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The potential health benefits of carotenoids, in particular as anticancer and 

antioxidant agents, have recently been highlighted.  Extensive studies have been 

conducted to elucidate the plant carotenoid pathway. Oil palm is known to be the 

richest natural source of carotene. However, to date, there has been no work carried 

out to elucidate the pathway in this species. The lack of the knowledge could 

restrain the potential advantages of the plant for further improvement through 

genetic modifications. This work is the first effort towards the understanding of the 

oil palm carotenoid biosynthesis pathway. The aim was to isolate cDNA clones 

encoding the oil palm lycopene β-cyclase (LCYb), lycopene ε-cyclase (LCYe), 

phytoene dusaturase (PDS) and zeaxanthin epoxidase (ZEP). The first two enzymes 

have been suggested to have a regulatory control over the formation of carotene. 

Thus, their genes are believed to have an important and urgent biotechnological 

application. Fragments containing partial sequences of these genes were 

successfully generated through reverse transcriptase polymerase chain reaction 

(RTPCR) using degenerate primers. The complete DNA sequence of these 
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fragments were determined. Primers were then designed based on these sequences 

to facilitate the amplification of the 3’ and 5’ end regions of the transcripts. Both 

ends were successfully obtained for both cyclases. A consensus sequence of 1962 

bp and 1759 bp was generated for oil palm lcye and lcyb, respectively. An open 

reading frame (ORF) of 1617 bp encoding 539 amino acid (AA) residues was 

identified for lcye. Similarly, an ORF of 1509 bp encoding for 503 AA residues was 

also identified for lcyb.  Deduced AA sequences were shown to be highly identical 

to their respective counterparts from other plants at about 80% identity. Although 

the enzymes were functionally equivalent, they were shown to share little 

resemblance at about 30% identity. However, oil palm LCYb was shown to share a 

relatively high identity to plant neoxanthin and capxanthin-capsorubin synthases, 

suggesting the common ancestor of the cyclases and synthases.  

   

RTPCR amplifications using degenerate primers were also successfully used to 

generate fragments of 865 bp and 567 bp for oil palm pds and zep, respectively. 

Subsequently, the deduced AA sequence for both fragments was identified based on 

comparison to peptide sequences of their counterparts from other plants. Both oil 

palm PDS and ZEP were shown to be highly identical to their respective 

counterparts from other plants at about 85%.   

 

The regulation of these four carotenogenic genes as well as phytoene synthase was 

studied in developing mesocarp tissues using real-time PCR analysis. The results 

indicated that all of the carotenogenic genes were expressed at a low level in the 

tissues tested. psy and pds were shown to be expressed at a relatively higher level in 

young and late developing mesocarp tissues, as well as in leaves. A similar 
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expression level was observed for the cyclases, although at a relatively lower level 

than the psy and pds level. Nevertheless, the expression of these genes seemed to be 

correlated and thus believed to be regulated for the accumulation of carotenoids in 

the tissues both for developmental process and storage.  

 

The copy number of the two oil palm cyclase genes was examined using Southern 

analysis. The results indicated that there was at least one of the restriction enzymes 

used gave a single hybridized band. This finding strongly suggested that the two 

cyclase genes are present in a single copy in oil palm.   

 

In conclusion, the full length cDNAs coding for lycopene β-cyclase and lycopene ε-

cyclase and partial cDNAs for phytoene desaturase and zeaxanthin epoxidase were 

successfully obtained and characterized. This work provides the required genetic 

material for the modification of oil palm carotenoid content, especially for the 

production of high lycopene transgenic oil palm. Furthermore, the results of the 

expression study provide very valuable information for formulating an effective 

strategy for oil palm carotenoid genetic engineering especially toward the increase 

of lycopene by down-regulating the two cyclase genes. 

