they are obviously has potential for rapid biomass production and useful for the reclamation of degraded land.

The ability of the leguminous species to grow in such harsh soils, where nutrients, particularly nitrogen and phosphorus are deficient may be attributed to their dual symbiosis with the nitrogen fixing bacteria (rhizobia) and mycorrhizal fungi (De La Cruz and Yantasath, 1993). Rhizobia are soil micro-organisms found in root nodules of leguminous trees and plants that can fix atmospheric nitrogen, while mycorrhizas benefits trees by enhancing absorption of nutrients from soils, reducing the effects of stress related to drought and transpiration. Many nitrogen fixing tree species depend on mycorrhizas for absorbing nutrients required for plant growth and efficient nitrogen fixation.

Acacias, a group of Leguminous, are known to form both vesicular-arbuscular mycorrhizas (AM) as well as ectomycorrhizas. This tree-mycorrhizal association has been successfully used in rehabilitating degraded sites, such as Imperata grassland in the Philippine (De la Cruz and Garcia, 1992), arid zones in India (Mukerji and Dixon, 1992), ex-nickel mine sites in Indonesia (Setiadi, 1996) and sandy tin tailings in Malaysia (Nik Muhamad and Azizah, 1994; Patahayah et al., 2011). The Forest
Research Institute Malaysia (FRIM) currently has also set up a study to rehabilitate ex-tin mining land using ectomychorrizas with Acacia and Dipterocarp species (Patahayah et al., 2011) but no such study has been carried out on BRIS soil.

The establishment of fast growing timber species requires high availability of soil nutrient, especially at the initial stage of growth. This condition opens avenue for the application of mycorrhizal fungi to promote plant growth and survival. Thus, the presence of mycorrhizal fungi as biofertiliser is highly recommended.

Therefore, mycorrhizas can play an important role in the establishment of forest plantations on degraded sites such as BRIS soils. However in most cases, successful application of mycorrhizal fungi still require a better understanding of the mechanisms regulating the interactions between the host plants and fungi in situ. In view of the importance of tree planting on BRIS soil and the benefits of mycorrhizas on plant growth, the following studies were conducted;

1. To determine the best Acacia species (A. mangium, A. auriculiformis and Acacia hybrid (A. mangium x A. auriculiformis) to be planted on BRIS soils
2. To determine the effects of mycorrhizal application on growth and nutrient uptake of Acacia species.
REFERENCES

Estaun, M.V. 1991. Effects of NaC1 and Mannitol on the germination of two isolates of the vesicular arbuscular Mycorrhizal fungus *Glomus mossae*, Abstract In *European Symposium on Mycorrhizas*, University of Sheffield, U.K

Tropical Rainforest Ecosystems: Research and Development Priorities. 66-82. Kuching, Sarawak.

PROSEA. 1995. *Plant Resources of South-East Asia 5 (2).* Timber Trees: Minor Commercial Timbers. 655 pp

Setiadi, Y. 1996. The practical application of arbuscular mycorrhizal fungi for enhancing tree establishment in degraded nickel mine sites at PT INCO, Soroako. Paper presented on IUFRO international Symposium on Accelerating Natural succession of Degraded Tropical Lands. 11-13 June. Washington DC.

