THE ROLES OF WNT1 AND DKK1 DURING IN VITRO NEURAL DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELL LINES

GAO LIYANG

FPSK(p) 2013 12
THE ROLES OF WNT1 AND DKK1 DURING IN VITRO NEURAL DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELL LINES

By

GAO LIYANG

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of PhD

November 2013
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

THE ROLES OF WNT1 AND DKK1 DURING IN VITRO NEURAL DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELL LINES

By

GAO LIYANG

November 2013

Chairman: Norshariza Nordin, PhD

Faculty: Medicine and Health Sciences

Embryonic stem cells (ESCs) possess two unique properties: self-renewal and pluripotency. These unique properties make ESCs useful tools to discover the mechanisms behind differentiation and development, to unravel the mechanism of diseases, to test the effect of drugs as well as for use in clinical trials for degenerative disease and developmental defects. Large quantities of neurons or neural precursors are required for treating neurodegenerative diseases, hence understanding the mechanisms behind neural differentiation of ESCs and establishing the appropriate protocols in generating pure population of specific neuronal precursors are indeed essential. Lots of growth factors and cell signalling molecules have been found to play important roles during neural differentiation of ESCs.

The Wnt/β-catenin pathway is one of the essential signalling pathways involved in neurogenesis in vivo and neural differentiation of ESCs in vitro. However, the activity of Wnt signalling during neural differentiation of ESCs is not constitutive but rather it is stage-dependent. The Wnt signalling pathway has been found to be downregulated upon the formation of neural precursor cells, and therefore is believed to inhibit neural differentiation of mESCs in vitro. Moreover, recently, the Wnt signalling pathway has also been found to regulate the self-renewal of mESCs in vitro.

In this project, two inducible transgenic mESC lines carrying two important components of Wnt/β-catenin signalling pathways: Wnt1-HA and Dkk1 gene have been established and characterized. The system used was a binary system that combines two techniques; Cre/loxP-based genetic recombination and ligand-dependent activation of Cre. Expression of the transgene was induced upon exposure to a synthetic estrogen receptor, 4-hydroxytamoxifen (4’-OHT). Time course induction was carried out in both cell lines, each with
two different clones, to obtain the optimal dosage of 4’-OHT in inducing the expression of the transgene. Cytotoxicity effects of non-detrimental dosage of 4’-OHT were also determined during neural differentiation of mock-transfected inducible ES cell system (CAG-floxed-neopA-empty vector).

Using the system, I then aimed to unravel the effects of stimulating (through overexpression of Wnt1) and inhibiting (through overexpression of Dkk1) Wnt signalling pathway at specific time points during neural differentiation process on the formation of neural precursor cells and post-mitotic neurons. In addition, the system also allows the access to the role of Wnt1 in maintaining the self-renewability of undifferentiated mESCs in the absence of LIF through overexpression of Wnt1-HA in mESCs.

It was found that 1) non-detrimental dosages of 4’-OHT and different induction time were needed to induce expression of Dkk1/Wnt1-HA transgenes (in mESCs - Dkk1: 200nM/48h; Wnt1-HA: 600nM/48h; and in embryoid bodies (EBs) – Dkk1:400nM/72h; Wnt1-HA: 1000nM/48); 2) overexpression of Wnt1 maintained self-renewal and neural commitment of mESCs; 3) Wnt1 promoted the formation of NPCs and post-mitotic neurons; 4) constitutive overexpression of Dkk1 inhibited the formation of NPCs; and interestingly, 5) overexpression of Dkk1 at early and later stages significantly increased the formation of NPCs and post-mitotic neurons (T-test, \(P<0.05 \)).

Results from this project confirm the multiple roles and stage-dependent of Wnt signal during neural differentiation process of mESCs in vitro as well as in maintaining the self-renewability of undifferentiated mESCs. It is hoped that the findings will add up to current knowledge regarding the understanding behind the differentiation process of ESCs, hence would be essential for future neurodegenerative cell-based therapy.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PERANAN WNT1 AND DKK1 SEMASA PEMBEZAAN SEL SARAF DARI SEL STEM EMBRIONIK IN VITRO

Oleh

GAO LIYANG

November 2013

Pengerusi: Norshariza Nordin, PhD

Fakulti: Perubatan dan Sains Kesihatan

Sel stem embrionik (ESCs) mempunyai dua ciri unik: pembaharuan kendiri dan pluripotensi. Ciri unik ini menjadikan ESCs sebagai bahan yang berguna untuk merungkai mechanism di semua pembezaan dan perkembangan, untuk membongkar mekanisma penyakit, untuk menguji kesan dadah serta menggunakan dalam ujian klinik untuk menguji penyakit degeneratif dan kecacatan perkembangan. Sel saraf atau prekursor sel saraf yang berkuantiti tinggi diperlukan untuk merawat penyakit neurodegeneratif, maka dengan itu pemahaman mekanisma di semua perbezaan sel saraf ESCs dan usaha mewujudkan protokol yang sesuai bagi menjana populasi tulen prekursor sel saraf spesifik adalah penting. Banyak faktor pertumbuhan dan molekul pengisyaratan sel didapat memainkan peranan yang penting dalam proses pembezaan sel saraf daripada ESCs.

Laluan Wnt/β-catenin adalah salah satu laluan pengisyaratan penting yang terlibat dalam neurogenesis in vivo dan pembezaan sel saraf ESCs in vitro. Walau bagaimanapun, aktiviti pengisyaratan Wnt semasa pembezaan sel saraf daripada ESCs tidak konstitutif tetapi bergantung pada sesuatu peringkat pembezaan. Laluan pengisyaratan Wnt didapat menurun semasa pembentukan prekursor sel saraf, dan oleh itu dipercayai merencat pembezaan sel saraf daripada mESCs in vitro. Tambah pula, baru-baru ini, laluan pengisyaratan Wnt juga didapat mengawal atur pembaharuan kendiri mESCs in vitro.

Dalam projek ini, dua titisan mESC transgenik yang membawa dua komponen penting dalam laluan pengisyaratan Wnt / β-catenin: Gen Wnt1-HA dan Dkk1, dihasilkan dan dicirikan. Sistem ini merupakan sistem binari yang menggabungkan dua teknik: penggabungan semula genetik berasaskan Cre/loxP dan pengaktifan Cre yang bergantung kepada ligan. Ekspresi...
transgen akan terangsang apabila didedahkan kepada reseptor estrogen sintetik, 4-hydroxytamoxifen (4'-OHT). Induksi berpandukan masa dijalankan di dalam kedua-dua titisan sel, masing-masing dengan dua klon yang berbeza, untuk mendapatkan dos optimum 4'-OHT bagi merangsang ekspresi transgen itu. Kesan sitotoksik dos tidak memudaratkan 4'-OHT juga ditentukan semasa pembezaan sel saraf dari sistem sel ES terinduksi yang ditransfeksi dengan vektor kosong (vektor CAG-floks–neopA-kosong).

Dengan menggunakan sistem ini, kesan merangsang (melalui ekspresi berlebihan Wnt1) dan merencat (melalui ekspresi berlebihan Dkk1) laluan pengisyaratan Wnt pada detik masa spesifik semasa proses pembezaan prekursor sel saraf dan sel saraf pasca mitosis ditentukan. Di samping itu, sistem ini juga membolehkan pengaksesan peranan Wnt1 dalam mengekalkan pembaharuan kendiri sel asal mESCs tanpa kehadiran LIF melalui ekspresi berlebihan Wnt1-HA di dalam mESCs.

Keputusan kajian mendapati bahawa 1) dos tidak memudaratkan 4'-OHT dan masa induksi yang berbeza diperlukan untuk merangsang ekspresi transgen Dkk1/Wnt1-HA (dalam mESCs - Dkk1: 200nM/48h; Wnt1-HA: 600nM/48h dan dalam badan embrioid (EBs) - Dkk1: 400nM/72h; Wnt1-HA: 1000nM/48); 2) ekspresi berlebihan Wnt1 mengekalkan ciri pembaharuan kendiri dan pembezaan mESCs kepada sel saraf; 3) Wnt1 menggalakkan pembentukan NPC dan sel saraf pasca mitosis; 4) ekspresi berlebihan Dkk1 yang konstitutif merencat pembentukan NPC dan yang menariknya, 5) ekspresi berlebihan Dkk1 pada peringkat awal dan berikutnya meningkatkan tahap pembentukan NPC dan sel saraf pasca mitosis dengan signifikan (ujian-T, P<0.05).

Keputusan hasil daripada projek ini mengesahkan pelbagai peranan dan pengisyaratan Wnt yang bergantung kepada peringkat semasa proses pembezaan sel saraf mESCs in vitro serta dalam pengekalan ciri pembaharuan kendiri sel mESCs asal. Penemuan ini diharapkan akan menambah kepada pengetahuan semasa mengenai pemahaman di sebalik proses pembezaan ESCs, yang menjadi penting untuk terapi berasaskan sel neurodegeneratif pada masa hadapan.
ACKNOWLEDGEMENTS

First, I would like to express my deepest appreciation to Malaysia and Universiti Putra Malaysia. This thesis was made possible by a Graduate Research Fellowship. I am grateful to Malaysia government and UPM for the scholarship which enabled me to undergo my PHD program.

Special thanks go to my supervisors, Dr Norshariza Nordin, Dr John O Mason, Dr Rozita Rosli and Dr Syahiril Abdullah for their support and advice during the whole process of this thesis. Especially to my supervisor Dr Norshariza, thank you for being my supervisor, and introducing a new stem cell world to me. I would like to thank Dr Rozita and Dr Syahiril who lent money to me during the shortage of research funding. Special appreciation goes to Dr John for his time and patience in editing my thesis and paper. I really learned a lot from him. I would like to thank Dr. Michael, Dr. Cheah Pike See, Kak Sal, Kak Lin, Kak Puspa, Izarul, Farhana, Aimi, Marlini, Nadine, Wendy, Low Poh Tee, Mun Fun, Tong and other labmates in this Faculty for helping and encouragement during my hard time. Especially, I have to thank Aimi who translated my abstract into Bahasa Melayu.

To my families, thank you for your support. I'm sorry Ranka, I can't stay with you and keep you waiting for too long.
APPROVAL

I certify that a Thesis Examination Committee has met on (20th November 2013) to conduct the final examination of (Liyang Gao) on her thesis entitled "THE ROLE OF WNT1 AND DKK1 DURING IN VITRO NEURAL DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELL LINES" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Munn-Sann Lye DSPN, PhD
Professor. DATO
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Rajesh Ramasamy, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

THOMAS THEIL, PhD
Name of Organisation (University/Institute)
University of Edinburgh
UK
(External Examiner)

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Norshariza Binti Nordin, PhD
Senior Lecturer
Faculty of medicine and health sciences
Universiti Putra Malaysia
(Chairman)

Rozita BT Rosli, PhD
Professor
Faculty of medicine and health sciences
Universiti Putra Malaysia
(Member)

Syahril Bin Abdullah, PhD
Associate Professor
Faculty of medicine and health sciences
Universiti Putra Malaysia
(Member)

John O Mason, PhD
Professor
Center for Integrative Physiology
University of Edinburgh
(Member)

BUJANG BIN KIM SUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

GAO LIYANG

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Embryonic stem cells (ESCs)</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Differentiation of ESCs into the three germ layers</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Transcription factors</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Differentiation of ESCs</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1. Embryoid bodies (EBs)</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2 The players behind aggregation of ESCs</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3. Similarity between EBs and early embryo</td>
<td>11</td>
</tr>
<tr>
<td>2.2.4 The 4/-4+ protocol of neural differentiation</td>
<td>12</td>
</tr>
<tr>
<td>2.3 The development of the central nervous system (CNS)</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Wnt signalling pathway</td>
<td>14</td>
</tr>
<tr>
<td>2.4.1 Components of Wnt signalling pathways</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2 Wnt/β-catenin signalling pathway</td>
<td>18</td>
</tr>
<tr>
<td>2.4.3 The roles of Wnt/ β-catenin signalling pathway during neurogenesis</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Conditional Expression System</td>
<td>21</td>
</tr>
<tr>
<td>3 ESTABLISHMENT OF INDUCIBLE WNT1 AND DKK1 EXPRESSION SYSTEM IN MOUSE EMBRYONIC STEM CELLS</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>25</td>
</tr>
<tr>
<td>3.2 Materials and Methods</td>
<td>25</td>
</tr>
<tr>
<td>3.2.1 Construction of plasmids</td>
<td>25</td>
</tr>
<tr>
<td>3.2.2 Bacterial work</td>
<td>25</td>
</tr>
<tr>
<td>3.2.3 Cell culture</td>
<td>25</td>
</tr>
<tr>
<td>3.2.4 Transfection and selection</td>
<td>27</td>
</tr>
<tr>
<td>3.2.5 Formation of EBs</td>
<td>28</td>
</tr>
<tr>
<td>3.2.6 Protein analysis</td>
<td>29</td>
</tr>
</tbody>
</table>
3.2.7 Gene expression analysis
3.3 Results and Discussion
 3.3.1 Construction of inducible expression vector
 3.3.2 Establishment of inducible transgenic mESC lines
 3.3.3 Characterization and differentiation of transgenic mESCs
 3.3.4 Cytotoxicity assay of 4'-OHT during neural differentiation of mESCs
3.4 Conclusion

4 THE EFFECTS OF WNT1 OVEREXPRESSION IN MAINTAINING THE SELF-RENEWAL AND NEURAL COMMITMENT OF MOUSE EMBRYONIC STEM CELLS IN VITRO
4.1 Introduction
4.2 Materials and Methods
 4.2.1 Cell culture
 4.2.2 Neural Differentiation Assay
 4.2.3 The analysis of gene expression and protein expression
4.3 Results and Discussion
 4.3.1 The effect of LIF in mESCs is dosage dependent
 4.3.2 Wnt1 constitutively overexpressing mES cell line maintains self-renewal in the absence of LIF
 4.3.3 Overexpression of Wnt1-HA maintains the neural differentiation potential of mESCs
4.4 Conclusion

5 THE EFFECTS OF STIMULATING AND INHIBITING WNT/β-CATENIN SIGNALLING PATHWAY DURING NEURAL DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELLS
5.1 Introduction
5.2 Materials and Methods
 5.2.1 Cell culture
 5.2.2 Neural differentiation of mESCs
 5.2.3 Protein assay
 5.2.4 Gene expression analysis
 5.2.5 Data analysis
5.3 Results
 5.3.1 Overexpression of Wnt1 and Dkk1 in EBs and NPCs
 5.3.2 The effect of Wnt1-HA/Dkk1 overexpression during the formation of NPCs
 5.3.3 Overexpression of Wnt1-HA/Dkk1 during the formation of post-mitotic neurons
5.4 Discussion and Conclusion
 5.4.1 Wnt1-HA/Dkk1 overexpression in transgenic mESCs, EBs and NPCs
5.4.2 Neural differentiation of mESCs at different time points 87
5.4.3 Wnt1 overexpression increases the population of NPCs 87
5.4.4 Overexpression of Wnt1 promotes the formation of post-mitotic neurons 89
5.4.5 Overexpression of Dkk1 in early differentiation stage promotes the generation of NPCs 90
5.4.6 Overexpression of Dkk1 promotes the generation of post-mitotic neurons 91
5.4.7 Why do overexpression of Wnt1 and Dkk1 both stimulate the neural differentiation of mESCs? 92

5.5 Conclusion 87

6 FINAL CONCLUSION, LIMITATIONS OF STUDY AND RECOMMENDED FUTURE WORK 93
6.1 Conclusion 93
6.2 Limitations of Study 94
6.3 Recommended Future Work 95

REFERENCES 96
APPENDICES 125
BIODATA OF STUDENT 155
LIST OF PUBLICATIONS 156