ANTINOCICEPTIVE PROFILE OF A SYNTHETIC CURCUMINOID DERIVATIVE 2,6-BIS-(4-HYDROXY-3-METHOXY-BENZILIDINE)-CYCLOHEXANONE IN MURINE MODEL OF INDUCED-NOCICEPTION

LEE MING TATT

FPSK(p) 2013 11
ANTINOCICEPTIVE PROFILE OF A SYNTHETIC CURCUMINOID DERIVATIVE 2,6-BIS-(4-HYDROXY-3-METHOXY-BENZILIDINE)-CYCLOHEXANONE IN MURINE MODEL OF INDUCED-NOCICEPTION

By
LEE MING TATT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

February 2013
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ANTINOCICEPTIVE PROFILE OF A SYNTHETIC CURCUMINOID DERIVATIVE, 2,6-BIS-(4-HYDROXY-3-METHOXY-BENZILIDINE) CYCLOHEXANONE IN MURINE MODEL OF INDUCED-NOCICEPTION

By

LEE MING TATT

February 2013

Chairman: Professor Mohd. Roslan Sulaiman, PhD

Faculty: Faculty of Medicine and Health Sciences

Introduction: The present study investigated the antinociceptive potential of a synthetic curcuminoid derivative, 2,6-bis-(4-hydroxy-3-methoxybenzilidine)-cyclohexanone, or BHMC in pain-induced models in mice. Problem statement: Pain is a major symptom of various diseases that persists to produce severe physical and psychological distress for many patients. However, current treatment for pain produced undesirable adverse effects thus limited their use. This has led to a search for new pharmacologically potent antinociceptive compounds with minimum or no adverse effects. Objective: The present study aimed to investigate the systemic, peripheral and supraspinal antinociceptive potential of BHMC in pain models in mice. The research project also aimed to further investigate the possible mechanism of action in systemic, peripheral and supraspinal antinociceptive effect of BHMC. Methodology: Systemic antinociceptive effect of
BHMC was determined using acetic acid-induced abdominal constriction test, formalin induced-paw licking test and hotplate test. The systemic effect of BHMC was also evaluated via chronic constriction injury-induced neuropathic pain in mice. Peripheral and supraspinal antinociceptive effect of BHMC was evaluated via carrageenan-induced hyperalgesia test and thermal-induced nociception test, respectively. **Results and discussion**: It was demonstrated that systemic treatment of BHMC exhibited dose-dependent inhibitory effect in chemical- and thermal-induced nociception. Further investigation on the involvement of descending modulatory pathway in systemic antinociceptive effect of BHMC showed that BHMC selectively activated $\kappa$-opioid, $A_1$-adenosine, $D_2$-dopamine, M-acetylcholine, $GABA_B$, $\alpha_2$-noradrenaline and $5-HT_{A1}$ receptors. Activation of these inhibitory receptors triggered the efflux of potassium ion from nociceptive neuron, leading to neuronal hyperpolarisation. Hyperpolarisation of nociceptive neuron via nitric oxide (NO) independant cyclic guanosine monophosphate (cGMP) induced potassium ($K^+$) channel opening was shown as one of the possible antinociceptive mechanism of systemic antinociceptive action of BHMC. Dose-dependant inhibitory effect of BHMC was also shown in CCI-induced hyperalgesia test in mice, which indicated a similar mechanism of action in BHMC-induced antinociception. It was also demonstrated that peripheral and supraspinal administration of BHMC produced dose-dependent antinociceptive effect, with peripheral antinociceptive effect of BHMC was via $\mu$-, $\kappa$-opioid receptor and NO-independent cGMP/protein kinase G (PKG)/$K^+$ channel activation; whereas supraspinal analgesic effect of BHMC was through $\kappa$-opioid/NO/cGMP/PKG/$K^+$ channel activation. **Conclusion**: The present study demonstrated that BHMC possessed potential systemic, peripheral and supraspinal antinociceptive effect
through mechanisms that caused the activation of K+ channels leading to neuronal membrane hyperpolarisation.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAJIAN KESAN ANTINOSISEPTIF 2,6-BIS-4-(HIDROKSI-3-METHOXYBENZYLIDINE)-CYCLOHEXANONE TERHADAP MODEL NOSISEPSI MENCIT

Oleh

LEE MING TATT

Februari 2012

Pengerusi : Profesor Mohd. Roslan Sulaiman, PhD
Fakulti: Fakulti Perubatan dan Sains Kesihatan

Pengenalan: Projek ini telah dijalankan untuk mengkaji kesan antinosiseptif satu sebatian sintetik analog kurkumin, 2,6-bis-4-(hidroksi-3-methoxy-benzilidine)-cyclohexanone atau BHMC ke atas model mencit yang diaruh kesakitan.

