EFFECTS OF RADIANT COOLING ON THERMAL COMFORT IN ENERGY COMMISSION BUILDING IN PUTRAJAYA, MALAYSIA

SAAEED A. NEAMA AL-JAZAARI

FRSB 2013 3
EFFECTS OF RADIANT COOLING ON THERMAL COMFORT IN ENERGY COMMISSION BUILDING IN PUTRAJAYA, MALAYSIA

BY

SAAEED A. NEAMA AL-JAZAARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2013
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to

my beloved wife and kids
Abstract of thesis presented to the Senate of Universiti Putra Malaysia
In fulfilment of the requirement for the degree of Master of Science

EFFECTS OF RADIANT COOLING ON THERMAL COMFORT IN ENERGY COMMISSION BUILDING IN PUTRAJAYA, MALAYSIA

BY

SAAEED A. NEAMA AL-JAZAARI

October 2013

Chair: Nur Dalilah Binti Dahlan Ismail, PhD
Faculty: Design and Architecture

This study presents the effects of radiant cooling on thermal comfort conditions in Energy Commission Building, Malaysia. Which is also known as The Diamond Building located in Putrajaya. It is equipped with radiant slab cooling. The main objective of this study was to determine the effects of radiant cooling on office workers’ thermal comfort conditions. The survey procedure was adopted from the ASHRAE 55 and the ISO 7730 standards. Survey questionnaire were administrated to office workers in the second and sixth floors. The data were analyzed through comparison with ISO 7730’s thermal environment evaluation requirements. In total, 132 data sets completed by 49 participants were collected. The data were collected continuously for four days (two days for each floor) during working hours. The survey data is comprised of two groups. The first group is the result of two online questionnaires, namely a background survey and a daily survey. The second group is comprised of three measurements namely the indoor climate, the radiant asymmetry, and the meteorology.

Findings of the thermal monitoring data suggests most of the thermal comfort conditions indices (excluding overall thermal comfort conditions) are within the recommended limits of the thermal comfort conditions standard of ISO 7730. However, the participants dissatisfied with the overall thermal environment. This dependent variable was compared with all of the independent variables in the background and daily surveys (personal variables, expectation, preferences, relative humidity, sweating, and head covering). The result was a high correlation with preferences for increased air speed ($p < .01$), additional fans ($p < .01$), and more fresh air ($p < .05$). Moreover, a high indoor relative humidity is recorded (due to not using dew sensor). A regression was found between sweating and comfort ($p < .01$). Another finding suggests that participants (males and females) who wore a head covering felt warmer than those who did not wear a head covering ($p < .01$). In conclusion, radiant cooling is not the main cause of thermal discomfort conditions in this building. However, the air supply, the relative humidity, the sweating, and head covering were the main cause of thermal discomfort conditions in this radiant cooling environment.
KESAN PENYEJUKAN BERSERI PADA KESELESAAN HABA
DALAM BANGUNAN SURUHANJAYA TENAGA DI
PUTRAJAYA, MALAYSIA

Oleh

SAAEED A. NEAMA AL-JAZAARI

Oktober 2013

Pengerusi: Nur Dalilah Binti Dahlan Ismail, PhD
Fakulti: Rekabentuk dan Senibina

Hasil daripada data pemantauan terma mencadangkan bahawa kebanyakan indeks keselesaan terma (tidak termasuk keselesaan haba keseluruhan) adalah dalam lingkungan had yang disyorkan mengikut standar keselesaan terma ISO 7730. Walau bagaimanapun, hasil dapatkan mendapati kebanyakan subjek tidak berpuas hati dengan persekitaran haba secara keseluruhan. Didapati bahawa pembolehhabah bersandar mempunyai hubungkait dengan kesemua pembolehhabab bebas didalam kajie selidik latar belakang dan harian (iaitu pembolehhabah peribadi, jangkaan, keutamaan, kelembapan, dan tudung kepala). Kajian mendapati bahawa perkaitan yang tinggi dengan keutamaan bagi peningkatan kelajuan udara, kipas tambahan, kelembapan udara lebih segar. Selain itu, kelembapan dalam yang tinggi direkodkan (kerana tidak menggunakan sensor embun). Regresi a didapati antara berpeluh dan keselesaan. Dapatkan menunjukkan bahawa peserta (lelaki dan perempuan) yang memakai tudung kepala berasa lebih panas daripada mereka yang tidak memakai kepala meliputi. Kesimpulannya, penyejukan berseri bukan punca utama keadaan ketidakselesaan terma dalam bangunan ini. Walau bagaimanapun, bekalan udara, kelembapan relatif, berpeluh, dan kepala
pegangan menjadi punca utama keadaan ketidakselesaan terma dalam persekitaran penyejukan ini berseri.
ACKNOWLEDGEMENTS

