DESIGN AND DEVELOPMENT OF AN INTEGRATED GRATING AND SLICING MACHINE FOR STARCHY VEGETABLES

LOK CHUNG YEE

FK 2012 120
DESIGN AND DEVELOPMENT OF AN INTEGRATED GRATING AND SLICING MACHINE FOR STARCHY VEGETABLES

By

LOK CHUNG YEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

October, 2012
DEDICATION

Specially dedicated to...

My respectable parents...

My honourable brothers...

My pleasurable colleagues...

for their supports and encouragements...
DESIGN AND DEVELOPMENT OF AN INTEGRATED GRATING AND SLICING MACHINE FOR STARCHY VEGETABLES

By

LOK CHUNG YEE

July, 2012

Chairman : Siti Mazlina binti Mustapa Kamal, Ph.D
Faculty : Engineering

Conventional processes of grating and slicing that produce both grated and sliced products normally involved two units of independently operated machines. In this study, grating and slicing processes have been combined into a single operation through an integrated machine for simultaneous operations. The purpose of integrating both processes is to reduce operation cost, time, energy consumption, and the number of unit operations involved in the processing system, both grating and slicing production. Three objectives were outlined to achieve in this research. The first objective was to determine the selected physical properties of starchy vegetables (white potato, sweet potato, tapioca, and yam) to be applied to the new machine. The second objective was to develop and design an integrated grating and slicing machine
for simultaneous operation. The final objective was to evaluate the performance of an integrated machine for production of grating and slicing starchy vegetables.

Two selected physical properties of starchy vegetables that were studied are hardness and moisture content. These properties were measured using a destructive testing method of texture and moisture analyzer. The information on the properties of starchy vegetables hardness and moisture content are important to be determined prior to design the food processing equipments which relates to the grating and slicing processes. The selected starchy vegetables used for this study were white potato, sweet potato, tapioca and yam. It was found that the maximum hardness of white potato, yam, sweet potato and tapioca were 65.43 N, 117.82 N, 166.57 N and 196.98 N respectively. The range of moisture content of these vegetables is 60 to 78%. Based on the hardness results, it was determined that the minimum requirement for the cutting force of the integrated machine must not be less than 700 N/m.

During the design and development phase, the machine’s design specifications were identified to ensure that the simultaneous grating and slicing operations in an integrated machine are capable to process the raw materials. The design methodology was first begun with product development process, conceptual design, design selection, detail design, prototype development and finally, machine and production assessment. This machine is developed to overcome the problems faced in conventional grating and slicing processes using two units of independent operation machines. The present state of this machine is suitable for use in industrial processing level, leading to greater improvement in reducing energy and operating consumption (lower power at 750 W with variable speed at 0 – 180 rpm) with lower
speed for grated production range at 750 – 1200 kg/hr and sliced production range at 250 – 400 kg/hr. This newly designed machine is easy to setup, handle, store, clean, service, and maintain as well as capable to produce quality grated (10 x 10 mm at 750 to 1200 kg/hr) and sliced (2 mm thick at 250 – 400 kg/hr) products. This study has demonstrated that the newly integrated machine is ready to be used for the production of food chips and finger products.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

REKABENTUK DAN PEMBANGUNAN MESIN PEMARUT DAN PENGHIRIS BERSEPADU UNTUK SAYURAN BERKANJI

Oleh

LOK CHUNG YEE

Julai, 2012

Pengerusi : Siti Mazlina binti Mustapa Kamal, Ph.D
Fakulti : Fakulti Kejuruteraan

Proses memarut dan menghiris konvensional biasanya menghasilkan produk parutan dan hirisan yang melibatkan dua unit mesin yang beroperasi secara bebas. Dalam kajian ini, proses memarut dan menghiris telah digabungkan ke dalam satu operasi melalui mesin bersepadu untuk operasi memarut dan menghiris secara serentak. Tujuan mengintegrasikan kedua-dua proses tersebut adalah untuk mengurangkan kos operasi, masa, penggunaan tenaga, dan bilangan unit operasi yang terlibat dalam sistem pemprosesan bagi pengeluaran hasil parutan dan hirisan. Tiga objektif telah ditetapkan untuk mencapai matlamat kajian ini. Objektif pertama adalah untuk menentukan sifat-sifat fizikal bagi sayur-sayuran berkanji terpilih (ubi kentang putih, keledek, ubi kayu dan keladi) untuk digunakan dalam mesin baru. Objektif kedua adalah untuk membangun dan mereka bentuk mesin parutan dan hirisan bersepadu

