CRYSTALLIZATION OF NOVEL ARM LIPASE AND ELUCIDATION OF ITS SPACE-GROWN CRYSTAL STRUCTURE

By

NUR DAYANA NISBAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

CRYSTALLIZATION OF NOVEL ARM LIPOSE AND ELUCIDATION OF ITS SPACE-GROWN CRYSTAL STRUCTURE

By

NUR DAYANA NISBAR

March 2013

Chairman: Professor Raja Noor Zaliha Raja Abdul Rahman, D.Eng

Faculty: Biotechnology and Biomolecular Science

The three-dimensional structure of novel thermostable and organic solvent tolerant ARM lipases was successfully determined by X-ray crystallography technique. The novel ARM lipase was highly purified prior to crystallization and consequently, the crystal structure of ARM lipase was elucidated in order to comprehend its structure-function relationship.

The His-tagged ARM lipase was purified using immobilized metal affinity chromatography followed by anion-exchange chromatography. The highly purified and homogeneous ARM lipase with protein concentration of approximately 2 mg/mL was successfully crystallized by sitting drop, vapour diffusion method using 0.1 M MES monohydrate pH 6.5 and 12% (v/v) polyethylene glycol (PEG) 20000 as precipitant. Optimization of the crystallization conditions was performed by varying the pH and concentration of the precipitant. The optimum crystallization condition
was 2 mg/mL ARM lipase in 0.1 M Tris-HCl, 0.15 M NaCl, pH 8.0 protein solution, crystallized using 0.1 M Tris-HCl, pH 8.0 and 12% (v/v) PEG 20000 as precipitant.

In addition, the crystal growth of ARM lipase was also improved via counter diffusion method and microgravity experiment. Crystals grew in the gel-tube capillaries that are incubated in Protein Crystallization Research Facility on board the International Space Station for over three months in 2011. The space-grown crystal obtained was diffracted and data was collected at synchrotron radiation facility. The data was processed up to 2.3 Å resolution and the crystal belonged to primitive monoclinic P21 space group with the unit cell dimension of $a=55.79\,\text{Å}$, $b=143.40\,\text{Å}$, $c=63.97\,\text{Å}$, $\alpha=\gamma=90.00^\circ$ and $\beta=105.88^\circ$.

Crystal structure of ARM lipase showed the typical, canonical alpha-beta hydrolase fold consisting of 13 α-helices and 11 β-strands. The conserved catalytic triad, composed of serine 113, histidine 358 and aspartic acid 317 was found in the hydrophobic active site. Three-dimensional structure features such as zinc- and calcium-binding sites, high percentage of charged, aromatic and proline residues presence in the protein, as well as high percentage of surface-exposed charged, hydrophobic and glycine residues explains the properties of ARM lipase as a thermostable, organic solvent- stable lipase.

In conclusion, the successful crystallization and structure elucidation of novel thermostable, organic solvent-tolerant lipase, ARM gives an understanding of the properties of this enzyme. Information regarding the structural features and
adaptations of this lipase also gives useful insight for the engineering of better, novel lipases with enhanced and desired properties.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHABLURAN LIPASE ARM DAN PENERANGAN STRUKTUR KRISTAL YANG DIHASILKAN DI ANGKASA

Oleh

NUR DAYANA NISBAR

Mac 2013

Pengerusi: Profesor Raja Noor Zaliha Raja Abdul Rahman, D.Eng

Fakulti: Bioteknologi dan Sains Biomolekul

Struktur tiga dimensi enzim lipase ARM yang merupakan enzim lipase yang termostabil dan stabil di dalam pelarut organik telah berjaya ditentukan melalui teknik kristalografi sinar X. Penulenan enzim lipase ARM dilakukan sebelum proses penghabluran dan ini diikuti oleh penyelesaian struktur enzim lipase ARM bagi menjelaskan sifat enzim tersebut.

Enzim lipase ARM yang mengandungi tag enam Histidina telah ditulenkan melalui kromatografi turus afiniti dan diikuti oleh kromatografi pertukaran cas anion. Enzim lipase ARM yang homogeniti dan berketulenan tinggi dengan kepekatan protein kira-kira 2 mg/mL telah berjaya dihablurkan melalui kaedah penghabluran resapan wap “sitting drop” menggunakan 0.1 M MES monohidrat pH 6.5 dan 12% (v/v) polietilena glikol (PEG) 20000 sebagai pemendak. Kondisi penghabluran telah dioptimumkan dengan mempelbagaikan pH dan kepekatan pemendak. Kondisi penghabluran yang optimum adalah 2 mg/mL lipase ARM dalam larutan protein, 0.1
M Tris-HCl, 0.15 M NaCl, pH 8.0, dihablurkan menggunakan 0.1 M Tris-HCl, pH 8.0 dan 12% (v/v) polietilena glikol PEG 20000 sebagai pemendak.

Seterusnya, pembentukan hablur enzim lipase ARM yang lebih baik telah dihasilkan di dalam kapilari gel melalui kaedah penghabluran resapan lawan di persekitaran mikrograviti menggunakan 0.1 M MES monohidrat pH 6.5 dan 12% (v/v) polietilena glikol (PEG) 20000 sebagai pemendak. Hablur lipase ARM yang dihasilkan di angkasa dibelau dan data belauan telah dikumpulkan di sebuah fasiliti sinaran sinkrotron di Jepun. Data belauan tersebut diproses pada resolusi maksima 2.3 Å dan hablur tersebut dikategorikan dalam kumpulan ruang primitif monoklinik P21 dengan dimensi unit sel, \(a = 55.79 \) Å, \(b = 143.40 \) Å, \(c = 63.97 \) Å, \(\alpha = \gamma = 90.00^\circ \) dan \(\beta = 105.88^\circ \).

Struktur hablur enzim lipase ARM menunjukkan organisasi lipatan konikal \(\alpha/\beta \) hidrolase yang mengandungi 13 \(\alpha \)-heliks dan 11 \(\beta \)-bebenang. Triad pemangkin terpelihara yang terdiri daripada serina 113, histidina 358 dan asid aspartic 317 didapati di tapak aktif yang berpersekitaran hidrofobik. Struktur tiga dimensi enzim lipase ARM mempamerkan ciri-ciri seperti tapak ikatan logam ion zink dan kalsium, peratusan tinggi asid amino prolina, bercaj dan aromatik di dalam protein serta peratusan tinggi asid amino glisina dan hidrofobik yang berada di permukaan protein. Ciri-ciri struktur enzim lipase ARM ini menjelaskan sifat lipase ARM yang termostabil dan stabil di dalam pelarut organik.
Konklusinya, penghabluran dan elusidasi struktur enzim lipase ARM yang termostabil dan stabil di dalam pelarut organik telah meningkatkan pemahaman penyelidik tentang sifat enzim ini. Informasi berkenaan ciri-ciri struktur tiga dimensi dan adaptasi struktur lipase ini juga memberi manfaat kepada penghasilan lipase yang baharu dan berfungsi dengan lebih baik.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my appreciation to my research supervisors, Professor Dr. Raja Noor Zaliha Raja Abdul Rahman, Dr. Mohd Shukuri Mohamad Ali and Dr. Adam Leow Thean Chor for their useful comments, constructive critics and enthusiastic encouragement throughout the course of this degree.

I am particularly grateful to the assistance given by our Japanese collaborators especially Dr. Koji Inaka, without whose knowledge and guidance this study would not be successful. Special credit to Professor Atsushi Nakagawa, as this study was performed under the International Collaborative Research Program of the Institute for Protein Research, Osaka University. I would also like to extend my thanks to the Japanese Aerospace Exploration Agency (JAXA) and those involved in the JAXA Protein Crystal Growth space experiments for their technical support, expertises and facilities. In addition, I acknowledge the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for their financial support for this study.

Special appreciation goes to my colleagues especially Ira Maya, Rudzanna, Ariati, Arilla, Hafizah, Adura, Azmir, Saif, Zarir, the crystal group members, Lab 140 and EMTECH group members for the academic discussions, research aid, moral support and cooperation. Thank you for the companionship and memories.

Last but not least, my deepest gratitude goes to my beloved parents, brothers, sisters and family for their endless love, care, prayers, patience and support. To my friends, Dzualia, Nadirah, Nazira and others who indirectly contributed in this research, your kindness means a lot to me. Thank you very much.
I certify that a Thesis Examination Committee has met on 22 March 2013 to conduct the final examination of Nur Dayana Nisbar on her thesis entitled "Crystallization of Novel ARM lipase and Elucidation of its Space-grown Crystal Structure" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1988. The Committee recommends that the student be awarded the Master of Science (with Thesis) degree.

Members of the Thesis Examination Committee were as follows:

Janna Ong Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Arif Syed, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohd Puad Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Zeti Azura Mohamed Hussein, PhD
School of Bioscience and Biotechnology
Faculty Science and Technology
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 May 2013
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master. The members of the Supervisory Committee were as follows:

Raja Noor Zaliha Raja Abdul Rahman, D.Eng
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Adam Leow Thean Chor, PhD
Senior lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mohd Shukuri Mohamad Ali, PhD
Senior lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NUR DAYANA NISBAR

Date: 22 March 2013
TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF APPENDICES	xviii
LIST OF ABBREVIATIONS	xix

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Lipases

- 2.1.1 Microbial lipases
- 2.1.2 Thermostable lipases
- 2.1.3 Organic solvent-tolerant lipases
- 2.1.4 Application of lipases

2.2 Purification of recombinant protein

2.3 Protein crystallization

- 2.3.1 Screening for crystallization conditions
- 2.3.2 Crystallization methods
- 2.3.3 Microgravity experiment

2.4 X-ray crystallography

2.5 Three-dimensional structure of lipases

3 MATERIALS AND METHODS

3.1 Materials

3.2 Bacterial sources

3.3 Screening of lipase producer

3.4 Preparation of inoculums

3.5 Preparation of stock culture

3.6 Expression of ARM lipase

3.7 Purification of ARM lipase

- 3.7.1 Affinity chromatography
- 3.7.2 Anion exchange chromatography

3.8 Buffer exchange

3.9 SDS-polyacrylamide gel electrophoresis

3.10 Lipase assay

3.11 Bradford assay

3.12 Protein crystallization of ARM lipase

- 3.11.1 Preparation of protein
- 3.11.2 Crystallization screening
- 3.11.3 Microbatch crystallization

xii
3.11.4 Sitting drop crystallization
3.11.5 Hanging drop crystallization
3.11.6 Capillary crystallization
3.11.7 Optimization of crystallization conditions
3.11.8 Validation of protein crystal
3.11.9 Microgravity experiment
3.12 X-ray crystallography
3.12.1 Data collection
3.12.2 Data processing
3.12.3 Validation of model structure
3.12.4 Three-dimensional structure analysis

4 RESULTS AND DISCUSSION
4.1 Purification of ARM lipase
4.1.1 Affinity chromatography
4.1.2 Anion exchange chromatography
4.1.3 Purification summary
4.2 Protein crystallization
4.2.1 Screening for crystallization condition
4.2.2 Reproduction of ARM lipase crystal
4.2.3 Optimization of crystallization condition
4.3 X-ray crystallography
4.3.1 Data collection
4.3.2 Data processing
4.3.3 Validation of model structure
4.4 Analysis of three-dimensional structure of ARM lipase

5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES
APPENDICES
Biodata of Student