PREVALENCE AND MOLECULAR CHARACTERISTICS OF AEROMONAS SPECIES ISOLATED FROM FISH, SHRIMP AND WATERS

Yousr Abdulhadi Noaman

FBSB 2006 38
PREVALENCE AND MOLECULAR CHARACTERISTICS OF AEROMONAS SPECIES ISOLATED FROM FISH, SHRIMP AND WATERS

By

Yousr Abdulhadi Noaman

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2006
DEDICATION

To

my wonderful husband (Adnan), daughter (Roba), son (Ammar)

&

to the loving memory of my late father (who still very much lives in my heart), I dedicate this work
Aeromonas species are ubiquitous aquatic micro-organisms which are opportunistic pathogens that have been associated to wound infections, gastroenteritis, septicemia, and traveler’s diarrhea in humans and hemorrhagic septicaemia in fish. The main routes of exposure in humans are ingestion of contaminated foods and drinking water, or direct contact with recreational waters. In this study, a total of 450 samples were obtained from different sources and locations in Malaysia. Two hundred fifty samples of fresh water were obtained from ponds in UPM (n=150) and in tiger prawn farm in Malacca (n=150), respectively. In addition, 100 samples of shrimps (Penaeus indicus) were purchased from different wet markets in Selangor state: Seri Kembangan (35), Kajang (35) and Bangi (30). Hundred samples of fish (Clarias batrachus) (n=50) and Tiger prawn (Penaeus monodon) (n=50) were obtained from UPM and tiger prawn farm in Malacca, respectively. 238 (52.8%) of the 450 samples were tested positive for the isolation of Aeromonas species, 49 (10.8%), 43 (9.5%),
33 (7.3%), 37 (8.4%), 25 (5.5%), 23 (5.1%), 19 (4.2%), 15 (3.3%) and 2% harbored
A. veronii, A. allosacharophila, A. hydrophila, A. caviae, A. enterpelogenes, A. encheleia, A. trota, A. media like DNA and A. veronii biovar sobria, respectively. All
the strains of A. hydrophila, A. caviae and A. veronii biovar sobria were tested for
resistance to 15 antibiotics and 98.8% and 94.1% of the strains were resistant to
amoxicillin and penicillin, respectively, followed by teicoplanin (89.4%), penicillin
(81.1%) and 12.9% of the strains were found resistant to chloramphenicol. The
Multiple Antibiotic Resistance Indexing (MAR) and the bionumeric analysis of A.
hydrophila, A. caviae and A. veronii biovar sobria, showed that all of them
originated from high-risk sources. Two molecular typing methods were used in this
study to examine the intra/inter-specific genetic relatedness among the A. hydrophila,
A. caviae and A. veronii biovar sobria strains. In the analysis by RAPD-PCR and
ERIC-PCR, the size for RAPD and ERIC fragments ranged from 0.25 to 10.0 kb
with an average number of sixteen and eight bands, respectively. Eighty five
genotypes among the 85 A. hydrophila, A. caviae and A. veronii biovar sobria
isolates were generated using RAPD and ERIC-PCR which indicated that the strains
were very diverse. The PCR analysis for detection of aerolysin (aer) and hemolysin
(hly) showed that 50.5% of the isolates carried hemolysin (hly) gene and 45.9% of
the isolates carried aerolysin (aer) gene. The nucleotide blast results of aerolysin
gene sequences representative A. hydrophila, A. caviae and A. veronii biovar sobria
revealed a high homology of 94%, 95% and 95% for A. hydrophila, A. caviae and A.
veronii biovar sobria published sequences, respectively. The protein blast also
showed homology (97%, 94% and 96%) as compared with the Genbank database of
National Centre for Biotechnology Information (NCBI). The present study
demonstrates the high intra/inter-specific diversity within the Aeromonas species and
reveals a clear differentiation of strains according to their ecological origin. Increasing presence of haemolysin-producing multiple antibiotic resistant *A. hydrophila*, *A. caviae* and *A. veronii* biovar *sobria* in food and environment may become a potential human health hazard. In conclusion, the research undertaken has contributed significantly to our knowledge of *Aeromonas* by providing new information on its distribution, its specific detection by PCR and inter/intra-species relationship.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

KEJADIAN DAN SIFAT-SIFAT MOLEKULAR SPESIS AEROMONAS DIPENCILKAN DARIPADA SUMBER IKAN, UDANG DAN AIR YANG DIPEROLEHI

Oleh

YOUSR ABDULHADI NOAMAN

September 2006

Pengerusi : Professor Madya Suhaimi Napis, PhD
Fakulti : Bioteknologi dan Sains Biomolekul