Dua sifat fizikal yang dikaji ialah kekerasan dan kandungan lembapan. Ciri ini diukur dengan menggunakan penganalisa tekstur dan kelembapan melalui kaedah ujian destruktif. Maklumat tentang sifat kekerasan dan kandungan lembapan bagi sayur-sayuran berkanji adalah penting untuk dikaji sebelum mereka bentuk peralatan pemprosesan makanan yang berkaitan dengan proses parutan dan hirisan. Sayuran berkanji terpilih yang digunakan untuk kajian ini adalah ubi kentang putih, keledak, ubi kayu dan keladi. Didapati bahawa kekerasan maksimum ubi kentang putih, keladi, ubi keledak dan ubi kayu ialah 65.43 N, 117.82 N, 166.57 N and 196.98 N masing-masing. Julat kandungan kelembapan sayur-sayuran ini adalah 60 hingga 78%. Berdasarkan kepada hasil keputusan kekerasan, keperluan minimum bagi daya pemotongan mesin bersepadu mestilah tidak kurang daripada 700 N/m.

Semasa dalam fasa pembangunan dan reka bentuk, spesifikasi reka bentuk mesin telah dikenal pasti untuk memastikan bahawa kedua-dua proses memarut dan menghiris dalam mesin bersepadu mampu untuk memproses bahan mentah. Metodologi reka bentuk bermula dengan proses reka bentuk produk, reka bentuk konsep, pemilihan reka bentuk, reka bentuk perincian, reka bentuk prototaip dan akhirnya, penilaian mesin dan penghasilannya. Mesin ini direka bentuk untuk mengatasi masalah yang dihadapi dalam proses memarut dan menghiris konvensional yang menggunakan dua unit mesin yang beroperasi secara bebas. Mesin baharu ini sesuai digunakan untuk industri pemprosesan yang membawa kepada peningkatan
dalam pengurangan penggunaan tenaga dan operasi (kuasa yang lebih rendah pada 750 W dengan kelajuan boleh ubah dari 0 – 180 rpm) dengan kelajuan yang lebih rendah) bagi lingkungan pengeluaran parutan pada 750 – 1200 kg/jam dan lingkungan pengeluaran hirisan pada 250 – 400 kg/jam. Mesin baharu ini juga mudah untuk disedia, dikendali, disimpan, dibersih, disenggara, dan dikawal serta mampu untuk menghasilkan produk parutan (10 x 10 mm dalam 750-1200 kg/jam) dan hirisan (2 mm tebal dalam 250 - 400 kg/jam) yang berkualiti. Kajian ini menunjukkan bahawa mesin bersepadu ini boleh digunakan untuk pengeluaran produk makanan kerepek keping dan jejari.
ACKNOWLEDGEMENTS

I must first express my sincere thanks to Dr. Siti Mazlina Bt. Mustapa Kamal, Dr. B. T. Hang Tuah B. Baharudin, and Dr. Chin Nyuk Ling who gave me the original concept for this thesis. As always, their support and encouragement have inspired me.

I extend my gratitude to several other people who provide me with great assistance during the various phases of the writing of this thesis. With appreciation and recognition to: Tan Hong Tat, Goh Hui Wen, Ang Jing Hui, and especially Ezanee Gires.

As always, my appreciation goes to my mother, Yap Lay Peng, and two brothers, Lok Chung Kiat and Lok Chung Chung, for their support while I work on thesis. Special thanks to my wonderful sister-in-law, Juddy Oh Guat Yen, who comes over whenever I need her to handle my computer crises.

My sincere gratitude goes to the members of my supervisory committee, Dr. Siti Mazlina Bt. Mustapa Kamal, Dr. B. T. Hang Tuah B. Baharudin, and Dr. Chin Nyuk Ling, for their supervision and comments in my research.

