UNIVERSITI PUTRA MALAYSIA

EXPRESSION AND CHARACTERIZATION OF RECOMBINANT THERMOSTABLE L2 LIPASE IN PICHIA PASTORIS

SURIANA SABRI

FBSB 2007 1
EXPRESSION AND CHARACTERIZATION OF RECOMBINANT THERMOSTABLE L2 LIPASE IN
PICHIA PASTORIS

SURIANA SABRI

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2007
EXPRESSION AND CHARACTERIZATION OF RECOMBINANT THERMOSTABLE L2 LIPASE IN *PICHIA PASTORIS*

By

SURIANA SABRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2007
A special dedication to

To my nephews and nieces; Syafiqah, Hafiz, Zafirah, Syahirah, Hazirah, Samirah, Suraya, Safia, Nabil and Idham, for their presence, that light up my life,

To Leow; for his unfaltering support and always being there for me...
EXPRESSION AND CHARACTERIZATION OF RECOMBINANT THERMOSTABLE L2 LIPASE IN PICHIA PASTORIS

By

SURIANA SABRI

April 2007

Chairman: Professor Raja Noor Zaliha Raja Abd Rahman, PhD

Faculty: Biotechnology and Biomolecular Sciences

The gene encoding mature thermostable L2 lipase from Bacillus sp. L2 was cloned into Pichia pastoris expression vectors and placed under the control of the constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter and methanol inducible alcohol oxidase (AOX) promoter. In inducible system, recombinant L2 lipase was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence, compared to the constitutive system. The optimization of the recombinant L2 lipase production (from inducible system) in 100 mL culture was done for the best clones pPαS3 and pPαG2 from Pichia strains SMD1168H and GS115, respectively. The effect of media formulation, methanol concentration and induction time on L2 lipase production from inducible system was evaluated. A time course profile of recombinant lipase production in 500-mL flasks with the optimized conditions
was performed and 15.3 mg/mL and 14.25 mg/mL of dry cell weight were produced after 144 h of induction time from recombinant pPαS3 and pPαG2, respectively. The lipase activities detected from both clones were 91 U/mL and 125 U/mL for pPαS3 and pPαG2, respectively.

The recombinant L2 lipase was purified to 1.8-fold with 63.2% yield and with specific activity of 458.1 U/mg using affinity chromatography. The enzyme was in a monomeric form, non-glycosylated with a molecular weight of 44.5 kDa. The optimum pH and temperature were 8.0 and 70°C, respectively. The enzyme was stable in the pH range of 8.0-9.0 and at 65°C for 60 min where it retained more than 70% of its residual activity. The metal ions Ca^{2+}, Na^+, Cu^{2+} and Mn^{2+} activated the lipase at 1 mM, whereas Mg^{2+} and Zn^{2+} inhibited it. Lipase showed a notable preference for medium to long chain triacylglycerols (C10–C16), with the highest activity toward tripalmitin (C16). It hydrolyzed all the natural oil tested, with the highest hydrolysis rate on corn oil and the least was on sunflower oil. L2 lipase was inhibited by EDTA, PMSF, pepstatin A and all the surfactants tested. It showed random positional specificity towards triolein. CD spectral analysis of L2 lipase revealed a T_m of around 67.2°C.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGEKSPRESAN DAN PENCIRIAN LIPASE L2 TERMOSTABIL REKOMBINAN DALAM PICHIA PASTORIS

