BIOLOGICAL ACTIVITIES OF METHANOLIC EXTRACTS OF SELECTED LOCAL MUSHROOMS

MAHFUZATUNAJLA HASHIM

FBSB 2012 53
BIOLOGICAL ACTIVITIES OF METHANOLIC EXTRACTS OF SELECTED LOCAL MUSHROOMS

By

MAHFUZATUNAJLA HASHIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

August 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master in Science

BIOLOGICAL ACTIVITIES OF METHANOLIC EXTRACTS OF SELECTED LOCAL MUSHROOMS

By

MAHFUZATUNAJLA HASHIM

August 2012

Chairman: Wan Zuhainis Saad

Faculty : Biotechnology and Biomolecular Sciences

Local selected mushrooms; *Ganoderma boninense*, *Auricularia auricula judae*, *Pleurotus cystidiosus* and one new unidentified (BS01) were evaluated for the antioxidant, antimicrobial, anti-tyrosinase, anti-hyaluronidase, anti-inflammatory and insulin secretion activities. The antioxidant activity was measured using the DPPH (1,1-diphenyl-2-picryl hydrazyl) radical scavenging activity assay and ferric reducing antioxidant power assay (FRAP). In antioxidant activity, both *G. boninense* and *A. A. judae* showed the highest activity for DPPH and FRAP assays with the lowest IC$_{50}$ value. The IC$_{50}$ of *G. boninense* and *A. A. judae* for DPPH
were 129.8 ± 1.8 and 198.5 ± 1.5 while for FRAP were 25.8 ± 5.0 and 52.7 ± 3.8, respectively. Anti-inflammatory activity was determined by inhibition of nitric oxide (NO) and measuring the nitrite (NO$_2^-$) formation using Griess assay. However, only *G. boninense* showed inhibitory effect of NO inhibition with IC$_{50}$ value at 151.3 µg/mL but the extract was also toxic to the RAW 264.7 cell at 500 µg/mL with cell viability percentage of 39.28 ± 2.5% only.

Tyrosinase inhibitory was determined by a spectrophotometric method using L-3,4-dihydroxyphenylalanine (L-DOPA) as a substrate. BS01 exhibited significant ($p < 0.05$) inhibition with the IC$_{50}$ value at 279.4 µg/mL and *G. boninense* at 474.4 µg/mL. The colorimetric Morgan-Elson method was carried out for hyaluronidase assay but all of the mushrooms were tested negative. Insulin secretion activity was measured using rat pancreatic β-cell line, BRIN-BD11 cells and the insulin level produced by the cell line was measured by an enzyme-linked immunosorbent assay using a commercial rat insulin ELISA. Among the mushrooms, *G. boninense* and *P. cystidiosus* extracts showed significant ($p < 0.05$) increased in insulin secretion at the concentration of 62.5, 125, 250 and 500 µg/mL. Overall, from the four mushrooms tested, *G. boninense* seem to exhibit more bioactive compounds and the further work could be done on the isolation, characterization and purification of the active compounds from the crude extract.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

AKTIVITI BIOLOGI EKSTRAK METANOL CENDAWAN TEMPATAN TERPILIH

oleh

MAHFUZATUNAJLA HASHIM

Ogos 2012

Pengerusi : Wan Zuhainis Saad

Fakulti : Bioteknologi dan Sains Biomolekul

Cendawan tempatan, *Ganoderma boninense, Auricularia auricula judae, Pleurotus cystidiosus* dan sejenis spesis yang tidak dikenali (BS01) dinilai untuk aktiviti antioksidan, anti-mikrob, anti-tyrosinase, antihyaluronidase, anti-radang dan aktiviti perembesan insulin. Aktiviti antioksidan diukur menggunakan kaedah 1,1-diphenyl-2-picryl hydrazyl (DPPH) pemerangkapan radikal dan pengurangan antioksidan ferrik (FRAP). Dalam aktiviti antioksi, kedua-dua *G. boninense* dan *A. A. judae* menunjukkan aktiviti tertinggi bagi ujian DPPH dan FRAP dengan nilai IC₅₀ terendah. Nilai IC₅₀ *G. boninense* dan *A. A. judae* untuk DPPH adalah 129.8 ± 1.8 dan 198.5 ± 1.5 manakala untuk FRAP 25.8 ± 5.0 dan 52.7 ± 3.8, masing-
masing. Aktiviti anti-radang ditentukan oleh perencatan nitrik oksida (NO) dan mengukur pembentukan nitrit (NO$\text{$_2$$^-$}$) dengan menggunakan kaedah Griess. Walau bagaimanapun, hanya *G. boninense* menunjukkan kesaan perencatan terhadap NO dengan nilai IC$_{50}$ 151.3 μg/mL tetapi ekstrak tersebut juga toksik kepada sel RAW 264.7 pada kepekatan 500 μg/mL dengan peratusan sel yang hidup hanya 39.28 ± 2.5%.