Penyataan masalah: Sakit merupakan simtom utama bagi kebanyakan penyakit yang sekiranya berkekal boleh menyebabkan tekanan fizikal dan psikologi yang serius kepada pesakit. Walaubagaimana pun, rawatan terkini untuk sakit menghasilkan kesan-kesan sampingan tidak dikehendaki yang mengehadkan penggunaannya. Oleh sebab itu, kajian bagi mencari sebatian antinosiseptif yang berkesan secara farmakologikal dengan kesan sampingan yang minimal atau langsung tiada kesan sampingan. Objektif: Tujuan utama projek ini adalah untuk mengkaji potensi BHMC sebagai sebatian yang mempunyai kesan antinosiseptif secara sistemik, periferi dan supraspinal dengan menggunakan model model kajian kesakitan dalam mencit.. Projek ini juga bertujuan untuk mengkaji mekanisme
tindakbalas BHMC yang berkemungkinan dalam memberi kesan antinosiseptif secara sistemik, periferi dan supraspinal. **Metodologi kajian:** Kajian kesan antinosiseptif BHMC dijalankan dengan menggunakan ujian kecepatan otot abdomen aruhan asid asetik, ujian penjilatan tapak kaki aruhan formalin dan ujian plat panas. Efikasi kesan sistemik BHMC juga dikaji menggunakan model sakit neurogenik dalam mencit. Kesat antinosiseptif periferi dan supraspinal BHMC dinilai melalui ujian hiperalgesia aruhan carrageenan dan ujian nosisepsis aruhan haba. **Keputusan dan perbincangan:** BHMC menunjukkan aktiviti antinosiseptif sistemik berkadar dos ke atas ujian pengecutan otot abdomen aruhan asid asetik, ujian penjilatan tapak kaki aruhan formalin dan ujian plat panas. Kajian lanjutan menunjukkan BHMC mengaktifkan reseptor κ-opioid, A1-adenosine, D2-dopamine, M-acetylcholine, GABA\(_B\), \(\alpha_2\)-noradrenaline dan 5-HT\(_A1\). Tambahan pula, mekanisme antinosiseptif sistemik BHMC adalah melalui hiperpolarisasi saraf nosisepit oleh pengaktifan saluran kalium (K\(^+\)) melalui siklik guanosin monofosfat (cGMP) tanpa nitrik oxida (NO). Mekanisme yang sama juga ditunjukkan dalam kesan antinosiseptif BHMC terhadap model sakit neuropatik dalam mencit. Kajian antinosiseptif periferi dan supraspinal BHMC menunjukkan bahawa BHMC memberi kesan perencatan berkadar dos ke atas ujian hiperalgesia induksi carrageenan dan ujian nosisepsis aruhan haba, masing masing. Kajian mekanisme antinosiseptif periferi menunjukkan bahawa BHMC mengaktifkan saluran K\(^+\) melalui cGMP/protein kinase G (PKG) tanpa NO dan reseptor \(\mu\)- serta \(\kappa\)-opioid. Kajian antinosiseptif secara supraspinal BHMC menunjukkan bahawa memberi kesan perencatan berkadar dos ke atas ujian ujian nosisepsis induksi haba dan mekanisme antinosiseptif secara supraspinal adalah melalui pengaktifan saluran K\(^+\) melalui NO/cGMP/PKG dan reseptor \(\kappa\)-
opioid. **Kesimpulan:** Projek ini membuktikan aktiviti antinosiseptif BHMC berlaku melalui sistemik, periferi dan supraspinal menerusi mekanisma yang membawa kepada pengaktifan saluran K\(^+\) yang membawa kepada hiperpolarisasi sel membran saraf.
ACKNOWLEDGEMENT

