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Water pollution by textile azo dyes is a serious problem worldwide. Local white-rot 

fungi isolated from soil and wood samples were screened for the ability to degrade 

textile azo dyes. Seventy one white-rot fungi isolated from various locations in 

Peninsular Malaysia such as Selangor, Kelantan, Perak and Terengganu were 

screened for their ability to degrade four textile azo dyes namely Orange G (C.I. 

16230), Ponceau 2R (C.I. 16450), Biebrich Scarlet (C.I. 26905) and Direct Blue 71 

(C.I. 34140). Forty five isolates gave positive results with varying degrees of 

degradation. Based on these results, an unidentified white-rot fungus (Isolate S17-

UPM) isolated from Universiti Putra Malaysia (UPM) campus in Selangor was 

selected for further studies due to its ability to completely degrade all four azo dyes 

in the shortest time. Nutritional studies on defined solid media showed that Isolate 
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S17-UPM was only able to degrade the four azo dyes under nitrogen-limiting 

conditions and an additional carbon source in the form of glucose was needed to 

provide sufficient energy for the degradation to occur. When grown in two-stage 

liquid culture, Isolate S17-UPM was able to degrade 84 to 99% of 0.2 g/L azo dyes 

in one to ten days with each dye being degraded at different rates. Orange G was 

degraded the fastest followed by Ponceau 2R, Direct Blue 71 and Biebrich Scarlet. 

Generally, azo dye degradation rates were shown to be higher in shake cultures 

compared to static cultures, with rates almost twice those in static cultures. Isolate 

S17-UPM degraded the four azo dyes optimally when incubated at temperature 

between room temperature to 30°C in static cultures. The initial pH of the 

degradation medium (pH 4.0 to 5.9) had significant effects on the degradation rates, 

where the highest degradation rate was found to be at pH 4.5. The final pH of all 

cultures dropped to approximately 4.0. Optimum degradation of the four azo dyes 

was observed when glucose, sucrose, maltose, lactose and fructose were used 

separately as additional carbon source. The degradations rates were higher at lower 

concentrations (0.05 g/L) as compared to higher concentrations (1 g/L) except for 

Biebrich Scarlet. Assays for lignin-modifying enzymes (LMEs) involved in azo dye 

degradation showed the presence of laccase (E.C. 1.10.3.2) only while lignin 

peroxidase (E.C. 1.11.1.14) and manganese peroxidase (E.C. 1.11.1.13) were not 

detected. Laccase activity profile in static liquid degradation cultures showed 

correlation to the azo dye degradation profile and was highest in cultures incubated 

at room temperatures except for Orange G cultures, which was highest at 30 °C. The 

initial pH of the degradation medium (pH 4.0 to 5.9) did not have any significant 
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effect on laccase activity except in Ponceau 2R and Biebrich Scarlet cultures where 

it is highest at pH 5.9. Additional carbon sources such as glucose (6C), sucrose 

(12C), maltose (12C), lactose (12C) and fructose (6C) which were used separately in 

cultures incubated with Orange G, Ponceau 2R and Direct Blue 71 gave much 

higher laccase activity compared to other carbon sources used. Dye concentrations 

ranging from 0.05 to 1.00 g/L have significant effects on the laccase activity 

especially Ponceau 2R. Staining activities of laccase in non-denaturing sodium 

dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE) showed high-

lighted green bands around 66 kDa. Laccase produced by Isolate S17-UPM during 

azo dye degradation was partially purified using Macro-Prep High-QTM strong-anion 

exchanger and SuperoseTM gel filtration column, when 2,2’-azinobis (3-

ethylbenzothiazoline-6-sulfonate) (ABTS) was used as the substrate, it was shown to 

have a Km (app) value of 1.6 mM, Vmax (app) value of 16.5 μmol/min.ml, optimum 

activity at 55 to 75°C and pH 2.0 to 3.0 while being most stable at room temperature 

and pH 6.0 to 7.0. Conclusively, an azo dye-degrading fungus was isolated and the 

decolourisation process was optimized, while the enzyme involve was partially 

purified and characterized. 
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Pencemaran air oleh pewarna tekstil azo merupakan satu masalah seluruh dunia. 

Kulat reput-putih tempatan yang dipencilkan dari sampel tanah dan kayu telah 

disaring untuk keupayaan mengurai pewarna tekstil azo. Tujuh puluh satu kultur 

kulat reput-putih telah dipencilkan dari beberapa lokasi di Selangor, Kelantan, Perak 

dan Terengganu dan disaring untuk keupayaan mengurai empat pewarna tekstil azo; 

Orange G (C.I. 16230), Ponceau 2R (C.I. 16450), Biebrich Scarlet (C.I. 26905) dan 

Direct Blue 71 (C.I. 34140). Empat puluh lima kultur pencilan telah memberikan 

keputusan positif yang berbeza-beza tahap penguraiannya. Berdasarkan keputusan 

ini, satu kultur kulat reput-putih yang tidak dikenalpasti (Isolat S17-UPM) yang 

telah dipencilkan dari sampel di kampus Universiti Putra Malaysia (UPM) Selangor 

telah dipilih untuk kajian seterusnya kerana keupayaanya mengurai keempat-empat 

pewarna azo yang digunakan dalam masa yang tersingkat. Kajian nutrisi 

menggunakan media kultur pejal terperinci menunjukkan Isolat S17-UPM hanya 
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mampu mengurai keempat-empat pewarna azo tersebut ketika berada di dalam 

keadaan kekurangan nitrogen dan sumber karbon tambahan seperti glukosa 

diperlukan untuk membekalkan tenaga yang cukup bagi proses penguraian untuk 

berlaku. Apabila ditumbuhkan di dalam kultur cecair dua peringkat, Isolat S17-UPM 

mampu mengurai 84 hingga 99% 0.2 g/L pewarna azo dalam satu hingga sepuluh 

hari dengan kadar penguraian yang berbeza-beza. Orange G telah diurai terpantas, 

diikuti oleh Ponceau 2R, Direct Blue 71 dan Biebrich Scarlet. Secara amnya, kadar 

penguraian pewarna azo adalah lebih tinggi di dalam kultur goncang berbanding di 

dalam kultur pegun, dengan kadarnya hampir dua kali ganda di dalam kultur pegun. 

Isolat S17-UPM mengurai pewarna-pewarna azo tersebut secara optimum apabila 

dieramkan pada suhu bilik hingga 30°C di dalam kultur pegun manakala pH awal 

media penguraian (pH 4.5 hingga 5.9) mempunyai kesan yang bermakna ke atas 

kadar penguraian di dalam semua kultur di mana kadar penguraian yang tertinggi 

berlaku pada pH 4.5. Walaubagaimanapun, pH akhir kesemua kultur telah menurun 

ke sekitar pH 4.0. Degradasi optimum dapat diperhatikan apabila glukosa, sukrosa, 

maltosa, laktosa dan fruktosa digunakan secara berasingan sebagai sumber karbon 

tambahan. Degradasi untuk pewarna yang diuji adalah lebih tiggi pada kepekatan 

rendah (0.05 g/L) berbanding dengan kepekatan tinggi (1.00 g/L), kecuali Biebrich 

Scarlet. Pencerakinan untuk enzim-enzim pengubah lignin yang terlibat dengan 

penguraian pewarna azo hanya menunjukkan kehadiran lakase (E.C. 1.10.3.2) 

manakala lignin peroksidase (E.C. 1.11.1.14) dan mangan peroksidase (E.C. 

1.11.1.13) tidak dapat dikesan. Profil aktiviti laccase di dalam kultur cecair pegun 

menunjukkan korelasi dengan profil penguraian pewarna azo dan adalah tertinggi di 
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dalam kultur yang dieram pada suhu bilik kecuali kultur Orange G (30 °C). pH awal 

media penguraian (pH 4.5 hingga 5.9) tidak mempunyai kesan yang bermakna ke 

atas aktiviti lakase kecuali di dalam kultur Ponceau 2R dan Biebrich Scarlet di mana 

ia adalah tertinggi pada pH 5.9. Sumber karbon tambahan seperti glukosa, sukrosa, 

maltosa, laktosa dan fruktosa yang digunakan secara berasingan dalam kultur 

Orange G, kultur Ponceau 2R dan kultur Direct Blue 71 menghasilkan aktiviti lakase 

yang lebih tinggi berbanding dengan kultur yang menggunakan sumber karbon yang 

lain. Kepekatan pewarna yang digunakan (0.05 hingga 1.00 g/L) mempunyai kesan 

yang bermakna kepada aktiviti lakase terutamanya dalam kultur Ponceau 2R. 

Pewarnaan aktiviti laccase menerusi gel elektroforisis sodium dodesil sulfat-

poliakrilamida tanpa urai menunjukkan garisan berwarna hijau di sekitar 66 kDa. 

Lakase yang telah dihasilkan oleh Isolat S17-UPM semasa penguraian pewarna azo 

telah ditulenkan separa menggunakan kolum penukar anion kuat Macro-Prep High-

QTM dan kolum penurasan gel SuperoseTM. Apabila 2,2’-azinobis (3-

etilbenzothiazolin-6-sulfonat) (ABTS) digunakan sebagai substrat, ia didapati 

mempunyai nilai Km 1.6 mM, nilai Vmax 16.5 μmol/min.ml, aktiviti optimum pada 

55 hingga 75°C dan pada pH 2.0 hingga 3.0 manakala ia adalah paling stabil pada 

suhu bilik atau ke bawah dan pada pH 6.0 dan 7.0. Kesimpulannya, sejenis kulat 

pengurai pewarna azo telah dipencilkan dan proses penyahwarnaan telah 

dioptimumkan, manakala enzim yang terlibat telah ditulenkan separa dan dicirikan. 
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CHAPTER 1 
 

INTRODUCTION 

 

The use of synthetic dyes makes this modern world an interesting and colourful 

place for mankind. Synthetic dyes have mostly replaced natural dyes, especially in 

the textile industry as a result of their generally superior qualities such as range of 

colours, colour intensity, ease of manufacture, fastness and resistance to fading by 

physical, chemical and microbial agents (Wesenberg et al., 2003). 

 

Regardless of the advantages of synthetic dyes over natural dyes, synthetic dyes 

present their own new set of problems. The most noticeable is the aesthetic pollution 

of waterways caused by the presence of dyes leached from textile factories since 

they are visible even in minute amounts (Banat et al., 1996). Not only that, the 

presence of dyes could also potentially reduce the amount of sunlight reaching the 

bottom of rivers and lakes and thus affects the ability of water plants to carry out 

photosynthesis (Banat et al., 1996; Torres et al., 2003; Wesenberg et al., 2003). This 

will have the net effect of reducing the availability of oxygen in the water to other 

aquatic animals (Yesilada et al., 2003). Another more dangerous problem is the 

production of potentially carcinogenic aromatic amine compounds from the partial 

cleavage of synthetic dyes by anaerobic bacteria found in wastewater treatment 

plants (Pinheiro et al., 2004), especially from the azoic dye group.  

 



Existing azo dye removal methods usually involve physical and/or chemical 

treatments. Conventional wastewater treatment such as activated sludge and 

trickling filters generally fail to decolourise these dye effluents (Kasinath et al., 

2003; Wesenberg et al., 2003) and as stated above, they might actually worsen the 

problem. These methods have many shortcomings. Chemical treatments produce 

large amounts of chemical sludge with the attendant disposal problems while 

production of ozone is very costly (Supaka et al., 2003). Physical treatments are also 

very expensive due to the high operating expenses to produce and regenerate 

activated carbon (Shen et al., 1992). For these reasons, biological treatments such as 

utilizing the biodegradative ability of bacteria and ligninolytic fungi are being 

investigated as a viable and cost effective alternative. 

 

Research into bioremediation, or the use of microorganisms or their enzymes to 

biotransform the contaminated environments to their original state (Thassitou and 

Arvanitoyannis, 2001) are currently still in the early stages. Many investigators have 

isolated fungi from the environment for the biodegradation of textile dyes for the 

past 20 years or so. Fungi, such as Phanerochaete chrysoporium and Tinctporia sp., 

both belonging to the ligninolytic white-rot fungi, are among the first to have been 

shown to have the ability to degrade azo dyes (Awaluddin et al., 2001). However, 

until recently, most published research, including those that have been carried out in 

Malaysia have focused on these temperate species (Awaluddin et al., 2001; Levin et 

al., 2004) while ignoring the rich biodiversity available in our tropical country. 
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Despite good degradation, microbes from foreign locations may cause ecological 

diseases. Thus, local isolates as the best candidates for bioremediation. 

 

Azo dyes, which were designed to be very resistant to physical and biological 

degradation, are widely used colorants in various industries especially in textile 

industry. Its ubiquity arises due to its ease of manufacture, low production costs and 

excellent colours. However, it is now realized that contamination of waterways by 

azo dyes could lead to some potentially serious ecological and health problems. 

Current conventional water treatment methods are unable to remove them efficiently 

or are too expensive to apply in large-scale plants. To biodegrade the azo dyes 

efficiently, economically and at the same time being environmentally friendly, 

bioremediation offers an attractive solution.  

 

Biodegradation of azo dyes by white-rot fungi presents a great potential for large-

scale applications after many bioremediation processes being investigated for this 

purpose. Its biodegradation system, comprising of lignin modifying enzymes are not 

only efficient but also have a wide substrate range. At this time, most research are 

focused on a narrow range of well-known white-rot fungi while the rich biodiversity 

of fungi found in tropical forests such as in Malaysia is ignored most of the time. 

There are reasons to believe that these undiscovered species might have greater azo 

dye degrading abilities compared to the ones that are being studied now. Hence, the 

processes to isolate and screen new white-rot fungi for the biodegradation of azo 

dyes have to be done intensively. 
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