الحمد لله رب العالمين

I would like to thank Dr. Nur Dalilah Binti Dahlan, chair of the supervisory committee. Dr. Mohd Fairuz Bin Shahidan, co-supervisor. All the participants in this study, in the Diamond Building. Department of Architecture in the Faculty of Design and Architecture.
APPROVAL

I certify that a Thesis Examination Committee has met on (18 October 2013) to conduct the final examination of SAAEED A. NEAMA AL-JAZAARI on his thesis entitled “Effects of Radiant Cooling on Thermal Comfort in Energy Commission Building in Putrajaya, Malaysia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Norsidah binti Ujang, PhD
Associate Professor
Faculty of Design and Architecture
Universiti Putra Malaysia
(Chairman)

Mohamad Fakri Zaki bin Ja’afar, PhD
Senior Lecturer
Faculty of Design and Architecture
Universiti Putra Malaysia
(Internal Examiner)

Azizah Salim binti Syed Salim, PhD, Ar
Associate Professor
Faculty of Design and Architecture
Universiti Putra Malaysia
(Internal Examiner)

Sharifah Fairuz Syed Fadzil, PhD
Associate Professor
Universiti Sains Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associated Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 January 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nur Dalilah binti Dahlan Ismail, PhD
Senior Lecturer
Faculty of Design and Architecture
Universiti Putra Malaysia
(Chairperson)

Mohd Fairuz Bin Shahidan, PhD
Senior Lecturer
Faculty of Design and Architecture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SAAEED A. NEAMA AL-JAZAAR

Date: 18 October 2013
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi

CHAPTER
1 INTRODUCTION 1
1.1 Background of the study 1
1.2 Statement of the problem 1
1.3 Research questions 2
1.4 Objective 2
1.5 Significance of the study 2
1.6 Scope of the study 3
1.7 Limitations 3
1.8 Protocol 3

2 LITERATURE REVIEW 5
2.1 Putrajaya climate 5
2.2 Radiant Cooling 5
2.2.1 Historical overview 5
2.2.2 System components 6
2.2.3 RC and conventional HVAC system 7
2.2.4 Relevant studies 7
2.3 Thermal Comfort 8
2.4 Office building 14
2.5 Summary 14

3 RESEARCH METHODOLOGY 16
3.1 Method 16
3.1.1 Data collection 16
3.1.2 Data analysis design 16
3.1.3 Merging method 17
3.2 Coding 18
3.3 Time of study 18
3.4 Samples 19
3.4.1 The building 20
3.5 Variables 22
3.6 Survey design 25
3.6.1 Participants 25
3.6.2 Real measurements 26
3.6.3 Final questionnaire 29
3.6.4 Instructions 29
3.7 Pilot test 31
3.7.1 Preliminary tests on external sample 31
3.7.2 Preliminary test on actual sample 31
3.8 Interview 31
3.9 Time schedule 32

4 RESULTS AND DISCUSSION 33
4.1 Questionnaire results 33
 4.1.1 Background survey results 33
 4.1.2 Daily survey 35
 4.1.3 Measurement results 38
4.2 Results analysis 42
 4.2.1 Thermal comfort conditions and the standard 42
 4.2.2 Head covering 49
 4.2.3 Sweating 53

5 SUMMARY, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 56
5.1 Summary 56
5.2 Conclusion 56
 5.2.1 Thermal comfort and standard 57
 5.2.2 Head covering 57
 5.2.3 Sweating 57
5.3 Recommendation for future research 57

REFERENCES 59
APPENDICES 63
A ORIGINAL DATA 63
 A.1 Definition of terms 63
 A.1.1 Definition of terms according to ISO 7730:2005(E) specifications 63
 A.1.2 Definition of terms according to ANSI/ASHRAE 55-2004 specifications (review draft 2008) 63
 A.2 Codebook 64
 A.3 Original data 66
 A.3.1 Background survey 66
 A.3.2 Daily survey 68
 A.3.3 Radiant asymmetry 73
 A.3.4 Meteorology data 74
B PRELIMINARY TESTS 75
 B.1 Pilot test for questionnaire 75
 B.1.1 Self-distributed questionnaire 75
 B.1.2 Results 76
 B.1.3 Modify the questions: 76
 B.1.4 Online questionnaire 76
 B.1.5 Conclusion: 77
 B.1.6 First draft of the questionnaire extracted from literatures 77
 B.2 Pilot test of actual sample 82
 B.2.1 Procedure 82
 B.2.2 Results 84
 B.2.3 Discussion 86
 B.2.4 Conclusion 87
B.2.5 Adopted online questionnaire 88
C INTERVIEW 96
 C.1 Interview report with Maintenance manager 96
 C.2 Interview report with the System designer 98
BIODATA OF STUDENT 100