 

 

 

 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 
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Karotenoid merupakan sebatian semulajadi yang dianggap berpotensi sebagai agen 

antikanser dan antioksidan. Banyak kajian telah dijalankan untuk memahami tapak 

jalan sintesis karotenoid di dalam tumbuhan. Buah sawit merupakan sumber asli 

yang terkaya dengan karoten. Walaubagaimanapun, tidak terdapat banyak kajian 

yang dijalankan untuk memahami tapak jalan sintesis karotenoid di dalam species 

ini. Ini pastinya akan menyebabkan kesukaran untuk mengeksplotasi kelebihan 

yang terdapat pada tumbuhan ini untuk penambahbaikan melalui kejuruteraan 

genetik. Justeru, kajian ini merupakan usaha pertama untuk memahami tapak jalan 

sintesis karotenoid sawit. Kajian ini bertujuan untuk memencilkan klon cDNA yang 

mengkod enzim likopen β-siklase (LCYb) dan likopen ε-siklase (LCYe) serta 

fitoene desaturase (PDS) dan zeaxanthin epoksidase (ZEP) daripada sawit. Kedua-

dua likopen siklase tersebut dipercayai penting dalam pengawalaturan biosintesis  

karoten.  Amplifikasi RTPCR menggunakan pencetus degenerasi telah berjaya 

menjana serpihan yang mengandungi jujukan separa gen-gen tersebut. Jujukan 

lengkap DNA klon-klon tersebut telah diperolehi. Pencetus-pencetus untuk 

amplifikasi kawasan hujung 3’ dan hujung 5’ kemudiannya dihasilkan berdasarkan 

jujukan DNA yang diperolehi. Kedua-dua kawasan hujung telah berjaya 
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diamplifikasi untuk kedua-dua likopen siklase. Kombinasi jujukan DNA daripada 

ketiga-tiga serpihan telah berjaya menjana jujukan konsensus untuk lcye dan lcyb 

yang masing-masing bersaiz 1962 pb dan 1759 pb. Rangka bacaan terbuka (ORF) 

yang bersaiz 1617 pb dan 1509 bp telah dikenalpasti masing-masing untuk lcye dan 

lcyb. Terjemahan ORF tersebut menghasilkan jujukan peptida yang bersaiz 539 

residu asid amino (AA) untuk lcye dan 503 residu AA untuk lcyb. Jujukan peptida 

kedua-dua gen menunjukkan tahap identiti yang tinggi iaitu melebihi 80% terhadap 

jujukan protein masing-masing daripada tumbuhan lain. Bagaimanapun, tahap 

persamaan di antara kedua-dua siklase sawit ini adalah rendah, iaitu pada tahap 

30% identiti, walaupun pada hakikatnya kedua-dua peptida tersebut mempunyai 

fungsi yang hampir serupa. Sebaliknya, jujukan LCYb sawit menunjukkan tahap 

identiti yang agak tinggi terhadap jujukan peptida neoxanthin dan kapxanthin-

kapsorubin sintase. Keputusan ini mencadangkan gen siklase dan sintase berasal 

dari leluhur yang sama.    

   

Amplifikasi RTPCR juga telah berjaya digunakan untuk menghasilkan serpihan 

untuk pds dan zep sawit yang masing-masing bersaiz 865 pb dan 567 pb. 

Berdasarkan jujukan AA daripada tumbuhan lain, jujukan terjemahan AA untuk 

kedua-dua klon tersebut telah dikenalpasti. Jujukan peptida separa untuk PDS dan 

ZEP sawit menunjukkan tahap identiti yang tinggi terhadap jujukan peptida enzim 

masing-masing daripada tumbuhan lain iaitu pada tahap 85%.   

  

Profil pengekspressan keempat-empat gen karotenoid di atas serta fitoene sintase 

sawit telah diperolehi menggunakan kaedah “real-time” PCR. Keputusan 

menunjukkan bahawa kesemua gen karotenoid sawit ini diekspres pada tahap yang 
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rendah. Bagaimanapun, gen psy dan pds diekspres pada tahap yang agak tinggi di 

dalam tisu mesokarpa yang muda dan pada peringkat lewat perkembangan, serta di 

dalam tisu daun. Tahap pengekspresan yang agak serupa juga diperolehi untuk 

kedua-dua gen siklase. Bagaimanapun, profil pengekspresan gen-gen tersebut 

adalah berkolerasi dengan kandungan karotenoid di dalam tisu-tisu tersebut. Ini 

menunjukkan pengawalaturan gen-gen tersebut di dalam penghasilan karotenoid 

untuk proses perkembangan dan pensetoran.     