Spesis Aeromonas adalah mikroorganisma akuatik yang umum dan patogen berpotensi yang dikaitkan dengan infeksi luka, gastroenteritis, septicemia dan traveler’s diarrhea di dalam manusia dan hemorrhagic septicemia di dalam ikan. Pendedahan-pendedahan utama di dalam manusia kepada bacteria ini adalah penghadaman makanan dan minuman yang tercemar, atau pendedahan langsung kepada air rekreasi. Di dalam kajian ini, sejumlah 450 sampel telah diperolehi daripada sumber-sumber dan tempat-tempat yang berbeza di Malaysia. Dua ratus lima puluh sampel air tawar telah diperolehi daripada kolam-kolam di UPM (n=150) dan kolam udang harimau di Melaka (n=150), masing-masing. Selain itu, 100 sampel udang kecil (Penaeus indicus) telah diperolehi daripada pasar malam yang berbeza di Selangor: Seri Kembangan (35), Kajang (35) dan Bangi (30). Seratus sampel ikan
(Penaeus indicus) (n=50) dan udang kecil (udang harimau) (n=50) diperolehi daripada UPM dan udang harimau di Melaka. Dua ratus tiga puluh lapan (52.8%) daripada 450 sampel adalah positif untuk ujian bagi kehadiran Aeromonas spesis, 49 (10.8%), 43 (9.5%), 36 (7.3%), 38 (8.4%), 25 (5.5%), 23 (5.1%), 19 (4.2%), 15 (3.3%) dan 2% membawa A. veronii, A. allosacharophila, A. hydrophila, A. caviae, A. encheleia, A. trota, A. media like DNA dan A. veronii biovar sobria. Kesemua pencilan A. hydrophila, A. caviae dan A. veronii biovar sobria diuji untuk kerintangan bagi 15 antibiotik dan didapati 98.8% dan 94.1% pencilan yang rintang kepada amoksilin dan penisilin, diikuti dengan teikoplanin (89.4%), penisilin (81.1%). 12.9% daripada pencilan didapati rintang kepada chloramphenicol. Multiple Antibiotic Resistance Indexing (MAR) dan analisis bionumerik untuk A. hydrophila, A. caviae dan A. veronii biovar sobria menunjukkan yang kesemua spesis ini berasal daripada sumber yang berisiko tinggi (high-risk sources). Dua metod molecular typing digunakan di dalam kajian ini untuk melihat kaitan intra/inter-specific genetik di antara pencilan-pencilan A. hydrophila, A. caviae dan A. veronii biovar sobria. Di dalam analisis RAPD-PCR dan ERIC-PCR, saiz fragment bagi RAPD dan ERIC adalah di antara 0.25 hingga 10.0 kb dengan purata bilangan bands di antara enam belas dan lapan bands. Lapan puluh lima genotype bagi 85 pencilan A. hydrophila, A. caviae dan A. veronii biovar sobria diperolehi menggunakan kaedah RAPD dan ERIC-PCR yang menunjukkan bahawa pencilan sangat pelbagai. Analisis PCR untuk penentuan gen aerolysin (aer) dan hemolysin (hly) menunjukkan 50.5% pencilan membawa gen hemolysin (hly) dan 45.9% pencilan membawa gen aerolysin. Keputusan nucleotide blast bagi turutan gen aerolysin representative A. hydrophila, A. caviae dan A. veronii biovar sobria menunjukkan homologi yang tinggi untuk turutan A. hydrophila, A. caviae and A. veronii biovar sobria yang sebenarnya.
Keputusan *protein blast* juga menunjukkan homologi (97%, 94% dan 96%) merujuk kepada *Genbank database of National Centre for Biotechnology Information (NCBI)*. Kajian ini menyatakan kepelbagaian *intra/inter-specific* yang tinggi di kalangan spesis *Aeromonas* dan menunjukkan perbezaan yang jelas bagi pencilan merujuk kepada ekologi asal mereka. Kehadiran *haemolysin-producing multiple antibiotic resistant* *A. hydrophila, A. caviae* dan *A. veronii biovar sobria* yang meningkat di dalam makanan dan persekitaran akan menjadi *hazard* yang berpotensi bagi manusia. Di dalam kesimpulan, kajian ini menyumbangkan kepada kami pengetahuan *Aeromonas* yang penting di dalam menyediakan informasi baru tentang kejadian, penentuan spesis menggunakan PCR dan hubungan inter/intra-spesis.
ACKNOWLEDGEMENTS

If I remove what I owe to all of you, there wouldn't be much left of me…

I owe first and foremost my profound gratitude to almighty ALLAH, the source of all inspiration and help, and without whose assistance, this study would not have come into existence.

