IMPROVEMENT OF QUALITY AND STORAGE STABILITY OF GINGER
(ZINGIBER OFFICINALE ROSC.) DRINK

By

FADNEY RANTAWATY

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of Requirements of the Degree of Master of Science

2004
Especially dedicated to my beloved parents
A study was conducted to determine the physico-chemical characteristics of fresh ginger (Zingiber officinale Rosc.). The fresh ginger of Gajah/Betul variety of commercial maturity was used. The parameters analysed were weight, length, diameter, pH, titratable acidity (TA), total soluble solids (TSS), moisture content and crude fibre. This study concentration of the amount of pungent compounds in ginger such as 6-gingerol, 8-gingerol and 10-gingerol was determined by high performance liquid chromatography (HPLC). The concentration of 6-gingerol, 8-gingerol and 10-gingerol was 0.48 mg/100g, 0.04 mg/100 g and 0.05 mg/100 g, respectively.

The optimum formulation for preparation of ginger drink was determined by using Response Surface Methodology (RSM). Ginger-sugar combinations in the range of 5-10 g and 8-12°Brix, respectively were the independent variables and their effect on gingerol
content were evaluated. The ratio of fresh ginger and water were 1:11 (w/v). The drinks were prepared using white and brown sugar and their quality were compared. The results showed that the acceptance of gingerol content of ginger drink with white sugar were significantly \((p<0.05)\) lower than the brown sugar. The responses measured by sensory panelists were colour, odour, hotness, sweetness and bitterness of ginger drink. The results showed that the formulation of ginger drink with brown sugar was more preferred compared to the ginger drink with white sugar. The combination formula of 5 g fresh ginger and 12°Brix for brown sugar was chosen as the best formulation for ginger drink.

Changes in physico-chemical characteristics and gingerol content during storage and the effect of adding carboxymethylcellulose (CMC) to the ginger drink were carried out. The influence of different storage temperature (5°C and 28°C) was also investigated. Losses in gingerol content were very small during 12 weeks storage at 5°C as compared to storage at 28°C. The addition of carboxymethylcellulose in ginger drink slowed down the sedimentation process and the losses of gingerol content.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENINGKATAN KUALITI DAN KESTABILAN SIMPANAN MINUMAN HALIA (ZINGIBER OFFICINALE ROSC.)

Oleh

FADNEY RANTAWATY

Mac 2004

Pengerusi: Profesor Salmah binti Yusof, Ph.D.

Fakulti: Sains Makanan dan Bioteknologi

Satu kajian telah dijalankan untuk menentukan sifat-sifat fisikal dan kimia halia (Zingiber officinale Rosc.). Halia segar daripada varieti Gajah/ Betul yang mempunyai kematangan komersial digunakan. Parameter yang dianalisis meliputi berat, panjang, diameter, pH, keasidan titratan (TA), jumlah pepejal larut (TSS), kandungan kelembapan dan serat kasar. Kajian juga dijalankan untuk mengkaji amaun sebatian kepedasan yang terdapat pada halia seperti 6-gingerol, 8-gingerol dan 10-gingerol dengan menggunakan Kromatografi Cecair Berpretasi Tinggi (HPLC). Jumlah bagi 6-gingerol, 8-gingerol dan 10-gingerol adalah 0.48 mg/100 g, 0.004 mg/100 g dan 0.05 mg/100 g.

Formulasi optimum penyediaan minuman halia telah ditentukan dengan menggunakan Methodologi Rangsangan Permukaan (RSM). Kombinasi halia-gula dalam lingkungan 5-10 g dan 8-12°Brix masing-masing merupakan variasi bebas dan kesan terhadap
kandungan gingerol telah dikaji. Perbandingan antara halia dan air yang digunakan ialah 1:11. Perbandingan kualiti diantara minuman yang disediakan menggunakan gula putih dan gula merah telah dilakukan. Keputusan menunjukkan bahawa penerimaan keatas gingerol bagi minuman halia yang dicampur dengan gula putih adalah lebih rendah \((p<0.05)\) berbanding gula merah. Reaksi daripada panel-panel deria telah dikaji. Ini termasuk warna, bau, kepedasan, kemanisan dan kepedasan minuman halia. Keputusan menunjukkan bahawa formulasi optimum minuman halia dengan gula perang lebih disukai berbanding dengan minuman halia dengan gula putih. Kombinasi 5 g halia dan 12°Brix untuk gula perang telah dipilih sebagai formulasi terbaik minuman halia.

Perubahan dalam sifat fisikal-kimia dan kandungan gingerol semasa penyimpanan pada suhu 5 dan 28°C serta kesan dari penambahan karboksimetilsellulose (CMC) pada minuman halia telah dilakukan. Kehilangan kandungan gingerol adalah sangat kecil sepanjang 12 minggu penyimpanan pada 5°C jika dibandingkan dengan penyimpanan pada 28°C. Penambahan CMC dalam minuman halia melambatkan pemendakan dan kehilangan kandungan gingerol.
ACKNOWLEDGEMENTS

I would like to acknowledge my committee chairperson and advisor Professor Dr. Salmah Yusof for her kind assistance, advice and encouragement by giving the greater latitude of freedom in conducting this study as well as completion of this thesis. I would also like to extend my thanks to the other committee members, Associate Professor Dr. Azizah Osman and Associate Professor Dr. Russly Abdul Rahman for their guidance, constructive criticism and comments in carrying out this study.

The completion of this thesis was greatly aided by the support and friendship of several people in the department. Tee Pau Ling, Wong Peng Kong and my all laboratory mates for making our research an enjoyable workplace. My appreciation is also extended to Sin Hwee Nee for the Bahasa Malaysia translation of the abstract. I was lucky to have the unconditional friendship from all Indonesian students during my graduate study. Special appreciation also goes to laboratory personnel, office staffs and faculty who help me in many ways during my research projects.

Last but not least, I wish to express my appreciation to my beloved parents who have given me faith and confidence during the course of this study and unconditional love and support whenever I need. For the rest of my family in Jakarta and Kuala Lumpur for their care, encouragement and love. Words not can express my warmest gratitude and special thanks to the memory of my uncle for his care, encouragement and love which had been the biggest motivation for undertaking and completing this degree. Finally my thanks to
any one who has helped in one way or another towards this degree. Thank Allah for giving me patience and guidance with wisdom and strength for completing my study.
I certify that an Examination Committee met on 10th March 2004 to conduct the final examination of Fadney Rantawaty on her Master of Science thesis entitled "Improvement of Quality and Storage Stability of Ginger (Zingiber officinale Rosc.) Drink" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zaiton Hassan, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

Salmah Yusof, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Azizah Osman, Ph.D.
Associate Professor,
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Russly Abdul Rahman, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia.

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Salmah Yusof, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

Azizah Osman, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Russly Abdul Rahman, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor /Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at Universiti Putra Malaysia or other institutions.

FADNEY RANTAWATY

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

II REVIEW OF LITERATURE
Ginger

- Processing of Ginger: 10
- Composition of Ginger: 14
- Gingerol: 15

Beverage: 16

Stabilizer: 22
- Sodium Carboxymethylcellulose: 23

Jamu: 25
- Jamu Gendong: 26

Physico-chemical Changes: 28
- Changes in Colour: 28
- Changes in pH: 28
- Changes in Total Soluble Solid: 29
- Sedimentation: 29

Storage Temperature of Beverages: 30

Perceived Flavour: 31

Response Surface Methodology (RSM): 32

Sensory Evaluation: 34

III PHYSICO-CHEMICAL CHARACTERISTICS OF GINGER (*ZINGIBER OFFICINALE* ROSC.)

Introduction: 38

Materials and Methods: 39
- Raw Materials: 39
- Chemical: 40
- Determination of Weight, Length and Diameter: 40
Determination of pH 40
Determination of Titratable Acidity 41
Determination of Total Soluble Solids 41
Determination of Moisture Content and Crude Fibre 41
Determination of Gingerol by HPLC 41
Result and Discussion 42
Conclusion 48

IV THE OPTIMIZATION OF FORMULA FROM GINGER DRINK USING RESPONSE SURFACE METHODOLOGY
Introduction 49
Materials and Methods 50
Raw Material 50
Chemical 50
Experimental Design 50
Sample Preparation 52
Determination of Gingerol by HPLC 54
Sensory Evaluation 54
Statistical Analysis 55
Results and Discussion 55
Statistical Analysis 55
A. Juice Prepared Using White Sugar 55
B. Juice Prepared Using Brown Sugar 58
Response contours 60
Sensory Evaluation of Ginger Drink 69
Conclusion 74

V CHANGES IN PHYSICO-CHEMICAL CHARACTERISTICS AND GINGEROL CONTENT DURING STORAGE OF GINGER DRINK
Introduction 75
Materials and Methods 76
Samples and Chemicals 76
Ginger Drink Preparation 76
Storage 78
Determination of pH, Total Acidity and Total Soluble Solid 78
Determination of Sedimentation 79
Determination of Gingerol by HPLC 79
Statistical Analysis 79
Results and Discussion 80
Changes in pH 80
Changes in Total Soluble Solids 81
Changes in Titratable acidity 83
Changes in Sediment 87
Changes in Gingerol Content 88
Conclusion 89
VI CONCLUSION AND RECOMMENDATIONS 90

BIBLIOGRAPHY 92
APPENDICES 98
BIODATA OF THE AUTHOR 111