 

Seterusnya, analisis penghibridan Southern telah dilakukan untuk menentukan 

salinan kedua-dua gen siklase di dalam sawit. Keputusan yang diperolehi 

menunjukkan sekurang-kurangnya satu daripada enzim pembatas yang digunakan 

menghasilkan satu jalur penghibridan. Ini menunjukkan kedua-dua gen ini 

berkemungkinan besar hadir sebagai salinan tunggal di dalam sawit. 

 

Sebagai kesimpulan, klon cDNA lengkap yang mengekod likopen β-siklase dan 

likopen ε-siklase serta klon separa untuk fitoene desaturase dan zeaxanthin 

epoksidase telah berjaya diperolehi dan dicirikan. Kajian ini telah berjaya 

menghasilkan bahan genetik yang diperlukan untuk pengubahsuaian kandungan 

karotenoid sawit, terutamanya untuk penghasilan sawit transgenik yang mempunyai 

kandungan likopen yang tinggi. Keputusan kajian profil pengekspresan gen-gen 

tersebut juga telah menyediakan maklumat yang penting untuk membangunkan 

strategi yang berkesan untuk meningkatkan kandungan likopen melalui penurunan 

pengekspresan kedua-dua gen likopen siklase.  
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CHAPTER 1 

 

INTRODUCTION 

  

Oil palm is the main commodity crop of Malaysia.  Since it was first introduced as a 

commercial crop in 1917, the planted area and palm oil production have 

continuously expanded and reached 4.17 million hectares (ha) and 15.88 million 

tones in 2006, respectively (Mohd Basri, 2007; Basiron and Chan, 2004b; Jalani et 

al., 2002). The palm oil industry has contributed continuously and significantly to 

the country’s economic development and foreign exchange earnings. In 2007, the 

total export value of palm oil and its products was recorded at RM 45.1 billion, 

representing 41.8% increase from the previous year (Basiron and Mohd Arif, 2005; 

Basiron and Chan, 2004a; Mohd Basri, 2008; Mohd Basri, 2007).  

 

Despite the strong contribution to the country’s economic development, Malaysian 

palm oil industry is facing several challenges. Among the immediate challenges are 

the decrease in land availability for further expansion and labor shortage (Khoo and 

Chandramohan, 2002; Cheah, 2000; Parveez et al., 2000; Sambanthamurthi et al., 

2000a). In addition, Malaysian palm oil industry is also faced with competition 

from other oils such as soybean oil, rapeseed oil and sunflower seed oil as well as 

other palm oil producers. The challenge for oil palm industry is to ensure the 

demand for its oil continues to increase. However, due to the fact that agriculture is 

one of the most protected and heavily subsidized industries, it will be difficult for 

palm oil to maintain its competitiveness and market share (Mohd Nasir et al., 2005; 

Basiron, 2001). Currently, the most prominent competitor for Malaysia palm oil 
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producers is Indonesia. Although the Indonesian palm oil industry was only recently 

established, it has shown an impressive expansion in both the cultivated areas and 

production. With the lower production cost and improvements in performance, the 

Indonesian oil palm industry is believed to be able to continue its expansion and 

emerge as the leading supplier of palm oil in the world market (Barlow et al., 2003).  

 

In the past, the competitive edge has been the driving force to the rapid growth and 

tremendous performance of the Malaysian palm oil industry. The factor will remain 

as a vital factor for its future development. Therefore, proper strategies should be 

put in place in order to meet the current challenges and to remain competitive in the 

future. The industry needs to increase its productivity, explore the opportunities to 

diversify its income base and widen the end-use base for palm oil. A 

straightforward and effective approach towards the productivity of the oil palm 

industry is to improve the oil yield for each unit planted area. In the past, the 

introduction of tenera hybrid as the commercial planting materials has been 

responsible for the 30% increase of the oil yield compared to dura (Soh et al., 

1994). Nevertheless, the level of oil palm productivity has been static for a 

considerable time period (Basiron, 2001; Baskett et al., 2007).  Thus, effort has to 

be vigorously made to improve the oil yield. Recent work through advanced 

breeding technology has been able to produce new tenera varieties with a higher oil 

yield potential (8 to 10 t/ha/yr). It is believed that further selection of newer elite 

duras and pisiferas derived from selected germplasm materials can further improve 

the tenera oil yield in the future (Jalani et al., 2002; Rajanaidu et al., 2007; Sharifah 

Shahrul Rabiah and Abu Zarin, 2007).  