Perencatan tyrosinase telah ditentukan oleh kaedah spectrophotometrik menggunakan L-3,4-dihydroxyphenylalanine (L-DOPA) sebagai substrat di mana BS01 menunjukkan perencatan yang ketara dengan nilai IC$_{50}$ pada 279.4 μg/mL dan *G. boninense* 474.4 μg/mL. Pengukuran warna Morgan-Elson telah dijalankan untuk cerakin hyaluronidase tetapi semua cendawan yang diuji menunjukkan aktiviti negatif. Aktiviti rembesan insulin adalah diukur menggunakan β-sel pankreas tikus dikenali sebagai BRIN-BD11 dan tahap insulin yang dihasilkan oleh sel diukur oleh cerakin immunosorben enzim yang menggunakan ELISA insulin. Antara semua cendawan, ekstrak *G. boninense* dan *P. cystidiosus* menunjukkan peningkatan yang ketara dalam perembesan insulin pada kepekatan 62.5, 125, 250 dan 500 μg/mL. Secara keseluruhan, dari empat cendawan yang diuji, *G. boninense* menunjukkan sifat bioaktif yang lebih dan kajian selanjutnya boleh dilakukan bagi pengasingan dan penulenan komponen aktif dari ekstrak mentah.
ACKNOWLEDGEMENTS

All praises and thanks to almighty ALLAH SWT, the most merciful, for the blessing and strength to complete this study.

I would like to express my sincere gratitude to my supervisor, Dr. Wan Zuhainis Saad for her invaluable advice, support, encouragement, patience and understanding that made this study possible. Not forgetting, supervisory committee members, Prof. Dr. Norhani Abdullah and Dr. Syahida Ahmad for their constructive comments during the on-going research work and the preparation of this thesis.

Special acknowledgement is given to Assoc. Prof. Dr. Mohd Noor Abdul Wahab for some ideas in this research and Universiti Putra Malaysia for the research grant and my scholarship sponsored. Special thanks are extended to postgraduate students and all staffs of the Mycology and Microbiology laboratory, Mr. Hussain, Mdm. Sharipah, Ms. SitiNordiana and Mr. Rozaidi, also not forgetting postgraduate students in Natural Product Laboratory, IBS.

Heartful thanks are also extended to my family and my husband for their support and inspiration throughout the period of my study in UPM and my entire life.
I certify that an Examination Committee has met on 2nd July 2012 to conduct the final examination of Mahfuzatunajla Hashim on her Master of Science thesis entitled “\textbf{Biological activities of methanolic extracts of selected local mushrooms}” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded Master of Science.

Members of the Examination Committee are as follows:

\textbf{Sioo Chin Chin, PhD}
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

\textbf{Umi Kalsom Md Shah, PhD}
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal examiner)

\textbf{Muhajir Hamid, PhD}
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal examiner)

\textbf{Awang Ahmad Sallehin Awang Husaini}
Associate Professor
Faculty of Resource Science and Technology
Universiti Malaysia Sarawak
(External examiner)

\hline

\textbf{SEOW HENG FONG, Ph.D}
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirements for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Wan Zuhainis Saad
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Norhani Abdullah
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Syahida Ahmad
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

MAHFUZATUNAJLA HASHIM

Date: 2 July 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Kingdom of Fungi
2.2 Basidiomycetes
2.3 Mushrooms as Sources of Bioactive Substances
2.4 Cultivation of Mushroom Fruiting Body
2.5 Antioxidant Activity of Mushrooms
2.6 Anti-tyrosinase Activity of Mushrooms
2.7 Anti-hyaluronidase Activity of Mushrooms
2.8 Antimicrobial Activity of Mushrooms
 2.8.1 Antibacterial Activity of Mushrooms
 2.8.2 Anti-fungal Activity of Mushrooms
2.9 Anti-inflammatory Activity of Mushrooms
2.10 Insulin Secretory Activity of Mushrooms

3 SAMPLES COLLECTION AND ISOLATION OF LOCAL MUSHROOMS

3.1 Introduction
3.2 Materials and Methods
 3.2.1 Sample Collections
 3.2.2 Isolation and Cultivation of Wild Type Mushroom Fruiting Bodies
 3.2.2.1 Potato Dextrose Agar Medium Preparation
 3.2.2.2 Tissue Culture
 3.2.2.3 Microscopic Examination
 3.2.2.4 Spawning Preparation
 3.2.2.5 Mushroom Bag Preparation
3.2.4 Statistical Analysis

3.3 Results

3.3.1 Isolation and Cultivation of Wild Type Mushroom Fruiting Bodies

3.3.2 Extraction Yield

3.4 Discussion

3.5 Conclusion

4 ANTIOXIDANT ACTIVITY, ANTI-INFLAMMATORY ACTIVITY, TOTAL PHENOLIC AND FLAVONOID CONTENTS OF SELECTED LOCAL MUSHROOMS EXTRACT

4.1 Introduction

4.2 Materials and Methods

4.2.1 Antioxidant Activity of Selected Local Mushrooms

4.2.1.1 Free Radical Scavenging Activity (DPPH) Assay

4.2.1.2 Ferric Reducing Antioxidant Power (FRAP) Assay

4.2.2 Total Phenolic Content

4.2.3 Total Flavonoid Content

4.2.4 Anti-inflammatory Activity of Selected Local Mushrooms

4.2.4.1 Determination of Nitric Oxide Inhibition

4.2.5 Statistical Analysis

4.3 Results

4.3.1 Antioxidant Activity of Selected Local Mushrooms

4.3.2 Total Phenolic and Flavonoid Content

4.3.3 Interrelationship Between Phenolic and Flavonoid With Antioxidant Activity

4.3.4 Anti-inflammatory Activity of Selected Local Mushrooms

4.3.4.1 Nitrite Production Measurement

4.3.4.2 Cell Viability of Mushrooms Extract

4.4 Discussion

4.4.1 Antioxidant Activity of Selected Local Mushrooms

4.4.2 Anti-inflammatory Activity of Selected Local Mushrooms

4.5 Conclusion

5 ANTI-TYROSINASE, ANTI-HYALURONIDASE AND INSULIN SECRETION ACTIVITIES OF SELECTED LOCAL MUSHROOMS EXTRACT

5.1 Introduction

5.2 Materials and Methods
5.2.1 Determination of Anti-tyrosinase Activity 66
5.2.2 Determination of Anti-hyaluronidase Activity 67
5.2.3 Determination of Insulin Secretion Activity 68
 5.2.3.1 Cell Culture 68
 5.2.3.2 Insulin Secretion in vitro 68
 5.2.3.3 Insulin Assay 69
 5.2.3.4 Determination of Cell Viability (MTT Assay) 70
5.2.4 Statistical Analysis 71
5.3 Results 71
 5.3.1 Anti-tyrosinase Activity of Mushrooms Extract 71
 5.3.2 Anti-hyaluronidase Activity of Mushrooms Extract 72
 5.3.3 Insulin Secretion Activity of Mushrooms Extract 73
 5.3.4 Cell Viability of Mushrooms Extract 74
5.4 Discussion 76
 5.4.1 Anti-tyrosinase Activity of Mushrooms Extract 76
 5.4.2 Anti-hyaluronidase Activity of Mushrooms Extract 77
 5.4.3 Insulin Secretion Activity of Mushrooms extract 79
5.5 Conclusion 83

6 ANTIMICROBIAL ACTIVITY OF SELECTED LOCAL MUSHROOMS EXTRACT 84
6.1 Introduction 84
6.2 Materials and Methods 85
 6.2.1 Microorganisms 85
 6.2.2 Media Preparation 86
 6.2.2.1 Nutrient Broth 86
 6.2.2.2 Potato Dextrose Broth 86
 6.2.2.3 Nutrient Agar 86
 6.2.2.4 Potato Dextrose Agar 86
 6.2.3 Disc Diffusion Method 87
 6.2.4 Statistical Analysis 88
6.3 Results 88
6.4 Discussion 90
6.5 Conclusion 93

7 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE 94

REFERENCES 97
APPENDICES 117
BIODATA OF STUDENT 121
LIST OF PUBLICATIONS 122