

UNIVERSITI PUTRA MALAYSIA

LAND SUITABILITY FOR RICE GROWING IN THE KLANG VALLEY USING GEOGRAPHICAL INFORMATION SYSTEM AND ANALYTICAL HIERARCHY PROCESS FOR URBAN FOOD SECURITY

SHAMSUL B. ABU BAKAR

FRSB 2007 2

LAND SUITABILITY FOR RICE GROWING IN THE KLANG VALLEY USING GEOGRAPHICAL INFORMATION SYSTEM AND ANALYTICAL HIERARCHY PROCESS FOR URBAN FOOD SECURITY

By

SHAMSUL B. ABU BAKAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2007

DEDICATION

To my parents, Abu Bakar Md Sap and Siti Zabedah Embi this thesis is dedicated to both of you. My beloved wife, Noora Shafei and son, Muhammad Nabeel Aiman, both of you are my greatest encouragement. Deepest thanks to my supervisors, Professor Dr Mustafa Kamal Mohd Shariff, Associate Professor Dr Ahmad Rodzi Mahmud and Dr Siva K. Balasundram for all the valuable guidance's and supports.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

LAND SUITABILITY FOR RICE GROWING IN THE KLANG VALLEY USING GEOGRAPHICAL INFORMATION SYSTEM AND ANALYTICAL HIERARCHY PROCESS FOR URBAN FOOD SECURITY

By

SHAMSUL ABU BAKAR

September 2007

Chairman: Professor Mustafa Kamal Mohd Shariff, PhD

Faculty: Design and Architecture

Klang Valley is the most rapidly growing region in terms of physical and economic development in Malaysia. It has a population of 4.07 million people, accounting for nearly 17.5 % of the total national population. Thus, a large amount of constant food supply is required to meet the population's demand. However, the current situation is that Klang Valley is heavily dependent on external sources of food supply. In the event of emergencies such as natural or man-made disasters, Klang Valley will face a high risk of disruption in food supply. The aim of this study is to identify and analyze potential rice cultivation areas as urban food reservoir within the highly urbanized Klang Valley.

By using Geographical Information System (GIS) and Analytical Hierarchy Process (AHP), a land suitability analysis for rice cultivation was carried out in this study area. To construct a rice suitability model, expert evaluation on criteria such as soil series, rainfall, topography, groundwater and strategic agriculture distances were evaluated based on weightage ranking. Those weightage were obtained by using a Pairwise Comparison Method and then converted into spatial values using ArcGIS 9 weighted overlay process.

Results indicated several areas within the Klang Valley having strategic potentials for rice growing. These areas are classified into three major classes - highly suitable, suitable and moderately suitable. The percentage of highly suitable area is 3504.35 ha (8.82 %), suitable areas 18793.28 ha (47.34 %) and moderately suitable areas 17403.02 ha (43.84%). The total areas suitable for rice growing is 39700.65 ha (14%) from the total size of Klang Valley.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESESUAIAN TANAH UNTUK PENANAMAN PADI DI LEMBAH KLANG MENGGUNAKAN SISTEM MAKLUMAT GEOGRAFI DAN PROSES ANALATIKAL HIERAKI UNTUK KESELAMATAN MAKANAN BANDAR

Oleh

SHAMSUL ABU BAKAR

September 2007

Pengerusi: Profesor Mustafa Kamal Mohd Sharif, PhD

Fakulti: Rekabentuk dan Senibina

Lembah Klang adalah merupakan kawasan perbandaran yang paling membangun dari segi fizikal dan juga ekonomi di Malaysia. Ia mempunyai populasi lebih dari 4.07 juta, iaitu 17.5% dari jumlah keseluruhan penduduk nasional. Oleh itu, keperluan makanan yang berterusan adalah amat diperlukan untuk memenuhi keperluan dan permintaan penduduk. Walaubagaimanapun, pada masa sekarang Lembah Klang amat bergantung dengan bekalan makanan yang dihasilkan di luar kawasan sempadan. Sekiranya berlaku kecemasan samada bencana alam ataupun akibat dari aktiviti manusia, Lembah Klang akan mengalami risiko utama kekurangan bekalan makanan yang amat tinggi. Tujuan kajian ini dilakukan adalah untuk menganalisis dan mengenalpasti kawasan yang sesuai untuk penanaman padi supaya ianya boleh dijadikan sebagai 'empangan' makanan di sekitar kawasan perbandaran di Lembah Klang

Dengan mengunakan Sistem Maklumat Geografi dan juga Proses Analatikal Hieraki, analisis kesesuaian tanah untuk penanaman padi telah dilakukan di kawasan ini. Untuk membina model kesesuian, penilaian pakar terhadap siri tanah, hujan, topografi, air bawah tanah dan kedudukan strategik kawasan pertanian dilakukan menggunakan kaedah pemberat. Pemberat kriteria ini didapati melalui Kaedah Perbandingan 'Pairwise' dan kemudianya diubah kepada nilai spatial menggunakan perisian Proses Pemberatan Lapisan ArcGis 9.

Keputusan menunjukan bahawa terdapat beberapa kawasan di Lembah Klang yang di kenal pasti mempunyai potensi strategik sebagai kawasan penanaman padi. Kawasan ini dibahagikan kepada tiga bahagian yang utama - 'paling sesuai', 'sesuai' dan 'sedikit sesuai'. Peratusan keseluruhan keluasan untuk kawasan yang 'paling sesuai' adalah sebanyak 8.82% (3504.35 ha.), 'sesuai' sebanyak 47.34% (18793.28 ha.) dan 'sedikit sesuai' sebanyak 43.84% (17403.02 ha.). Jumlah keseluruhan kawasan yang sesuai untuk penanaman padi ini adalah 39700 ha. iaitu 14% dari jumlah keluasan kawasan yang terdapat di Lembah Klang.

ACKNOWLEDGEMENTS

First and foremost, I thank Allah Almighty for His blessing that gave me courage to explore and gain knowledge. My deepest gratitude goes to my supervisor, Prof. Dr. Mustafa Kamal Mohd Shariff for his friendship, faith and guidance that inspired me throughout the research. To my co-supervisor, Assoc. Prof. Dr. Ahmad Rodzi Mahmud and Dr Siva K. Balasundram, thank you for your commitment, support and understanding throughout the preparation of the thesis. Without both of your precious views and opinions this study may not have been completed.

I would also like to take this opportunity to thank Mr. Nor Sallehi Kassim, Assistant Director of National Physical Plan Division (JPBD) and Tn. Haji Alias Ismail, Assistant Director of Paddy Division (MARDI), Assoc. Prof Syed Omar Syed Rastan, Deputy Dean, Faculty of Agriculture, Tn. Haji Muhamad Harun, Station Manager for MARDI Tanjong Karang, Dr Sariam Othman, MARDI Seberang Prai for all the cooperation given to complete the research. Their willingness to spend their valuable time towards the research progress is most appreciated.

To my research colleque, Nisfariza Mohd Noor Maris and Mohd Hazley Abdul Halim thanks for all the support and help that I gain during our discussions. I may not be able to repay both of your kindness. Last but not least, I would like to thank everybody who contributes towards the completion of the research.

I certify that an Examination Committee has met on 4th September 2007 to conduct the final examination of Shamsul bin Abu Bakar on his Master of Science thesis entitled "Land Suitability for Rice Growing in the Klang Valley Using Geographical Information System and Analytical Hierarchy Process for Urban Food Security" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

Rahinah Ibrahim, PhD Associate Professor Faculty of Design and Architecture Universiti Putra Malaysia (Chairman)

Kamariah Dola, PhD

Lecturer Faculty of Design and Architecture Universiti Putra Malaysia (Internal Examiner)

Helmi Zuhaidi Mohd Safri, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Hadi Susilo Arifin, PhD

Professor Faculty of Agriculture Bogor Agriculture University (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date : 17 December 2007

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mustafa Kamal Mohd Shariff, PhD

Professor Faculty of Design and Architecture Universiti Putra Malaysia (Chairman)

Ahmad Rodzi Mahmud, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Siva K. Balasundram, PhD

Lecturer Faculty of Agriculture Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 22 January 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations in which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SHAMSUL ABU BAKAR

Date:

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	XX

CHAPTER

1	INTI	RODUCTION	
	1.1	Background of study	1
	1.2	•	3
	1.3	Research Question	4
	1.4	Research Significance	4
	1.5	Research Goal	5
	1.6	Research Objectives	6
	1.7	Assumptions and Limitation of the Study	6
	1.8	Justification for Research	7
2	LITI	ERATURE REVIEW	
	2.1	Introduction	8
	2.2	Agriculture Land Policies in Malaysia	8
	2.3	Agriculture Scenario in Malaysia	9
	2.4	Agriculture and Urban Food Security	13
		2.4.1 Urban Food Security	13
		2.4.2 Strategic Food Planning	14
		2.4.3 Lost of Soil Fertility and Open Spaces	15
	2.5	The History of Rice Cultivation Areas in Malaysia	16
		2.5.1 Colonial Era	16
		2.5.2 Rice in Selangor	19
	2.6	Rice Growing and Agroclimatic Requirements	23
	2.7	The Importance of Rice to Malaysia	27
		2.7.1 Major Source of Energy	27
		2.7.2 Geographical Location	28
		2.7.3 Strategic Urban Food Centers	31
	2.8	Introduction of Geographical Information System (GIS)	32
		2.8.1 GIS Functions	32
		2.8.2 GIS for Land Suitability Analysis	33

	2.8.3 GIS in Planning of Agriculture Area	35
	2.8.4 Multi Criteria Decision Making (MCDM)	37
2.9	Summary of the Review	43

3 METHODOLOGY

3.1	Introduction	44
3.2	Stage 1-Procedure Design	44
	3.2.1 Data Acquisition and Criteria Selection	44
	3.2.2 Data Input	45
	3.2.3 Database Construction in Thematic Layer	46
3.3	Stage 2-Data Analysis	46
	3.3.1 Overlay Process	46
	3.3.2 Clipping	47
	3.3.3 Buffering	47
	3.3.4 Data Conversion	48
	3.3.5 Reclassification	48
	3.3.6 Assigning Criterion Weightage	48
	3.3.7 Weightage Standardization	48
3.4	Stage 3-Data Evaluation and Communication	49
3.5	Study Area	50
3.6	Summary	55

4 **RESULTS AND DISCUSSIONS**

4.1	Introd	uction	56
4.2	Identi	fication of Rice Cultivation Suitability Criteria	57
	4.2.1	Terrain /Topography	57
	4.2.2	Rainfall	58
	4.2.3	Soil Series	59
	4.2.4	Ground Water	62
	4.2.5	Strategic Agriculture Area	63
4.3		ase Construction for Rice Cultivation Suitability Area	64
	4.3.1	Construction of Terrain Theme Layer	64
	4.3.2	Construction of Rainfall Theme Layer	66
	4.3.3	Construction of Soil Theme Layer.	71
	4.3.4	Construction of Ground Water Theme Layer	74
	4.3.5	Construction of Strategic Agriculture Land Use	
		Theme Layer	75
4.4	Criter	ia Weightage Evaluation Using AHP	80
	4.4.1	Overall Criteria Weightage Evaluation	81
	4.4.2	Weightage Evaluation for Sub-Criteria	82
		4.4.2.1 Terrain Comparison	82
		4.4.2.2 Rainfall Comparison	83
		4.4.2.3 Soil Series Comparison	84
		4.4.2.4 Strategic Agriculture Land Use Comparison	85
		4.4.2.5 Groundwater Comparison	86
		-	

		4.4.3 Overall Hierarchy Weightage	88
		4.4.4 Weightage Comparison among Sub-Criteria	89
		4.4.5 Weightage Percentage	90
		4.4.6 Weightage Performance	91
	4.5	Land Suitability Process	92
		4.5.1 Standardize and Normalize Value	92
		4.5.2 Data Conversion and Reclassification	95
		4.5.2.1 Terrain Conversion and Reclassification	96
		4.5.2.2 Rainfall Conversion and Reclassification	97
		4.5.2.3 Soil Series Conversion and Reclassification	98
		4.5.2.4 Strategic Agriculture Land Use Conversion and	
		Reclassification	99
		4.5.2.5 Groundwater Conversion and Reclassification	100
		4.5.3 Weighted Overlay Analysis	101
		4.5.4 Reclassify Raster Suitability Value	103
	4.6	Suitability results	106
		4.6.1 Total Suitability Area in Klang Valley	106
		4.6.2 Suitability Results According to District in Klang Valley	107
	4.7	Ground Truthing Process	108
	4.8	Summary	116
5	CON	CLUSIONS AND RECOMMENDATIONS	
	5.1	Introduction	117
	5.2	Summary of Finding	117
	5.4	Recommendations for Future Research	119
REF	ERENC	CES	122
	ENDIC		127
	BIODATA OF THE AUTHOR		
		JBLICATIONS	141

5

LIST OF TABLES

Table	I	Page
2.1	Agriculture Land Use (hectares) 1995-2005	9
2.2	Agriculture Production (000 tonnes 1995-2005)	10
2.3	Export and Imports of Food (RM million), 1995-2005	11
2.4	Malaysia Imports on Rice	12
2.5	Rice Hectares in Selangor (Year 1995-1996)	21
2.6	Selangor Rice Production (Year 2001)	23
2.7	Requirement for Wetland Rice According to Loh (1997)	24
2.8	Requirement for Wetland Rice According to Mongklosawat, et al. (1997).	. 25
2.9	Requirement for Wetland Rice According to Syartinilia, et al. (2004).	26
2.10	Agroclimatic Requirements for Rice field by DOA	27
2.11	Scale of Pairwise Comparison	41
2.12	An Example of Pairwise Comparison Matrix	41
3.1	Population Change in Klang Valley	54
4.1	Criteria and Sub-criteria Selection for Terrain	58
4.2	Criteria and Sub-criteria Selection for Rainfall	59
4.3	Criteria and Sub-criteria Selection for Soil Series	60
4.4	Average Criteria and Sub-criteria Selection for Soil Group	61
4.5	Criteria and Sub-criteria Selection for Ground water	62
4.6	Criteria and Sub-criteria Selection for Strategic Agriculture Area.	63
4.7	Rainfall Volume for 26 Observation Points in Selangor	67
4.8	Criteria Relative Importance With Respect to Goal	81

4.9	Compare the Relative Importance With Respect to : Climatic/rainfall	83
4.10	Compare the Relative Importance With Respect to : Soils Series	84
4.11	Compare Relative Importance With Respect to: Strategic Land Use	86
4.12	Compare the Relative Importance With Respect to : Ground water	87
4.13	Normalized Value by Using LTS	93
4.14	Sub-criteria Spatial Value for Weighted Overlay Analysis	94
4.15	Old Raster Value and New Raster Value	95
4.16	Total Suitability Area	106
4.17	Suitability Class According to District	107
4.18	Suitability Percentage According to District Total Suitability Area	107
4.19	Suitability Class Percentage According to District	107
4.20	Random GPS Points for Ground Thruthing Process.	109

LIST OF FIGURES

Figur	Figure	
2.1	Urbanize Area Versus Open Spaces in Klang Valley	16
2.2	Rice Areas in Malaya According to Jack (1923)	18
2.3	Rice Growing in Coastal Selangor and the Tin Zone (1900)	20
2.4	Selangor Rice Distribution	22
2.5	An Example of Paddy Cultivation Area in IADP Pulau Pinang	29
2.6	An Example of Paddy Cultivation in MUDA Granary Area	30
2.7	An Example of Paddy Cultivation in IADP Kerian-Sungai Manik	30
2.8	Some of Destroyed Paddy Area in Aceh Province after 2004 Tsunami	31
2.9	Structure of GIS	33
2.10	Analytical Hierarchy Process (AHP) Procedure	39
2.11	GIS Based Rating of Alternatives	39
2.12	Computation of the Criterion Weight	42
2.13	Estimation of the Consistency Ratio	42
3.1	Research Stages	44
3.2	Magellan (GPS) Handheld Meridian Platinum Series Model	50
3.3	Research Methodology Framework	51
3.4	Map of Peninsular Malaysia	52
3.5	District within Klang Valley	53
4.1	Flow of Research Analysis	56
4.2	Map of Slope Area within Klang Valley	64
4.3	Extract Slope Class by Using Model Builder	64