Oleh

SURIANA SABRI

April 2007

Pengerusi: Profesor Raja Noor Zaliha Raja Abd Rahman, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Gen yang mengekod lipase L2 termostabil dari Bacillus sp. L2 telah diklonkan di dalam vektor pengekpresan Pichia pastoris dan diletakkan di bawah kawalan promoter-promoter gliseraldehida-3-fosfat dehydrogenase (GAP) konstitutif dan alkohol oksidase (AOX) teraruh metanol. Di dalam sistem teraruh, lipase L2 rekombinan telah dirembeskan ke dalam media kultur oleh jujukan isyarat α-faktor Saccharomyces cerevisiae dengan lebih berkesan berbanding sistem konstitutif. Pengoptimuman penghasilan lipase L2 (dari sistem teraruh) di dalam kultur 100 mL telah dilakukan untuk klon-klon terbaik iaitu pPαS3 dan pPαG2 daripada strain Pichia SMD1168H dan GS115, masing-masing. Kesan formulasi media, kepekatan metanol, dan masa aruhan ke atas penghasilan rekombinan lipase L2 dari sistem teraruh telah dinilai. Kajian profil masa terhadap penghasilan lipase L2 dengan keadaan optimum telah dijalankan dengan menggunakan kelalang 500-mL dan sebanyak 15.3 mg/mL dan 14.25
mg/mL berat sel kering telah dihasilkan selepas 144 j masa aruhan dari klon-klon pPαS3 dan pPαG2 massing-masing. Aktiviti lipase untuk kedua-dua klon adalah 91 U/mL dan 125 U/mL untuk pPαS3 dan pPαG2, masing-masing.

Lipase L2 rekombinan telah ditulekan kepada 1.8 kali ganda, dengan penghasilan sebanyak 63.2% dan aktiviti spesifik sebanyak 458.1 U/mg dengan menggunakan kromatografi afiniti. Enzim tersebut berada dalam bentuk monomer, tidak diglikosilasikan dan mempunyai berat molekul sebanyak 44.5 kDa. pH dan suhu optimum enzim ini adalah 8.0 dan 70ºC, masing-masing. Enzim ini stabil pada pH 8.0-9.0 dan pada 65ºC selama 60 min di mana ia mengekalkan lebih daripada 70% aktivitinya. Ion-ion logam seperti Ca²⁺, Na⁺, Cu²⁺ dan Mn²⁺ pada kepekatan 1 mM boleh mengaktifkan lipase L2, manakala Mg²⁺ dan Zn²⁺ menyahaktifkannya. Lipase L2 lebih memilih untuk menghidrolisiskan triasilgliserol berantai sederhana ke panjang (C10–C16), dengan aktiviti yang paling tinggi ke atas tripalmitin (C16). Ia juga menghidrolisiskan kesemua minyak semulajadi yang diuji dengan kadar hidrolisis yang tertinggi pada minyak jagung, dan yang terendah pada minyak bunga matahari. Lipase L2 dinyahaktifkan oleh EDTA, PMSF, pepstatin A dan kesemua surfaktan yang telah diuji. Ia menunjukkan kespesifikan posisi rawak terhadap triolein. Analisis spektra CD terhadap lipase L2 menunjukkan nilai Tₘ sebanyak 67.2ºC.
ACKNOWLEDGEMENTS

In the name of Allah, all praise is to Allah the Almighty. Had it not been due to His will, this thesis will not be completed.

A journey is easier when you travel together. Interdependence is certainly more valuable than independence. This thesis is the result of two and half years of work whereby I have been accompanied and supported by many people. It is a pleasant aspect and I have now the opportunity to express my gratitude for all of them.

The first person I would like to thank is my supervisor, Prof. Dr. Raja Noor Zaliha Raja Abd. Rahman, for all the patience, guidance, advice, encouragement and help not only for the sake of the project, but for everything. I would also like to thank my co-supervisors; Prof. Dr. Abu Bakar Salleh and Prof. Dr. Mahiran Basri, who monitored my work and took effort in reading and providing me with valuable comments of this thesis. Not just that, to these three great people, I would like to express lots of gratitude for having shown me to love research. They could not even realize how much I have learned from them. My deepest and sincere gratitude for inspiring and guiding this humble being.

The Enzyme and Microbial Technology Research group also substantially contributed to the completion of this project. Especially the strict and extensive
comments and the many discussions and the interactions during the weekly meeting really had a direct impact on me. Thank you to all the principal lecturers including Assoc. Prof. Dr. Basyaruddin Abdul Rahman and my friends from the Department of Chemistry.

My labmates, who are like my sisters and brothers, thank you for being part of my life; Leow, Tengku, K. Ain, K. Lia, Ada, K. Ferrol, K. Ina, Ghaniee, Shook, Chee Fah, Kok Whye, Wani, Wahida, Rofandi, K. Sha, K. Aiman, Ely, Randa, Afshin and Peiman. Each of you means a lot to me and thank you for making the lab such a wonderful place to be in.

I wish to extend my appreciation to everyone, although not individually named here, who had contributed directly or indirectly to my project and thesis.

This study has been financially aided by National Science Fellowship Scholarship from the Ministry of Science, Technology, and Innovation of Malaysia.

Last but not least, to my parents, brothers, sisters, nephews and nieces for their endless love, care and encouragement.
I certify that an Examination Committee met on 20th April 2007 to conduct the final examination of Suriana Sabri on her Master of Science thesis entitle “Expression and Characterization of Recombinant Thermostable L2 Lipase in *Pichia pastoris*” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the Master of Science.

Members of the Examination Committee were as follows:

Suraini Abdul Aziz, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Janna Ong Abdullah, PhD
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
/Internal Examiner

Abdul Rahman Omar, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
/Internal Examiner

Sheila Nathan, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
/External Examiner

HASANAH MOHD GHAZALI, PhD.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Raja Noor Zaliha Raja Abdul Rahman, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Abu Bakar Salleh, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mahiran Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 JULY 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at other institution.

SURIANA SABRI

Date: 22 MAY 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION | 1 |

2 LITERATURE REVIEW | 5 |
 2.1 Lipases | 5 |
 2.1.1 Applications of lipases | 7 |
 2.1.2 Thermostable lipases | 12 |
 2.1.3 Properties of thermostable lipases | 12 |
 2.1.4 Recombinant thermostable lipases | 14 |
 2.1.5 Thermostable L2 lipase | 15 |
 2.2 Comparison of prokaryotic and eukaryotic cell expression | 17 |
 2.3 Heterologous protein production in yeast | 19 |
 2.4 *Pichia pastoris* expression systems | 20 |
 2.4.1 *Pichia pastoris* | 20 |
 2.4.2 *Pichia* strains | 23 |
 2.4.3 Expression vectors | 24 |
 2.4.4 Promoters | 25 |
 2.4.5 Intracellular and secretory protein expression | 28 |
 2.4.6 Signal sequences | 29 |
 2.4.7 Integration of expression vectors into genome | 30 |
 2.5 Purification strategy of recombinant proteins in *P. pastoris* | 31 |

3 MATERIALS AND METHODS | 32 |
 3.1 Materials | 32 |
 3.2 Strains and plasmids | 32 |
 3.3 Extraction and quantification of genomic DNA | 34 |
 3.4 Amplification of L2 lipase gene | 35 |
 3.5 Cloning of L2 lipase gene into expression vectors | 36 |
3.5.1 Preparation of *Escherichia coli* competent cells 36
3.5.2 Cloning of L2 lipase gene into *Pichia* expression vectors 37
3.5.3 Heat-shock transformation of *Escherichia coli* 38
3.5.4 Analysis of recombinant plasmids 39
3.5.5 Sequencing of and glycosylation site prediction of recombinant L2 lipase gene 39
3.6 Expression of L2 lipase in *Pichia pastoris* 40
3.6.1 Transformation of recombinant plasmid into *Pichia pastoris* 40
3.6.2 Direct screening of multicopy transformants 43
3.6.3 Direct PCR analysis of *Pichia* transformants 43
3.7 Protein expression in *Pichia pastoris* 44
3.7.1 Inducible expression of recombinant pPICZαA/L2 44
3.7.2 Constitutive expression of recombinant pGAPZαA/L2 45
3.8 Optimization studies of inducible L2 lipase expression in shake flask
3.8.1 Effect of media on L2 lipase expression 46
3.8.2 Effect of methanol concentration on L2 lipase expression 47
3.8.3 Effect of induction time on L2 lipase expression 48
3.9 Analysis of recombinant L2 lipase expression 48
3.9.1 Determination of lipase activity 48
3.9.2 Measurement of cell biomass 49
3.9.3 Determination of protein concentration 50
3.9.4 SDS-PAGE analysis 50
3.10 Purification of recombinant L2 lipase 51
3.11 Characterization of purified L2 lipase 52
3.11.1 Molecular weight determination of recombinant L2 lipase 52
3.11.2 Protein deglycosylation 53
3.11.3 Effect of pH on lipase activity and stability 54
3.11.4 Effect of temperature on lipase activity and stability 54
3.11.5 Effect of metal ions on lipase activity 55
3.11.6 Effect of surfactants on lipase activity 55
3.11.7 Effect of inhibitors on lipase activity 55
3.11.8 Substrate specificity towards natural oils 56
3.11.9 Substrate specificity towards triacylglycerols 56
3.11.10 Positional specificity 57
3.11.11 Denatured protein analysis of L2 lipase 58

4 RESULTS AND DISCUSSION 59
4.1 Genomic DNA extraction and construction of recombinant plasmids 59
4.2 Transformation of *Escherichia coli* 62
4.2.1 Sequencing and glycosylation site prediction of 64
recombinant L2 lipase

4.3 Cloning of L2 lipase in *Pichia pastoris* 68
 4.3.1 Transformation and selection of recombinant *P. pastoris* 68
 4.3.2 Direct PCR screening 72

4.4 Expression of thermostable L2 lipase in *Pichia pastoris* 74
 4.4.1 Expression under alcohol oxidase (*AOXI*) promoter 74
 4.4.2 Expression under constitutive glyceraldehyde-3-phosphate dehydrogenase (*GAP*) promoter 76

4.5 Optimization of enzyme production 81
 4.5.1 Effect of media on lipase production 81
 4.5.2 Effect of methanol concentration on lipase production 83
 4.5.3 Effect of induction time on lipase production 86

4.6 Purification of recombinant L2 lipase 90

4.7 Characterization of purified recombinant L2 lipase 94
 4.7.1 Molecular weight determination and deglycosylation of recombinant L2 lipase 94
 4.7.2 Effect of pH on lipase activity and stability 97
 4.7.3 Effect of temperature on activity and thermostability profile of lipase 100
 4.7.4 Effect of metal ions on lipase activity 104
 4.7.5 Effect of surfactants on lipase activity 107
 4.7.6 Effect of inhibitors on lipase activity 110
 4.7.7 Substrate specificity of L2 lipase 112
 4.7.8 Positional specificity 117
 4.7.9 Circular dichroism (CD) spectra analysis of L2 lipase 119

5 Conclusion and Recommendations 122
 5.1 Conclusion 122
 5.2 Recommendations 123

REFERENCES 125
APPENDICES 141
BIODATA OF THE AUTHOR 156
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Important areas of industrial application of microbial lipases</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>List of microorganisms</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>List of plasmids</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Sequencing primer</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>Different media composition</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>Lipase activity of various P. pastoris clones in inducible system</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Lipase activity of various P. pastoris clones in constitutive system</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>Summary of the purification of His-tagged recombinant L2 lipase from ppαG2</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td>Effect of metal ions on L2 lipase activity</td>
<td>106</td>
</tr>
<tr>
<td>10</td>
<td>Effect of surfactant on L2 lipase activity</td>
<td>108</td>
</tr>
<tr>
<td>11</td>
<td>Effect of inhibitor on L2 lipase activity</td>
<td>111</td>
</tr>
<tr>
<td>12</td>
<td>Specificity of L2 lipase towards natural oils</td>
<td>116</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enzymatic reaction of a lipase catalyzing hydrolysis or synthesis of a triacylglycerol substrate</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Gel electrophoresis of genomic DNA from Bacillus sp. strain L2</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Gel electrophoresis of PCR product of gene encoding mature L2 lipase</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>Analysis of recombinant plasmids harboring gene encoding mature L2 lipase</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>Nucleotide and amino acid sequence encoded the recombinant L2 lipase in pPICZαA and pGAPZαA</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Putative N-glycosylation sites in recombinant L2 lipase in Pichia pastoris</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>Gel electrophoresis of linearized plasmids</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>Gel electrophoresis of PCR products from Pichia transformants</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>Growth curve of recombinant GS115 integrated with constitutive vector (pGAPZαA)</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>Effect of various media on yeast growth and L2 lipase production</td>
<td>82</td>
</tr>
<tr>
<td>11</td>
<td>Effect of methanol concentration on lipase production</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>Time course of recombinant L2 lipase expression of P. pastoris clone pPαS3 and pPαG2.</td>
<td>87</td>
</tr>
<tr>
<td>13</td>
<td>Time course of L2 lipase expression in recombinant pPαG2 analysed by SDS-PAGE.</td>
<td>89</td>
</tr>
<tr>
<td>14</td>
<td>Immobilized metal affinity chromatography of His-tagged recombinant L2 lipase.</td>
<td>92</td>
</tr>
<tr>
<td>15</td>
<td>SDS-PAGE (12%) of His-tagged recombinant L2 lipase purified</td>
<td>93</td>
</tr>
</tbody>
</table>
through Ni-Sepharose 6 Fast Flow affinity chromatography

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Molecular weight determination of native recombinant L2 lipase by Sephadex G100 gel filtration chromatography</td>
<td>95</td>
</tr>
<tr>
<td>17</td>
<td>Effect of deglycosylation on the mobility of purified recombinant L2 lipase from Pichia pastoris under denaturing conditions</td>
<td>96</td>
</tr>
<tr>
<td>18</td>
<td>pH profile of L2 lipase</td>
<td>99</td>
</tr>
<tr>
<td>19</td>
<td>pH stability of L2 lipase</td>
<td>99</td>
</tr>
<tr>
<td>20</td>
<td>Temperature profile of L2 lipase</td>
<td>101</td>
</tr>
<tr>
<td>21</td>
<td>Thermostability profile of L2 lipase</td>
<td>103</td>
</tr>
<tr>
<td>22</td>
<td>Substrate specificity of L2 lipase towards different chain length of triacylglycerols.</td>
<td>114</td>
</tr>
<tr>
<td>23</td>
<td>Thin layer chromatography (TLC) analysis of hydrolysis products after incubation of L2 lipase on triolein as substrate at 70°C for 1 h</td>
<td>118</td>
</tr>
<tr>
<td>24</td>
<td>Denatured protein analysis of L2 lipase</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Materials and equipments used in the project</td>
<td>142</td>
</tr>
<tr>
<td>B</td>
<td>Map and Multiple Coning site of pPICZαA vector</td>
<td>146</td>
</tr>
<tr>
<td>C</td>
<td>Map and Multiple Coning site of pGAPZαA vector</td>
<td>148</td>
</tr>
<tr>
<td>D</td>
<td>Calibration curve for determination of oleic acid colorimetrically</td>
<td>150</td>
</tr>
<tr>
<td>E</td>
<td>Calibration curve for determination of dry cell weight of Pichia pastoris</td>
<td>151</td>
</tr>
<tr>
<td>F</td>
<td>Calibration curve for determination of protein content by Bradford assay</td>
<td>152</td>
</tr>
<tr>
<td>G</td>
<td>Composition for SDS-PAGE</td>
<td>153</td>
</tr>
<tr>
<td>H</td>
<td>Fatty acid composition of natural oils</td>
<td>154</td>
</tr>
<tr>
<td>I</td>
<td>Thermodynamic parameter: T_m, ΔH and ΔS of L2 lipase</td>
<td>155</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

APS ammonium persulphate
bp base pair
BSA bovine serum albumin
CTAB cetyltrimethylammonium bromide
dH₂O distilled water
DNA deoxyribonucleic acid
dNTPs deoxyribonucleotide triphosphate
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
Da dalton
kDa kilo dalton
g/L gram per liter
pmol picomole
N normal
rpm rotation per minute
xg gravity
UV ultraviolet
PCR polymerase chain reaction
PMSF phenylmethylsulfonyl fluoride
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OD$_{600}$</td>
<td>optical density at 600 nm</td>
</tr>
<tr>
<td>A$_{260}$</td>
<td>absorbance at 260 nm</td>
</tr>
<tr>
<td>A$_{280}$</td>
<td>absorbance at 280 nm</td>
</tr>
<tr>
<td>ms</td>
<td>milisecond</td>
</tr>
<tr>
<td>SLS</td>
<td>sodium lauryl sulphonate</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N,N-Tetramethylenediamide</td>
</tr>
<tr>
<td>TSB</td>
<td>tripticase soy broth</td>
</tr>
<tr>
<td>YNB</td>
<td>yeast nitrogen base</td>
</tr>
<tr>
<td>U/mL</td>
<td>unit per milliliter</td>
</tr>
<tr>
<td>U/mg</td>
<td>unit per milligram</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>V/cm</td>
<td>volt per centimeter</td>
</tr>
<tr>
<td>μF</td>
<td>Microfarad</td>
</tr>
<tr>
<td>MD</td>
<td>minimal dextrose</td>
</tr>
<tr>
<td>MM</td>
<td>minimal methanol</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base</td>
</tr>
<tr>
<td>Mut$^+$</td>
<td>methanol utilization phenotype plus</td>
</tr>
</tbody>
</table>
Mut^s methanol utilization phenotype slow
BMGY buffered glycerol-complex medium
BMMY buffered methanol-complex medium
RT room temperature
sp species
U unit
YPD yeast extract, peptone and dextrose media
YPDS yeast extract, peptone, dextrose and sorbitol media
CD circular dichroism
MW molecular weight
CHAPTER 1
INTRODUCTION

The global market for industrial enzymes has already achieved the USD 2 billion mark, and it is sure to grow. A report from McKinsey & Co., recently indicated that the future for sustainable development is clearly a bright one, and enzyme technology will play a major role, along with the use of microorganisms, both natural and engineered (Wood and Scott, 2004). To date, approximately 80% of all industrial enzymes are hydrolytic in nature and used for depolymerization of natural substances. Of these enzymes, 60% are proteolytic enzymes used by the detergent, dairy and leather industries. Thirty percent are carbohydrases used in baking, distilling, brewing, starch, and textile industries. This leaves lipases and highly specialized enzymes for use in pharmaceutical, oleochemical, and analytical industries (Kirk et al., 2002). However, this share has the potential to increase dramatically via a wide range of lipases’ new applications (Jaeger and Eggert, 2002; Pandey et al., 1999).

Lipases are efficient catalysts for lipolytic reactions initiating the catabolism of fats and oils by hydrolyzing the fatty acyl ester bonds of acylglycerols (Vulfson, 1994). Lipases have tremendous potential for further exploitation in biotechnology. Their ability to catalyze a wide variety of reactions allow numerous applications in industry such as the removal of oils and fats from
fabrics, machinery and waste water, the production of mono- and diglycerides for food emulsifiers and stereospecific synthesis of compounds including precursors for biologically active therapeutics, herbicides or pesticides (van Kuiken and Behnke, 1994; Haas et al., 1992).

Enzymes from thermophiles have been found to be the most practical commercial used biocatalysts to date because of their overall inherent stability which are better suited to the harsh conditions of industrial processes (Kirk et al., 2002). There are many efforts directed at improving enzymes involved in industrial processes in order to decrease cost and increase energy efficiency. One of the most promising methods to obtain better enzymes is via recombination DNA technology to produce the enzymes in large quantities with desired properties which will make them economically viable.

Cloning and characterization of lipases from thermophilic bacteria and the expression of the biologically active proteins in *Escherichia coli* had been reported (Rahman et al., 2005, Sinchaikul et al., 2001). This protein shows high activity at high temperature and this feature offers several interesting advantages in term of biotechnological applications. Although the protein obtained from recombinant *E. coli* was sufficient to perform a variety of experiments, the low production together with the complex purification procedures were proven unsuitable for industrial production of the enzyme.