I wish to thank my study supervisor, Associate Professor Dr. Suhimi Napis, whose guidance and support is greatly appreciated and was instrumental in the success of my graduate program.

I would like to sincerely thank my co-supervisors, Prof. Dr. Son Radu, Prof. Dr. Gulam Rusul and Associate Professor Dr. Zaiton Hassan. Their tireless efforts have been greatly appreciated. Their guidance, support, and friendship were invaluable in the completion of this study. It has been a privilege and honor to work and study under such a dedicated team.

Much appreciation goes to Professor Datin Dr. Khatijah Yousf, Dean of the Faculty of Biotechnology and Biomolecular Sciences, UPM who graciously offered her time and advice in coordinating my study.

Sincere gratitude is also extended to all the staff of the Faculty of Biotechnology and Biomolecular Sciences, and Faculty of Food Science and Technology, University
Putra Malaysia, who contributed in one way or another towards the completion of my study.

I gratefully acknowledge the technical assistance, advice, support and friendship of my lab mates: Lesley, Chandrika, Kqueen, Yin Sze, Sia Yin, Ibu Marlina, Jurin, Tuan, Heni, Daniel, Tunung, Kak Zila, Bilinda, Rani, Khizura, Zul, Tang Sui Yan, Usha and Lay ching. Thanks to them to be always there for me…..

My deepest gratitude goes to my friends and sisters (Ghaniah, Ramziah, Lubna, Amnah, Eman, Bushra and Shahrayan) for their help and support at all times.

A million of thanks to my best friends Dr. Lesley and Dr. Kqueen for the discussions and for providing me advice and tips that helped me to stay on the right track.

Last but not the least, my heartfelt appreciation also goes to my family (mum, Rohiah, Refat, Asia, Sameer, Tarek, Wael and Soad) for their unfailing love, support and consistent prayers, who share much of my joy and sorrow, and were my endless source of inspiration during the period of my study. I love you all.
I certify that an Examination Committee met on __________ to conduct the final examination of Yousr Abdulhadi Noaman on her Doctor of Philosophy thesis entitled “Occurrence and Molecular Characterization of Aeromonas Species Isolated From Different Sources” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act of 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommended that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Chairman, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Chairman)

Examiner 1, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
/Internal Examiner

Examiner 2, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
/Internal Examiner

External Examiner, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(External Examiner)

HASANAH GHAZALI, PhD
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Suhaimi Napis, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Son Radu, PhD
Professor
Faculty of Food Science and Technology
University Putra Malaysia
(Chairman)

Gulam Rusul, PhD
Professor
School of Industrial and Technology
Universiti Sains Malaysia
(Member)

Zaiton Hassan, PhD
Associate Professor,
Faculty of Food Science and Technology,
University Putra Malaysia
(Chairman)

AINI IDERIS, Ph.D.
Professor/Dean
Dean of Graduate School
Universiti Putra Malaysia.

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

YOUSR ABDULHADI NOAMAN

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>The Objectives of the study</td>
<td>5</td>
</tr>
<tr>
<td>II LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>6</td>
</tr>
<tr>
<td>Etiology of the Aeromonas</td>
<td>7</td>
</tr>
<tr>
<td>Pathogenicity</td>
<td>10</td>
</tr>
<tr>
<td>Virulence Factor</td>
<td>11</td>
</tr>
<tr>
<td>Lipases</td>
<td>15</td>
</tr>
<tr>
<td>Proteases</td>
<td>15</td>
</tr>
<tr>
<td>Aerolysin cytolytic enterotoxin</td>
<td>16</td>
</tr>
<tr>
<td>Hemolysins</td>
<td>16</td>
</tr>
<tr>
<td>Siderophores and their receptors</td>
<td>17</td>
</tr>
<tr>
<td>L-Lactamases</td>
<td>17</td>
</tr>
<tr>
<td>Amylases</td>
<td>18</td>
</tr>
<tr>
<td>Chitinases</td>
<td>19</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>19</td>
</tr>
<tr>
<td>Ecology</td>
<td>22</td>
</tr>
<tr>
<td>Food and Water as A medium for Survival and Vehicle of Transmission of Aeromonas species</td>
<td>24</td>
</tr>
<tr>
<td>Seafood</td>
<td>25</td>
</tr>
<tr>
<td>Incidence of Human Illness</td>
<td>28</td>
</tr>
<tr>
<td>Isolation of Aeromonas</td>
<td>30</td>
</tr>
<tr>
<td>Identification to species</td>
<td>32</td>
</tr>
<tr>
<td>Antibiotic resistance</td>
<td>34</td>
</tr>
<tr>
<td>Random Amplification of Polymorphic DNA (RAPD)</td>
<td>36</td>
</tr>
<tr>
<td>Enterobacterial Repetitive Intergenic Consensus (ERIC)</td>
<td>38</td>
</tr>
<tr>
<td>Specific Polymerase Chain Reaction to Detect Aerolysin (aero) and Hemolysin (hly) genes</td>
<td>40</td>
</tr>
<tr>
<td>Sequencing for Identification or Confirmation of PCR Products</td>
<td>42</td>
</tr>
<tr>
<td>III PREVALENCE OF AEROMONAS SPECIES IN DIFFERENT SOURCES</td>
<td>44</td>
</tr>
</tbody>
</table>
INTRODUCTION

The objective of this study

MATERIALS AND METHODS

Sampling methods
- Fresh water samples
- Shrimp samples
- Fish samples

Cultivation procedures

IDENTIFICATION OF AEROMONAS SPECIES

Biolog Identification system

Hemolysis test

RESULTS

DISCUSSION

IV ANTIMICROBIAL SUSCEPTIBILITY OF AEROMONAS HYDROPHILA, A. CAVIAE AND A. VERONII BIOVAR SOBRIA ISOLATED FROM DIFFERENT SOURCES

Introduction

Objective of the study

Material and Methods
- Bacterial strains, media, and chemicals
- Antibiotic susceptibility
- Data Analysis
- Multiple antibiotic resistance (MAR)

RESULTS

DISCUSSION

V MOLECULAR TYPING OF AEROMONAS HYDROPHILA, A. CAVIAE AND A. VERONII BIOVAR SOBRIA ISOLATES USING RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD) AND ENTEROBACTERIAL REPEETITIVE INTERGENIC CONSENSUS POLYMERASE CHAIN REACTION (ERIC-PCR) FINGERPRINTING

Introduction

Objective of the study

Material and Methods
- Bacterial Strain
- Genomic DNA Isolation
- Randomly Amplified Polymorphic DNA (RAPD)
 - RAPD-PCR Amplification
- Primers
- ERIC – PCR Amplification
- Primers
- Size Marker for PCR

RESULTS

DISCUSSION
V1 DETECTION OF AEROLYSIN AND HEMOLYSIN GENES IN AEROMONAS HYDROPHILA, A. CAVIAE AND A. VERONII BIOVAR SOBRIA BY SPECIFIC PCR

Introduction 136
Material and Methods 139
Bacterial Strains and DNA Extraction 139
6.3.1.1 Primers 141
PCR Protocol 141
Agarose Gel Electrophoresis 142
Gel Purification for DNA Sequencing using QIAquick® Gel Extraction Kit 144
DNA Sequencing Analysis 145
Results 146
Discussion 162

VII GENERAL DISCUSSION AND CONCLUSION 169

REFERENCES 178
CURRICULUM VITAE 212
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Aeromonas Isolation Media</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Prevalence of Aeromonas spp. in Different Sources</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Prevalence of Aeromonas hydrophila in Different Sources</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Prevalence of Aeromonas caviae in Different Sources</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Prevalence of Aeromonas veronii biovar sobria in Different Sources</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Occur of other Aeromonas spp. in Different Sources</td>
<td>62</td>
</tr>
<tr>
<td>3.6</td>
<td>The type of hemolysin among the A. hydrophila strains isolated from the different sources</td>
<td>63</td>
</tr>
<tr>
<td>3.7</td>
<td>The type of hemolysin among A. caviae strains isolated from the different sources</td>
<td>64</td>
</tr>
<tr>
<td>3.8</td>
<td>The type of hemolysin among A. veronii biovar sobria strains isolated from the different sources</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Distribution of the Antimicrobial resistance Aeromonas Species (n=85) isolates from the different Sources</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Antibiotic Susceptibility of Aeromonas spp. Isolated from the different Sources</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Multiple Antibiotic Resistance Index of Aeromonas hydrophila</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Multiple Antibiotic Resistance Index of Aeromonas caviae</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Multiple Antibiotic Resistance Index of Aeromonas veronii biovar sobria</td>
<td>87</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.1</td>
<td>The Random Primers Used in the Screening of RAPD Analysis</td>
<td>110</td>
</tr>
<tr>
<td>6.1</td>
<td>Primer Sequences for Specific PCR</td>
<td>141</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Points at which shellfish may become unsatisfactory for human consumption</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Diagram Showing the Use of Aerokey II as a dichotomous Key for Identifying the Aeromonas Species</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Map shows the locations of food and environment samples.</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Isolation procedure followed in this study</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Bionumiric Clustering Antibiotic Resistant Pattern of the Aeromonas Species</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>Bionumiric Clustering Antibiotic Resistant Pattern of the A. hydrophila strains</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Bionumiric Clustering Antibiotic Resistant Pattern of the A. caviae strains</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Bionumiric Clustering Antibiotic Resistant Pattern of A. veronii biovar sobria strains</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Genomic DNA Extraction of the Aeromonas species</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>Representative of the RAPD fingerprints of A. caviae with primer Gen 1-50-09</td>
<td>117</td>
</tr>
<tr>
<td>5.3</td>
<td>Representative of the RAPD fingerprints of A. caviae with primer Gen 1-50-02</td>
<td>117</td>
</tr>
<tr>
<td>5.4</td>
<td>Representative of the RAPD fingerprints of A. hydrophila with primer Gen 1-50-02</td>
<td>118</td>
</tr>
<tr>
<td>5.5</td>
<td>Representative of the RAPD fingerprints of A. hydrophila with primer Gen 1-50-02</td>
<td>118</td>
</tr>
<tr>
<td>5.6</td>
<td>Representative of the RAPD fingerprints of A. caviae with primer Gen 1-50-09</td>
<td>119</td>
</tr>
<tr>
<td>5.7</td>
<td>Representative of the RAPD fingerprints of A. veronii biovar sobria with primer Gen 1-50-09</td>
<td>119</td>
</tr>
</tbody>
</table>
5.8 Representative of the ERIC fingerprints of A. caviae with ERIC-PCR primer 120

5.9 Representative of the ERIC fingerprints of A. veronii biovar sobria with ERIC-PCR primer 120

5.10 Dendrogram showing RAPD profiles of typeable A. hydrophila isolates using GEN1-50-01, GEN1-50-02 and GEN1-50-09 121

5.11 Dendrogram showing RAPD profiles of typeable A. caviae isolates using GEN1-50-01, GEN1-50-02 and GEN1-50-09 122

5.12 Dendrogram showing RAPD profiles of typeable A. veronii biovar sobria isolates using GEN1-50-01, GEN1-50-02 and GEN1-50-09 123

5.13 Dendrogram showing RAPD profiles of typeable A. hydrophila, A. caviae and A. veronii biovar sobria 124

5.14 Dendrogram showing ERIC profile of typeable A. hydrophila isolates using ERIC primer 125

5.15 Dendrogram showing ERIC profile of typeable A. caviae isolates using ERIC primer 126

5.16 Dendrogram showing ERIC profile of typeable A. hydrophila, A. caviae and A. veronii biovar sobria isolates using ERIC primer 127

6.1 Flowchart of Boil Cell Extraction 140

6.2 Flowchart of specific PCR Detection of aerolysin and hemolysin genes 143

6.3 Representatives of the detection of Aerolysin gene in A. caviae 147

6.4 Representatives of the detection of Aerolysin gene in A. hydrophila 148

6.5 Representatives of the detection of Hemolysin gene in A. hydrophila 149

6.6 Representatives of the detection of Hemolysin gene in A. veronii biovar sobria 150

6.7 Representatives of the detection of Hemolysin gene in
6.7	Representatives of the nucleotide blast of aerolysin gene of *A. hydrophila* strain (UH1)	153
6.8	Representatives of the nucleotide blast of aerolysin gene of *A. caviae* strain (MC20)	155
6.9	Representatives of the nucleotide blast of aerolysin gene of *A. veronii* biovar *sobria* strain (US2)	157
CHAPTER I

INTRODUCTION

Aeromonads were first described as pathogens for warm- and cold-blooded animals in 1891 and since then, their presence in drinking water has long been known (Gavriel et al., 1998). However, it was not until the 1960s that the Aeromonad was shown to be involved in the human infections. With the knowledge that these environmental microorganisms are responsible for human infections, there is a desire to better understand Aeromonads.

Aeromonads are facultative anaerobic, Gram-negative bacilli that are ubiquitous to aquatic environment (Janda and Abobott, 1998; Escarpulli et al., 2002). They have been isolated from all virtually known surfaces, fresh and marine aquatic environment including lakes, rivers, reservoirs and even from treated drinking water (Brandi et al., 1999; Sen and Rodgers, 2004). The only water source in which they are not often found is the well-protected underground water. Their presence in most sources of water is due to their ability to grow in a wide range of temperatures, mainly in the optimal temperature between 22 to 28°C, and to their requirement of only minimal amount of nutrients (Newcombe, 2005).

Aeromonas strains are both pathogenic and fairly innocuous, in which most of these usually lead to gastrointestinal problems (Vila et al., 2002). Extreme cases in very young or old and immuno-compromised patients, they can lead to diarrhea. *Aeromonas*- associated infections are most common in the summer months or in the warm climate countries; the environment that is optimal for the maximal levels of
bacteria in the water sources. In the same vein, Aeromonad strains have also been linked to wound and enteric extra-intestinal infections (Ferran et al., 2004; Newcombe, 2005).

Not all Aeromonads are pathogenic. Of the 17 characterized species of *Aeromonas*, nine are clinical specimens, while the rest have only been found in the environmental settings (Ko et al., 1996; Rabaan et al., 2001; Vila et al., 2002). *Aeromonas hydrophila*, *A. veronii* bv. *sobria*, and *A. caviae* pose the greatest public health risk, accounting for greater than 80% of the clinical isolates (Patrick, 2003). The *A. veronii* bv. *sobria* is the most common species found in lakes, reservoirs and treated drinking water, while the *Aeromonas veronii* bv. *sobria* and *A. caviae* are the most common species found in intestinal infections, and *A. veronii* bv. *sobria* and *A. hydrophila* are the most common species found in extra-intestinal sources (Kelly et al., 1993; Swift et al., 1999; Guadalupe et al., 2005).

Antibiotic resistance is a significant human health issue and there have been many papers reporting a link between the use of antibiotics in the food producing animals, emergence of antibiotic resistance in *Salmonella*, *Escherichia coli*, *Aeromonas*, *Enterococci* and *Campylobacter* in treated animals, and transfer of these resistant organisms to humans (or their resistance genes to human pathogens) via the food chain (Barton and Pace, 2000; Angulo et al., 2004) in recent years. In addition to transfer the resistant organisms through the consumption of the contaminated fish and shellfish, there is a substantial risk of the environmental contamination due to the practice of using medicated feeds to treat the whole pens or cages. Alderman and Hastings (1998) noted that the controls on the use of antibiotics in aquaculture vary
widely from country to country. In the developed countries such as members of the EU, USA, Canada and Norway, there is limited number of products, regulatory control is strong and the use of antibiotics is declining because of improvement in the management and development of effective vaccines (Burka et al. 1997; WHO 2002; Lillehaug et al. 2003). However, according to Bondad-Reantaso et al., (2005), 90% of the aquaculture production occurs in the developing countries where the regulatory controls are weak and use of antibiotics appears to be widespread.

The *Aeromonas* spp. is listed by the USEPA on the Candidate Contaminant List. Due to the fact that most waterborne *Aeromonas* lacks of the virulence determinants necessary to make them important from a public health perspective, simply collecting *Aeromonas* counts, without providing a characterization of the isolates, will result in an over-estimation of the public health significance of the isolates. A significant correlation between the *Aeromonas*-induced diarrhea and the presence of various enterotoxins from the *Aeromonas* spp. has been recently demonstrated, indicating that these enterotoxin genes can be used as a marker for the virulence potential of the organism. Currently, the number of species recognized within the genus has increased to 17 (Janda and Abbott, 1998). Despite the increase in the number of genospecies, only nine are currently recognized as human pathogens (Carnahan et al., 1991b). Aerokey II is a reliable and accurate system to identify most of the currently recognized Aeromonas species isolated from the clinical specimens (Carnahan et al., 1991b). A significant number of the virulence genes have been described among the *Aeromonas* species, including aerolysin, haemolysin, enterotoxins, proteases and haemagglutinins (Thornley et al., 1997). These virulence