UNIVERSITI PUTRA MALAYSIA

PROPERTIES OF TITANIUM CARBIDE REINFORCED ALUMINIUM SILICON ALLOY MATRIX

M. SAYUTI

FK 2012 121
PROPERTIES OF TITANIUM CARBIDE REINFORCED ALUMINIUM SILICON ALLOY MATRIX

By

M. SAYUTI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

May, 2012
In the Memory of

My Father, Allahyarham Fadhil Aziz

And

Special Dedication to

My Mother
Hj. Cut Nurlaila

My Wife
Cindenia Puspasari

And

My Children:
Nyak Intan Fadhilati
Nyak Qurratu Aini
and Ibnu Sina

M. Sayuti
2012
Metal matrix composites are engineered materials which are a combination of two or more materials, one of which is a metal, whose tailored properties can be attained by systematic combination of different constituents. From a variety of methods available for producing these advanced materials, the conventional casting process is considered as the easiest processing technique. Preparation of these composite materials by foundry technology has the unique benefit of near-net shape fabrication in a simple and cost effective manner. Besides this, casting processes lend themselves to manufacture large number of complex shaped components of composites at a faster rate required by the automotive, aerospace, sports and other consumer oriented industries. Several methods have been developed to control the microstructure of composites during solidification including mechanical vibration, electromagnetic vibration, electromagnetic stirring and semi-solid processing. It is established that
mechanical mould vibration can significantly enhance the structure and properties of composites. In this study, titanium carbide particulate reinforced aluminiums 11.8 wt% silicon alloy matrix composites were fabricated by carbon dioxide sand moulding process by varying the particulate addition by weight fraction on percentage basis using mechanical vibration mould. The influence of a wide range of vibration amplitudes and frequencies on the solidification kinetics, microstructure formation and mechanical properties of Titanium carbide reinforced aluminiums 11.8 wt% silicon alloy were examined. Results show strong influence of mould vibration during solidification on the fabricated composites. The mechanical properties such as tensile strength, impact strength, surface hardness and physical properties such as density, thermal conductivity were significantly increased as a result of mould vibration. The maximum tensile strength is 141.125 MPa with vibration and 135.832 MPa without vibration. The maximum impact energy is 15.073 kJ with vibration and 14.514 kJ without vibration and hardness value based Rockwell superficial 15N-S scale is 85.88 for 2% without vibration and 86.08 with vibration. In addition, the change in microstructure and mechanical properties were successfully represented by the changes in solidification characteristics. Various vibration frequencies have reduced the lamellar spacing that changes the microstructure of the composites which as a result became more fibrous. The corresponding changes in mechanical properties indicate that ductility is more influenced by vibration than without vibration. The increase in ductility was believed to be due to the structural refinement.
Abstrak tesis dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

CIRI TITANIUM KARBIDA DIPERKUKUH ALOI ALUMINIUM SILIKON MATAK

Oleh

M. SAYUTI

Mei 2012

Pengurusi : Profesor Shamsuddin Sulaiman, PhD
Fakulti : Kejuruteraan

Komposit metal logam kejuruteraan bahan-bahan ini merupakan gabungan dua atau lebih bahan-bahan, satu daripadanya adalah logam yang ciri terbentuk boleh dicapai oleh gabungan sistematik dengan unsur-unsur yang berbeza. Dari pelbagai kaedah yang ada untuk menghasilkan bahan-bahan termaju ini, proses penuangan konvensional dianggap sebagai teknik pemprosesan yang paling mudah. Penyediaan bahan-bahan komposit oleh technologi faundri mempunyai manfaat unik fabrikasi bentuk berhampiran dengan cara yang mudah dan kos yang berkesan. Di samping itu proses penuangan menjadikan ianya boleh mengeluarkan sejumlah besar komposit komponen kompleks pada kadar yang lebih cepat yang diperlukan oleh industri automotif, kapal terbang, sukan dan yang berorientasikan pengguna. Beberapa kaedah telah dibangunkan untuk mengawal mikrostruktur komposit semasa pemejalan termasuk getaran mekanikal, getaran elektromagnet, kacau elektromagnetik dan pemprosesan
ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious and the Most Merciful. Alhamdulillah, with His blessing, I have completed this research and preparation of this thesis.

I would like to express my gratitude to my parents. Without the value of life they taught, I would not have reached this achievement. I am extremely thankful to my research supervisor and the chairman of my supervisory committee Professor Dr. Shamsuddin Sulaiman and my sincere appreciations are due to the members of the supervisory committee Dr. B. T. Hang Tuah bin Baharudin, Associate Professor Dr. Mohd Khairol Anuar Mohd Ariffin and Dr. Thoguluva Raghavan Vijayaram for their support in this research work and entire preparation of this doctoral thesis and I would like to convey my thanks to Mr. Ahmad Saifuddin Ismail, Foundry laboratories technician for his assistance during the entire period of my research project.

My acknowledgements are due to Malikussaleh University for financial support through Komisi Beasiswa Aceh (KBA) and Universiti Putra Malaysia for financial support through Graduate Research Fellowship (GRF), and also Research University Grant Scheme (RUGS).

Last but not the least, many thanks to my family for their love, patience, and understanding. I believe that their patience and encouragement has given me the perseverance to achieve my ambition.
APPROVAL

I certify that a Thesis Examination Committee has met on May 24, 2012 to conduct the final examination of M. Sayuti on his thesis entitled “Properties of Titanium Carbide Reinforced Aluminium Silicon Alloy Matrix” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Tang Sai Hong, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Nafsiah Ismail, PhD
Professor Datin
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Faizal Mustapha, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohammed Sarwar Jang Hashmi, PhD
Professor
Faculty of Engineering
Dublin City University
Ireland
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia.

Date: 28 June 2012
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The Members of the Supervisory Committee were as follows:

Shamsuddin Sulaiman, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Khairol Anuar Mohd Arifin, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

B. T. Hang Tuah B. Baharudin, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Thoguluva Raghavan Vijayaram, PhD
Faculty of Engineering and Technology
Multimedia University, Melaka, Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia.

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universisiti Putra Malaysia or other institution.

M. SAYUTI
Date: 24 May 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Problem statement 6
1.3 Research objectives 8
1.4 Scope and limitation 8
1.5 Thesis layout 9

2 LITERATURE REVIEW

2.1 Metal matrix composites (MMCs) 11
 2.1.1 General 11
 2.1.2 Classification of composites 29
 2.1.3 Significance of composites 37
 2.1.4 Preparation of MMCs 39
2.2 Matrix or Matrices 41
2.3 Reinforcing phase / materials 43
 2.3.1 Factors affecting reinforcement 48
 2.3.2 Matrix interface / interphase of matrices 49
 2.3.2.1 Chemical reaction 52
 2.3.3 Particulate reinforcement 54
2.4 Properties of composites relevant to aluminium-based MMCs 56
2.5 Material selected for processing composites 60
 2.5.1 Aluminum – 11.8 % silicon eutectic alloy 61
 2.5.2 Titanium carbide 63
2.6 Vibrations 64
 2.6.1 Ultrasonic vibrations 64
 2.6.2 Electro-magnetic vibrations 67
 2.6.3 Mechanical vibration 69
2.7 Mechanical vibrations moulding in casting 70
2.8 Summary 75
3 RESEARCH METHODOLOGY

3.1 Background 79
3.2 Material description for processing MMCs 82
3.3 Analysis procedure 82
 3.3.1 Preparation of specimens 83
 3.3.2 Preparation of product pattern 83
 3.3.2.1 Procedure to make product pattern 84
 3.3.2.2 Preparation of pouring basin, sprue, sprue
 well base, runners, ingates and risers 85
 3.3.2.3 Mould wall 86
3.4 Preparation of molding sand mixture 86
 3.4.1 Preparation of the cope 87
 3.4.2 Preparation of drag 88
3.5 Production methods of metal matrix composite materials 89
 3.5.1 Particulate reinforced metal matrix composite
 casting fabrication by mechanical vibration 90
 3.5.2 Characterization of particulates selected for this
 research work 91
 3.5.3 Melting and casting of particulate reinforced metal
 matrix composites 92
 3.5.4 Preparation of particulate samples and preheating
 procedure 94
3.6 Composite casting process in action 95
3.7 Testing 99
 3.7.1 Tensile testing 100
 3.7.2 Hardness test 104
 3.7.3 Impact test 106
 3.7.4 Metallography (optical metallurgical microscopy) 108
 3.7.5 Scanning electron microscopy 114
 3.7.5.1 Sample preparation for SEM 116
 3.7.5.2 SEM testing 117
 3.7.6 Density measurement 118
 3.7.7 Fracture mechanics studies 119
 3.7.7.1 Introduction 119
 3.7.7.2 Ductile fracture 120
 3.7.7.3 Brittle fracture 120
 3.7.7.4 Fracture types 121
 3.7.7.5 Factors affecting fracture 122
3.8 Thermal properties 123

4 MECHANICAL VIBRATION TECHNIQUE FOR
ENHANCING MECHANICAL PROPERTIES OF
PARTICULATE REINFORCED ALUMINIUM ALLOY
MATRIX COMPOSITE 126
 Article 1 126

xii
5 EFFECT OF MOULD VIBRATION ON MECHANICAL PROPERTIES OF PARTICULATE REINFORCED ALUMINIUM ALLOY MATRIX COMPOSITE. 136
Article 2 136

6 INFLUENCE OF MECHANICAL VIBRATION MOULDING PROCESS ON THE TENSILE PROPERTIES OF TiC REINFORCED LM6 ALLOY COMPOSITE CASTINGS 147
Article 3 147

7 THE INFLUENCE OF MECHANICAL VIBRATION MOULDING PROCESS ON THERMAL CONDUCTIVITY AND DIFFUSIVITY OF AL-TiC PARTICULATE REINFORCED COMPOSITES 156
Article 4 156

8 MANUFACTURING OF TiC PARTICULATE REINFORCED AL-11.8% Si MATRIX COMPOSITE BY MECHANICAL VIBRATION MOULD 167
Article 5 167

9 CONCLUSIONS AND RECOMMENDATION FOR FURTHER WORK 179
9.1 Conclusions 179
9.2 Recommendation for further work 182

REFERENCES 183
APPENDICES 199
BIODATA OF STUDENT 204
LIST OF PUBLICATIONS 205