4.4	SQL Language for Slope Class Selection in Query Builder	65
4.5	Result on Slope Class Using Select Tool in the Model Builder	65
4.6	Five Years Average Rainfall Graph.	66
4.7	Projection of Selangor Rainfall Observation Points	68
4.8	Kriging Interpolation Analysis for Rainfall Distribution in Raster Format	69
4.9	Selangor Rainfall Conversion from Raster to Polygon	70
4.10	Rainfall Distributions Clipped with Klang Valley Boundary	70
4.11	Map of Rainfall Distribution in Klang Valley	71
4.12	Klang Valley Soil Series Map.	72
4.13	Execution of Soil Group Selection in Model Builder	72
4.14	SQL Language for Soil Group Selection in Query Builder	73
4.15	Result on Soil Selection Using Select Tool in the Model Builder	73
4.16	Selangor Groundwater Map Clipped with Klang Valley Boundary Area.	74
4.17	Map of Ground water Distribution in Klang Valley	75
4.18	Selangor Agriculture Map Clipped with Klang Valley Boundary Area.	76
4.19	Klang Valley Agriculture Map	76
4.20	Selangor Urban Distribution Clipped with Klang Valley Boundary	77
4.21	Klang Valley Major Urban Area	77
4.22	Buffer Distance into the 'Multiple Ring Buffer'	78
4.23	Selangor Urban Buffer Zone Clipped with Agriculture Area	78
4.24	Results of Strategic Agriculture Distance in Klang Valley	79
4.25	Structured Criteria in Hierarchical Level	80
4.26	Synthesis of Criteria Relative Importance With Respect to Goal	82
4.27	Synthesis with Respect to : Climatic / Rainfall	84
4.28	Priorities with Respect to : Soil Series	85

4.29	Synthesis with Respect to : Strategic Land Use	86
4.30	Synthesis with Respect to : Ground water	87
4.31	Overall Hierarchy Weightage with Respect to Goal	88
4.32	Overall Synthesis with Respect to Goal	90
4.33	Dynamic Sensitivity Analysis to Goal	91
4.34	Performance Sensitivity with Respect to Goal	91
4.35	Vector to Raster Conversion for Terrain	96
4.36	Reclassify Value for Terrain	96
4.37	ArcGIS Model Builder for Terrain	96
4.38	Vector to Raster Conversion for Rainfall	97
4.39	Reclassify Value for Rainfall	97
4.40	ArcGIS Model Builder for Rainfall	97
4.41	Vector to Raster Conversion for Soil Series	98
4.42	Reclassify Value for Soil Series	98
4.43	ArcGIS Model Builder for Soil Series	98
4.44	Vector to Raster Conversion for Agriculture Land Use	99
4.45	Reclassify Value for Agriculture Land Use	99
4.46	ArcGIS Model Builder for Agriculture Land Use	99
4.47	Vector to Raster Conversion for Ground Water	100
4.48	Reclassify Value for Ground Water	100
4.49	ArcGIS Model Builder for Ground Water	100
4.50	Weighted Overlay Model Builder	101
4.51	Weighted Overlay Table	102
4.52	Raster Value for Suitability Map	103
4.53	Layer Properties Classification	104

4.54	Classification Method	104
4.55	Suitability Map for Rice Cultivation in Klang Valley	105
4.56	Distribution Graph for Suitability Area.	106
4.57	Suitability Distribution within District in Klang Valley	108
4.58	GPS Points Distribution in Suitability Map.	110
4.59	Site Description According to GPS Point Images.	113
4.60	Suitable Areas Converted into Other Types of Land Use.	113
4.61	Totally Not Suitable Areas According to Suitability Map	114
4.62	Overlaid Satellite Image	115

LIST OF ABBREVIATIONS

AHP	Analytical Hierarchy Process
CR	Consistency Ratio
DOA	Department of Agriculture
DID	Department of Irrigation and Drainage
MMD	Malaysian Meteorological Deparment
FAO	Food and Agriculture Organization
FAOSTAT	Food and Agriculture Organization Statistis
GIS	Geographical Information System
GPS	Global Positioning System
GDP	Gross Domestic Products
IADP	Integrated Agricultural Development Project
IRRI	International Rice Research Institute
KADA	Kemubu Agricultural Development Authority
LUPAS	Land Use Planning and Analysis System
LST	Linear Scale Transformation
MADA	Muda Agricultural Development Authority
MARDI	Malaysia Agricultural Research and Development Institute
MCDM	Multi Criteria Decision Analysis
MADM	Multi Attribute Decision Making
MCDA	Multi Criteria Decision Analysis
MODM	Multi Objective Decision Making