This thesis is dedicated to Dr. Siti Mazlina Bt. Mustapa Kamal, with heartfelt appreciation for her willingness to share her knowledge and insights with me.
I certify that a Thesis Examination Committee has met on 16th of July, 2012 to conduct the final examination of Lok Chung Yee on his thesis entitled “Design and Development of an Integrated Grating and Slicing Machine for Starchy Vegetables” in accordance with the Universities and Universities Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the candidate be awarded the Master of Science.

Members of the Examination Committee were as follows:

Johari bin Endan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Farah Saleena binti Taip, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Khairul Anuar bin Mohd Ariffin, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Salman Abu Mansor, PhD
Senior Lecturer
School of Mechanical Engineering
Universiti Sains Malaysia
(External Examiner)

DR. SEOW HENG FONG, Ph.D
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 October 2012
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.

Members of the Supervisory Committee were as follows:

Siti Mazlina binti Mustapa Kamal, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Chin Nyuk Ling, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

B.T Hang Tuah Bin Baharudin, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 October 2012
DECLARATION

I declare that the thesis is my original work except for the quotations and citations that have been duly acknowledge. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at other institutions.

LOK CHUNG YEE

Date: 16 July 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Food Situation and Availability 1
1.2 Starchy Vegetables 3
1.3 Research Problems 4
1.4 Research Objectives 6
1.5 Research Scope 7

2 LITERATURE REVIEW

2.1 Starchy Vegetables 8
 2.1.1 White Potato 8
 (Solanum Tuberosum, Family: Solanaceae) 8
 2.1.2 Sweet Potato 9
 (Ipomoea Batatas, Family: Convolvulaceae) 9
 2.1.3 Tapioca 10
 (Manihot Escylenta, Family: Euphorbiaceae) 10
 2.1.4 Yam 10
 (Dioscorea, Family: Dioscoreaceae) 10
 2.1.5 The Importance and benefits of the Selected Starchy Vegetables 11
2.2 Design 13
2.3 Machine Design 13
2.4 Design Process
 2.4.1 Problem Formulation State
 2.4.2 Product Design and Development
 2.4.3 Product Development Process
 2.4.4 Process of Concept Development
 2.4.5 Concept Generation Method
 2.4.6 Concept Selection Method
 2.4.7 Concept Screening
 2.4.8 Concept Scoring
 2.4.9 Concept Testing and Setting Final Specification
 2.4.10 Prototyping

2.5 Food Processing Operation Unit

2.6 Grating and Slicing Mechanics and Operation

2.7 Design Basis for Food Grating and Slicing Equipments
 2.7.1 Patent Search for Grating and Slicing Appliances
 2.7.2 Benchmarking Study for Similar Food Processing Equipments

2.8 Engineering Properties of Foods

2.9 Summary

3 SELECTED PHYSICAL PROPERTIES OF STARCHY VEGETABLES
 3.1 Introduction
 3.2 Materials and Methodology
 3.2.1 Vegetable Raw Materials
 3.2.2 Sample Size
 3.2.3 Hardness Testing
 3.2.4 Moisture Content Testing
 3.2.5 Testing of Solid Density
 3.3 Results and Discussion
 3.4 Summary

4 DESIGN PROCESS OF AN INTEGRATED GRATING AND SLICING MACHINE
 4.1 Introduction
 4.2 Methodology
 4.2.1 Product Development Process
 4.2.2 Planning Design
 4.2.3 Concept Development for the Prototype Machine
 4.3 Production Rate Assessment
4.4 Results and Discussion

4.4.1 Front-end Process of Concept Development for the Prototype Machine

4.4.1.1 Identifying Customer Needs

4.4.1.2 Establishing Target Specifications

4.4.1.3 Concept Generation

4.4.1.4 Concept Selection

4.4.1.5 Concept Testing

4.4.1.6 Setting Final Specifications

4.4.1.7 Planning of Downstream Development

4.4.2 Fabricated Structure of the Machine

4.4.3 Testing and Validation of the Prototype Machine Fabrication

4.4.4 Production Analyses for Grated and Sliced of Starchy Vegetables

4.4.5 Summary of the Machine Performance for Production of Grated and Sliced Starchy Vegetables

4.5 Conclusion

5 SUMMARY, GENERAL CONCLUSION, AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS