

UNIVERSITI PUTRA MALAYSIA

ISOLATION AND CHARACTERIZATION OF GENES EXPRESSED IN EARLY FLOWERING TISSUES OF TEAK (*TECTONA GRANDIS* LINN. F)

NORLIA BASHERUDIN

FBSB 2007 10

ISOLATION AND CHARACTERIZATION OF GENES EXPRESSED IN EARLY FLOWERING TISSUES OF TEAK (*TECTONA GRANDIS* LINN. F)

By

NORLIA BASHERUDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2007

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

ISOLATION AND CHARACTERIZATION OF GENES EXPRESSED IN EARLY FLOWERING TISSUES OF TEAK (*TECTONA GRANDIS* LINN. F)

By

NORLIA BASHERUDIN

July 2007

Chairman : Associate Professor Norihan Mohd Saleh, PhD

Faculty : Biotechnology and Biomolecular Science

Teak is a highly sought-after timber species in the world, and therefore has been selected as one of the timber species for forest plantation in Malaysia. However, in Malaysia teak has been observed to flower as early as three years after planting. The early flowering leads to the forking phenomenon, which lowers the quality of the timber produced. This study was initiated in order to understand the genetic control of flower development in teak with the ultimate aim of being able to manipulate this process for improvement of the species.

In the observations of flower development in teak two different types of shoots were identified, flowering and vegetative shoots. The difference gave an opportunity to isolate the genes expressed in flowering shoots using the PCR-subtractive hybridization method. Based on 130 clones isolated, 22% were functionally unknown and 13% to 15% each were involved in cell structure, signal transduction and transcription. The other clones, 1% to 10% each, were involved in energy, protein synthesis, protein digestion and storage, disease and defense, intracellular traffic and metabolism.

Out of the 130 clones analyzed, two were chosen for further analysis. The clones were TFS3-B7, which is similar to Late Elongated Hypocotyls (LHY) gene and TFS3-B17, which is similar to Arabidopsis Shaggy kinase-11 (AtSK-11) gene. The full-length cDNA of TFS3-B7 was 2948 base pair (bp) and potentially encoded for 768 amino acids. It was named *Tectona grandis* LHY (Tg-LHY), as the gene was similar to the LHY gene of some species. The level of gene expression was found to be high four hours after dawn in flowering shoots and flower, which might indicate involvement of the circadian clock system in teak flower development. Temperature might be a potential environmental cue detected by the teak circadian clock system, as the temperature was found higher within three months before the flowering season occurred. The cDNA of Tg-LHY translated into a protein of about 110 kD in a prokaryotic expression system. The gene construct of Tg-LHY in GATEWAY expression vector was also transformed into *Arabidopsis*. GUS assay analysis indicated successful integration of reporter gene into the *Arabidopsis* genome. *Arabidopsis* transformation will be further investigated in the future.

The second clone, TFS3-B17, with its cDNA of 1705 bp in length, was potentially encoded for 410 amino acids. The gene was named *Tectona grandis* Shaggy kinase (Tg-SK), as it was similar to *Arabidopsis* Shaggy kinase-11 (AtSK-11). Analysis of the gene structure showed that it had 11 introns, similar to the number of introns found in AtSK-11. The high similarity between Tg-SK and AtSK-11 within their kinase region and structure might indicate their similar function. In *Arabidopsis*, AtSK-11 gene has been suggested to play a role in meristem identity fate. Higher transcription level of this gene was detected in early and later stage of flower development, which was similar with what has been reported in *Arabidopsis*. Gene

expression analysis in a prokaryotic system showed that Tg-SK cDNA translated into a protein of about 40 kD.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMENCILAN DAN PENCIRIAN GEN-GEN YANG DIEKPRESI DI DALAM TISU PEMBUNGAAN JATI (*TECTONA GRANDIS* LINN. F)

Oleh

NORLIA BASHERUDIN

Julai 2007

Pengerusi : Profesor Madya Norihan Mohd Saleh, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Jati adalah spesies balak yang mempunyai permintaan yang tinggi di dunia, oleh itu ia telah dipilih sebagai salah satu spesies untuk perladangan hutan di Malaysia. Walaubagaimanapun, jati yang ditanam di Malaysia didapati berbunga seawal 3 tahun selepas ditanam. Pembungaan awal ini mengakibatkan pembentukan cabang, dan seterusnya menurunkan kualiti balak yang dihasilkan. Kajian ini dijalankan dengan tujuan untuk memahami kawalan genetik ke atas pembentukan bunga di dalam jati, dengan matlamat agar proses tersebut dapat dikawal mengikut keperluan pembaikbakaan spesies ini.

Melalui pemerhatian terhadap pembentukan bunga di dalam jati, dua jenis pucuk yang berbeza telah dikenalpasti, iaitu pucuk pembungaan dan vegetatif. Perbezaan tersebut membolehkan gen-gen yang diekspresi di dalam pucuk pembungaan dipencilkan menggunakan kaedah hibridisasi subtraktif-PCR. Daripada 130 klon yang telah dipencilkan, 22% tidak diketahui fungsinya dan antara 13 hingga 15% setiap satu, adalah yang terlibat di dalam struktur sel, isyarat transduksi dan transkripsi. Klon-klon lain, di mana di antara 1–10% setiap satu, terlibat di dalam pembentukan tenaga; sintesis proten; penghadaman dan penyimpanan proten; melawan penyakit dan ketahanan; pergerakan antara sel dan metabolisma.

Daripada 130 klon yang dianalisa, 2 klon telah dipilih untuk dianalisa dengan lebih lanjut. Klon-klon tersebut ialah TFS3-B7, yang menyamai gen 'Long Hypocotyl Elongated' (LHY) dan TFS3-B17, yang menyamai gen 'shaggy kinase-11' (AtSK-II) daripada Arabidopsis. cDNA TFS3-B7 yang lengkap adalah sepanjang 2948 bp dan berpontensi untuk mengekod 768 asid amino. Ia telah dinamakan Tectona grandis LHY (Tg-LHY), memandangkan gen in mempunyai persamaan dengan gen LHY dari beberapa spesis. Pengekspresan gen ini dikesan dengan banyak di pucuk pembungaan dan bunga 4 jam selepas waktu subuh, di mana ini mungkin menandakan penglibatan sistem 'circadian clock' dalam proses pembentukan bunga jati. Suhu berkemungkinan merupakan faktor persekitaran yang dikesan oleh sistem tersebut di dalam pokok jati, memandangkan suhu yang tinggi telah dikesan sepanjang 3 bulan sebelum bermulanya musim berbunga. cDNA Tg-LHY mentranslasi kepada protein yang bersaiz lebih kurang 110 kD di dalam sistem ekspresi prokariot. Konstruk gen Tg-LHY di dalam vector ekspresi GATEWAY juga telah dipindahkan ke dalam Arabidopsis. Analisa asai GUS menunjukkan kejayaan mengintegrasi gen pelapor tersebut ke dalam genom Arabidopsis. Kajian selanjutnya ke atas transformasi Arabidopsis akan dijalankan di masa hadapan.

Klon kedua ialah TFS3-B17, cDNAnya adalah sepanjang 1705 bp berpotensi mengekod 410 asid amino. Gen ini dinamakan *Tectona grandis* 'shaggy kinase' (Tg-SK), memandangkan ianya mempunyai persamaan dengan 'shaggy protein kinase'-11 (AtSK-11) daripada *Arabidopsis*. Analisis ke atas struktur gen ini menunjukkan ianya mempunyai 11 intron, seperti juga bilangan intron yang terdapat pada AtSK-11. Persamaan yang tinggi antara Tg-SK dan AtSK-11 pada bahagian kinase dan struktur gennya mungkin menandakan persamaanan fungsi kedua-dua gen. Di dalam *Arabidopsis*, AtSK-11 dicadangkan berperanan dalam menentukan

vi

pembentukan identiti sesuatu meristem. Paras transkripsi gen ini dikesan lebih tinggi pada peringkat awal dan akhir pembungaan, di mana pemerhatian yang serupa telah dilaporkan di dalam *Arabidopsis*. Analisa pengekspresi gen di dalam sistem prokariot mendapati Tg-SK telah mentranslasi kepada protein bersaiz lebih kurang 40 kD.

ACKNOWLEDGEMENTS

In the name of ALLAH, the Merciful and the most Beneficent. All praises are due to ALLAH for giving me the opportunity, patience and guidance in completing this study.

This thesis would not have been possible without the guidance and full support of the people and agencies, listed herein, to whom I am greatly indebted to and wish to express many thanks and appreciation.

First and foremost, to Associate Prof. Dr Norihan Mohd Saleh, Dr Norwati Muhammad and Associate Prof. Dr Suhaimi Napis for their expert advices, encouragement and constructive comments as my supervisors throughout the course of this study.

I am indebted to the Forest Research Institute (FRIM) for the opportunity to persue this study and the Public Service Department and FRIM for the financial support provided. Special thanks to Director General of FRIM, Dato' Dr Abdul Razak Mohd Ali; Chairman of Training Committee, FRIM, Dato' Dr Abdul Latif Mohmod; Advisor of Biotechnology Division, Dr Baskaran Krishnapillay and Director of Biotechnology Program, Dr Marzalina Mansor, for their understanding and support throughout this study.

My sincere appreciation is extended to Dr Meilina Ong Abdullah, Dr Oii Siew Eng, Dr Arif Abdul Manaf, Safiza, Azizah, Fiza, and Khairul Anuar of MPOB; Prof. Dr Raha Abdul Rahim, Yanti and Sabrina of UPM; Nor Rizan of IMR and, Siti Habsah

of Felda Biotechnology, for their helps without which this study would not have been completed smoothly.

Finally a note of appreciation to all my friends who have weathered and shared the joys and hardships of working together in the Genetic Labs, FRIM. Special thanks goes to Chai Ting, Dr Norwati and Salwana for their generosity.

Last but not least, my highest appreciation goes to my husband, Azhar Saad for his love, understanding, and continuous support; to my mother and late father, who always has faith on me; and to my sons, Shahmi, Syazwan and Shahril for the happiness they have brought in my life. I sincerely dedicated this thesis for them.

I certify that an Examination Committee has met on 4th July 2007 to conduct the final examination of Norlia Basherudin on her Doctor of Philosophy thesis entitle "Isolation and Characterization of Genes Expressed in Early Flowering Tissues of Teak (*Tectona grandis* LINN. F)" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Raha Abdul Rahim, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Mohd. Puad Abdullah, PhD

Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Siti Nor Akmar Abdullah, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Ismanizan Ismail, PhD

Associate Professor Centre of Science and Biotechnology Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD GHAZALI,PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 27 September 2007

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Norihan Mohd Saleh, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Suhaimi Napis, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Norwati Muhammad, PhD

Forest Research Institute Malaysia (FRIM) (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 15 November 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NORLIA BASHERUDIN

Date: 3 September 2007

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	XX

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	4
	2.1 Description of the Species	4
	2.2 Flowering in Tropical Tree Species	6
	2.2.1 General Information	6
	2.2.2 Flowering in Teak	8
	2.3 Molecular Biology of Flowering	10
	2.3.1 Pathways Mediating Environmental Cues	12
	2.3.2 Pathways that Independent of Environmental Cues	18
	2.3.3 Pathways that Integrate Flowering	21
	2.3.4 Floral Organ Identity Pathways	22
	2.4 Plant Circadian Clock System	25
	2.4.1 Input Pathway	28
	2.4.2 Central Oscillator	29
	2.4.3 Output Pathway	33
	2.4.4 Circadian Clock System in Other Plant	35
	2.5 Protein Kinase in Plant Development	36
	2.5.1 Shaggy Protein Kinase Family	37
3	MATERIALS AND METHODS	40
	3.1 Plant Materials	40
	3.1.1Observation on Pre-Flower Development Stages	40
	3.1.2 Sample Collection and Storage	41
	3.2 Chemicals and Biological Reagents	42
	3.3 RNA Isolation	42
	3.3.1 Salzman's Method	43
	3.4 PCR Subtractive Hybridization	44
	3.4.1 mRNA Isolation	45
	3.4.2 cDNA Synthesis	45
	3.4.3 Adaptor Ligation	46
	3.4.4 Hybridization	47
	3.4.5 PCR Amplification	48

	3.4.6 Purification of PCR Fragments from Agarose	49
	Gel	
	3.4.7 TA Cloning of DNA Fragments	50
	3.4.8 Plasmid Extraction and Recombinant	51
	Analysis	
3.5	DNA Sequencing	52
	3.5.1 Preparation of Cycle Sequence Reaction	52
	3.5.2 Preparation of Sequencing Gel	53
	3.5.3 Sequencing Gel Electrophoresis	53
	3.5.4 DNA Sequence Analysis	54
3.6	Full Length cDNA Isolation	54
	3.6.1 First Strand cDNA Synthesis	55
	3.6.2 Rapid Amplification of cDNA Ends (RACE)	55
	3.6.3 End to ends PCR	57
37	DNA Isolation	57
	Southern Blotting and Hybridization	59
	Genomic Library Construction	63
5.7	3.9.1 Partial Digestion of Genomic DNA	63
	3.9.2 Partial Fill-in of Genomic DNA	64
	3.9.3 Cloning into Lambda Vector	65
	3.9.4 Packaging of Recombinant λ DNA	66
	3.9.5 Titer Measurement of Phage Library	66
	3.9.6 Isolation of Recombinant λ DNA	67
		67
2 10	3.9.7 Size Estimation of Genomic Library Inserts	67 68
5.10	0 Screening of Genomic Library	
	3.10.1 Amplification of Phage	68
	3.10.2 Pooling of Phage Lysate	68
	3.10.3 PCR Reaction	69
0.1	3.10.4 Plaque Lifts and Hybridization	69
3.1	1 Northern Blotting and Hybridization	70
	3.11.1 RNA Labeling by <i>in vitro</i> Transcription	70
	3.11.2 Northern Blotting, Hybridization and	73
	Detection	
3.12	2 In situ RNA Hybridization	75
	3.12.1 Probe and Sample Preparation	75
	3.12.2 Pre-hybridization and Hybridization	77
	3.12.3 Post Hybridization and Immunological	78
	Detection	
3.13	3 Protein Expression in Prokaryotic System	79
	3.13.1 Primer Design and Cloning	80
	3.13.2 Protein Induction and Denaturation	82
	3.13.3 SDS-PAGE	82
	3.13.4 Western Blotting and Immunological	84
	Detection	
3.14	4 Gene Transformation into Arabidopsis	86
	3.14.1 Development of Gene Constructs	86
	3.14.2 Transformation into Agrobacterium	88
	3.14.3 Transformation via Floral Dip Method	89
	3.14.4 Screening and Selection of Transformed	90
	Arabidopsis	
	3.14.5 Transgenic Arabidopsis Analysis	92

4	RESULTS	93
	4.1 Observation on Teak Flower Development	93
	4.2 Analysis of Teak Genomic Library	97
	4.3 RNA Extraction	100
	4.4 cDNA Subtractive Library	101
	4.4.1 Clones Analysis and Categorization	103
	4.5 Characterization of Selected Clones	106
	4.5.1 Clone TFS3-B7	106
	4.5.2 Clone TFS3-B17	120
	4.6 Molecular Analysis of Tg-LHY and Tg-SK Genes	130
	4.6.1 Northern Hybridization	130
	4.6.2 RNA <i>in-situ</i> Hybridization	134
	4.6.3 Heterologous Protein Expression	137
	4.6.4 Gene Transformation into Arabidopsis	144
5	DISCUSSION	147
	5.1 Observation on Early Stage of Flower Development	147
	in Teak	
	5.2 Subtractive Library of TFS3 Tissues	153
	5.3 Preliminary Analysis of Tg-LHY and Tg-SK	156
	5.3.1 Tg-LHY	156
	5.3.2 Possible Function of Tg-LHY	160
	5.3.3 Tg-SK	165
	5.3.4 Possible Function of Tg-SK	168
	5.4 Recommendation on Future Studies	171
6	CONCLUSION	175
RE	ERENCES	179
APPENDICES		195
BIODATA OF THE AUTHOR		230

LIST OF TABLES

Table		Page
4.1	BLASTX analysis of TFS3-B7 and TFS3-B17	107

LIST OF FIGURES

Figure		Page
2.1	Flowering development pathways	13
2.2	The ABC model of flower development	24
2.3	Illustration of plant circadian clock system	26
4.1	Typical flowering teak tree	94
4.2	Morphology of teak vegetative and flowering shoots	94
4.3	Morphological and microscopic observation on flowering shoots of teak before occurrence of inflorescence	95
4.4	Morphological and microscopic observation of flowering shoots of teak after the occurrence of inflorescence	96
4.5	<i>Eco RI</i> digested of 15 randomly selected clones from teak genomic library	99
4.6	Amplification products of secondary PCR subtractive hybridization	102
4.7	<i>Eco R</i> I digestion of 14 randomly selected clones of subtractive library	102
4.8	Functional categories pie chart of subtractive library clones	105
4.9	Amplification of 5'- and 3'-RACE of TFS3-B7 fragments.	109
4.10	Amplification product of full-length Tg-LHY cDNA	109
4.11	Nucleotide and the deduce amino acid sequence of Tg-LHY	113
4.12	CLUSTALW analysis of Tg-LHY protein with LHY protein from other dicots	115
4.13	Secondary PCR-screening of teak genomic library	117
4.14	Digestion of 2 recombinant lambda phage clones	117
4.15	Amplification of 5G-6-5 clone using different primers	119
4.16	Southern hybridization analysis of Tg-LHY	119

4.17	Amplification of 5'- and 3'-RACE of TFS3-B17 fragments	121
4.18	Amplification product of full-length cDNA and gene of Tg-SK	121
4.19	Nucleotide and the deduce amino acid sequence of Tg-SK	124
4.20	CLUSTALW analysis of Tg-SK protein with Shaggy kinase protein from other dicots	125
4.21	Aligment of nucleotide sequence of Tg-SK cDNA and gene	128
4.22	Southern hybridization analysis Tg-SK	129
4.23	Northern analysis of Tg-LHY on different tissues with non-radioactive labeled probe	132
4.24	Northern analysis of Tg-LHY on different tissues with radioactive labeled probe	132
4.25	Northern analysis of Tg-SK on different tissues with whole cDNA labeled with non-radioactive as a probe	133
4.26	Northern analysis of Tg-SK on different tissues with 150 bp cDNA labeled with radioactive as a probe	133
4.27	Labeling efficiency determination of RNA-DIG labeled probe	136
4.28	Microscopic analysis of in-situ hybridization of oil palm embryogenic suspension culture	136
4.29	Complete digestion of construct pET14b-TgLHY and pET14b-TgSK cDNA	139
4.30	SDS-PAGE analysis of protein extract from BL 21 cell transformed with pETlhy-7 and pETsk-22 gene construct	140
4.31	Western analysis on protein from BL 21 recombinant clones of pETlhy-7 and pETsk-22	142
4.32	SDS-PAGE analysis of protein extract from Rosetta 2 cell transformed with pETlhy-7 and pETsk-22 gene construct	142
4.33	Western analysis on protein from Bl 21 recombinant clones of pETlhy-7 and pETsk-22	143

xviii

4.34	Digestion of GTWAS-1 and GTWS-3 clones with <i>Xba</i> 1 and <i>Sac</i> 1 restriction enzyme	146
4.35	GUS assay on transgenic <i>Arabidopsis</i> transformed with antisense and sense constructs of Tg-LHY	146
5.1	Reproductive cycle of teak based on five years observation	149
5.2	Mean rainfall and temperature in a year at Chuping, Perlis	151

5.3 Mean temperature and daily light intensity in a year at 151 Chuping, Perlis

LIST OF ABBREVIATIONS

%	percentage
^{0}C	degree Celsius
μg	microgram
μl	microliter
2-BE	ethyleneglycolmonobutylether
AP1	APETALA 1
APS	ammonium persulphate
BLAST	Basic Local Alignment Search Tool
bp	base pair
BSA	bovine serum albumin
CAB1	chlorophyll A/B binding protein 1
CCA1	circadian clock-associated 1
cDNA	copy DNA
СО	CONSTANS
CTAB	Hexadecyltrimethylammonium bromide
dATP	2'-deoxy-adenosine-5'-triphosphate
DEPC	diethyl pyrocarbonate
DH ₂ O	distilled water
DNA	deoxyribonucleic acid
DNA Dnase I	deoxyribonucleic acid deoxyribonuclease I
Dnase I	deoxyribonuclease I
Dnase I dNTPs	deoxyribonuclease I deoxynucleotides

EtBr	ethidium bromide
FT	FLOWERING LOCUS T
FLC	FLOWERING LOCUS C
FRI	FRIGIDA
g	gram
HCL	hydrochloric acid
Hr	hour(s)
k	kilo
kb	kilobase
KCl	potassium chloride
kD	kilo dalton
L	liter
LD	long day plant
LFY	LEAFY
LHY	late elongated hypocotyls
LiCl	lithium chloride
М	molar
mg	milligram
MgCl ₂	magnesium chloride
MgSO ₄	magnesium sulfate
min	minutes
ml	milliliter
mm	millimeter
mM	milimolar
MOPS	3-(N-morpholino) propane-sulphonic acid
mRNA	messenger RNA

MW	molecular weight
Ν	normal
NaCl	sodium chloride
NaI	sodium iodide
NaOAc	sodium acetate
Ng	nanogram
N-terminal	amino terminal
OD	optical density
ORF	open reading frame
PBS	phosphate buffer saline
PCR	polymerase chain reaction
РНҮВ	PHYTOCHROME B
PIF3	PHYTOCHROME INTERACTING FACTOR 3
Poly A ⁺ RNA	polyadenylated RNA
Poly A ⁺ RNA PVP	polyadenylated RNA polyvinylpyrrolidone
PVP	polyvinylpyrrolidone
PVP PVPP	polyvinylpyrrolidone polyvinylpolypyrrolidone
PVP PVPP RNA	polyvinylpyrrolidone polyvinylpolypyrrolidone ribonucleic acid
PVP PVPP RNA Rnase	polyvinylpyrrolidone polyvinylpolypyrrolidone ribonucleic acid ribonuclease
PVP PVPP RNA Rnase Rpm	polyvinylpyrrolidone polyvinylpolypyrrolidone ribonucleic acid ribonuclease revolution per minute
PVP PVPP RNA Rnase Rpm rRNA	polyvinylpyrrolidone polyvinylpolypyrrolidone ribonucleic acid ribonuclease revolution per minute ribosomal RNA
PVP PVPP RNA Rnase Rpm rRNA RT	polyvinylpyrrolidone polyvinylpolypyrrolidone ribonucleic acid ribonuclease revolution per minute ribosomal RNA reverse transcriptase
PVP PVPP RNA Rnase Rpm rRNA RT SAM	polyvinylpyrrolidone polyvinylpolypyrrolidone ribonucleic acid ribonuclease revolution per minute ribosomal RNA reverse transcriptase shoot apical meristem
PVP PVPP RNA Rnase Rpm rRNA RT SAM SD	polyvinylpyrrolidone polyvinylpolypyrrolidone ribonucleic acid ribonuclease revolution per minute ribosomal RNA reverse transcriptase shoot apical meristem short day plant

TAE	tris acetate EDTA
TBE	tris borate EDTA
TE	tris-HCl-EDTA
TEMED	N,N,N',N'- Tetra-methylethylenediamine
TFL1	TERMINAL FLOWERING 1
TOC1	Timing of CAB1
tRNA	transfer RNA
U	unit
UTR	untranslated region
UV	ultraviolet
v/v	volume per volume
w/v	weight per volume
X-gal	5-bromo-4-chloro-3-indoyl-β-D-galatopyranose

CHAPTER 1

INTRODUCTION

The wood of teak (*Tectona grandis*) is well known to the world. It is much sought after timber and famous for its beauty, strength and resistance to termites. However, the tree itself in nature is declining in number at an alarming rate. Most countries where teak is native have started to plant this tree in plantations. Teak was introduced to Malaysia in 1800 and the first plantation was developed in Langkawi in 1915 (Thai, 2000). Since then, the area of teak plantation has been increasing.

Teak is a deciduous tree species. It flowers yearly, in a huge panicle with thousands of tiny and whitish flowers. The panicle occurs at the main axis of the tree (Syarach-Larsen, 1966). Once flowering is over, the shoot will partly die back, and lateral buds immediately below it will compete with each other to develop into big branches. This will then lead the tree becoming forked.

Generally, teak starts to flower five to six years after planting. However, teak planted in Malaysia under plantation condition has been observed to flower as early as three years. The early flowering will indirectly reduce the timber quality due to the shorter clear bole produced. Flowering has also been known to reduce vegetative growth due to energy utilization. These two phenomena related to flowering in teak have become two major issues that affect the performance and management of teak plantation, which are challenges to the relatively low growth rates achieved and problem of maximizing the length of the clear bole (Khrishnapillay, 2000).