NPP National Physical Plan

NAI Nutrient Availability Index
NAP3 Third National Agricultural Policy
PCM Pairwise Comparison Methods
PA Precision Agriculture
PAA Prime Agricultural Areas
RS Remote Sensing
WLC Weighted Linear Combination

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The process of urban expansion or urban sprawl towards land uses have become one of the major issues for concern in the world. Urban areas are known as the centers of all activities including commerce, industry, settlement, culture and institutional uses. Urban areas continue to expand in size and taking over land for other uses, mainly agriculture areas (Fazal, 2001). According to Brabec and Smith (2002) urban sprawl is caused mainly by the continued out migration of residents from city centers into relatively inexpensive and lower density land housing in the urban fringes. This phenomenon has already placed a tremendous pressure on farmland resources. To meet the needs of the increasing urban population, land within urban periphery and rural areas are currently being converted into housing, shopping and retail, civic institution, business park and roadways.

Rapid encroachment by urban development causes tremendous lost of open spaces, green areas and also give impacts to the surrounding environment such as pollution and climate changes. The speed of urban growth and "land-use change" raised many problems such as inadequate infrastructure, increased population and employment pressure, overcrowding, slum communities arising from low-income groups, food insecurity and environmental degradation (Thapa et al, 2004).

Urban sprawl is often perceived as a negative urban phenomenon with costs including un-sightly development as well impacts on social and economics values. In most cases, agriculture land and rural areas located within urban periphery are facing greater loss in term of land use conversion into non-agricultural uses. Brabec and Smith (2002) added that the scenario of agriculture fragmentations in the urban fringe not only contribute to the loss of traditional farming economic base but also to the character and visual quality of the rural communities. Fragmentation of agricultural land by urban sprawl also affects not only the agricultural production capacity of the land but also its rural scenic quality.

The decline land suitable for agriculture not only affect the production of commercial crops such as rubber and oil palm but also the production of the food commodities such as rice, vegetables and fruits that are vital for high populated urban areas. According to Kuminoff et al., (2000) large-scale farmland conversions that reduce the production of certain commodities could affect local and even international food market. Argenti (2000) added that continous urban growth will contribute greater implications for future urban food security. This issues was raised in the State of California, United States where it produce most of its own food and would faces shortage if its existing farmland were to be developed for urban use. Based on the arguments, it is necessary for urban areas to have a sufficient amount of land that can be use as food crop production areas. In the event of emergencies such as natural disasters and wars, every community should be able to produce or supply at least a third of the food required by its residents (Mann, 2003).

The Malaysian National Physical Plan (2005) specified that assessment of land for urban uses require the consideration of two factors. First, demand for land generated by the increase in urban population and secondly an assessment of lands that could made available for urban uses without jeopardizing the integrity of key land uses considered essential as food supply, agricultural production purposes or which are subject to environmental constraints.

1.2 Problem Statement

Klang Valley is the most rapidly growing region in terms of physical and economical development in Malaysia. It has a population of 4.07 million, accounting to nearly 17.5 % of the total national population and is still growing at a rate of 2.4% annually. To sustain such a large population, Government has to fulfill demands for infrastructure and other physical development that would involve tremendous new land usage. Such physical development contributes to urban sprawl. In most cases, the process of urban sprawl causes losses towards other land uses especially land for agriculture. The intrusion of urban land uses into agriculture land or potentially suitable agriculture land creates agriculture land fragmentations. Planners and the relevant authorities often fail to see the importance of agriculture land as a crucial medium for raw and fresh food production within the urban periphery. Ironically, urban centers are wholly dependent on outsourced food consumption. With rice as a staple food item that feeds the Malaysian populations, land suitability analysis for rice cultivation is becoming essential for Klang Valley. This knowledge will contribute towards increasing Klang Valley's food security in time of war and natural disasters.