First and foremost I would like to thank the chairman of my supervisory committee, Prof. Dr. Mohd. Roslan Sulaiman for his invaluable support for all these years and members of my supervisory committee Prof. Dr. Daud Ahmad Israf Ali and Prof. Dr. Md. Nordin. Hj. Lajis for their advices throughout my candidature. I would like to also express my gratitude to fellow laboratory seniors, Dr. Tham Chau Ling, Dr. Enoch Kumar Perimal, Dr Ahmad Akira, Dr Tengku Azam Shah Tengku Mohammad, Mr Mohamed Haneif Khalid, Ms Syamimi Khalid, Ms Ong Hui Ming for their support during the research period. And also not forgetting the cheerful laboratory mates of mine that accompanied me through the postgraduate life, Mdm Norazreen Ismail, Ms. Revathee Rajajendrem, Ms. Jacklin Suloon, Ms Nur’ Adilah Makthar, Mdm Noor Azlina Abu Bakar, Ms Nur Izzati Ismail, Ms Nurhayatie Samsul Baharil, Ms Nor Asmara Tasrip, Mr. Mohd Nasier Kamaldin, Mr Lee Yu Zhao, Ms. Chung Pui Ping, Mdm Khairunnisa Azni, Ms Yeoh Sin Yee, Ms Tan Min Wai, Mr Teo Jun Fook, Mr Low Chin Tuan, Miss Elain Chin Jinfeng and many many more.
I certify that a Thesis Examination Committee has met on 8th of February 2013 to conduct the final examination of Lee Ming Tatt on his thesis entitled "Antinociceptive Profile of a Synthetic Curcuminoid Derivative, 2,6 bis-(4-hydroxy-3-methoxy-benzilidine)-cyclohexanone on Murine Model of Induced-nociception" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Zuraini binti Hj Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Abdul Manan bin Mat Jais, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohamad Taufik Hidayat bin Baharuldin, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Erdem Yesilada, PhD
Professor
Department of Pharmacognosy, Faculty of Pharmacy
Yeditepe University
Turkey
(External Examiner)

____________________________________

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 March 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

**Mohd. Roslan Sulaiman, PhD**  
Professor  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Chairman)

**Daud Ahmad Israf Ali, PhD**  
Professor  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Member)

**Md. Nordin Hj. Lajis, PhD**  
Professor  
Institute of Biosciences  
Universiti Putra Malaysia  
(Member)

__________________________________________  
**BUJANG BIN KIM HUAT, PhD**  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia  
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

________________
LEE MING TATT
Date: 8 February 2013
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ANNOTATION</td>
<td>xxii</td>
</tr>
</tbody>
</table>

## CHAPTER

### 1 INTRODUCTION

1.1 General Objective  
1.2 Specific Objectives  
1.3 Hypothesis

### 2 LITERATURE REVIEW

2.1 Nociception

2.1.1 Depolarisation of neuron and pain  
2.1.2 Hyperpolarisation of neuron and analgesia

2.2 Molecular pathways of pain

2.2.1 Mediators of Pain  
2.2.1.1 Glutamate  
2.2.1.2 Substance P  
2.2.1.3 Prostaglandin E₂  
2.2.1.4 Bradykinin

2.3 Molecular pathways of Analgesia  
2.3.1 Descending pain modulatory system  
2.3.2 NO/cGMP/PKG signalling pathway  
2.3.3 Potassium ion channels

2.4 Analgesic Agents

2.4.1 Current pain therapy  
2.4.1.1 Opioids  
2.4.1.2 Non-steroidal anti-inflammtory drugs  
2.4.1.3 Analgesic Adjuvants

2.4.2 Limitation of current pain therapy  
2.4.3 Discovery of novel analgesic agents  
2.4.3.1 Natural product-based drug discovery  
2.4.3.2 Analogue-based drug discovery

2.4.4 2,6-bis-4-(hydroxyl-3-methoxy-benzilidine)-cyclohexanone  
2.4.4.1 BHMC as a curcuminoid derivative  
2.4.4.2 BHMC as a benzilidine cyclohexanone derivative

2.4.4.3 Therapeutic potentials of BHMC
3 INVESTIGATION ON SYSTEMIC ANALGESIC EFFECT OF 2,6-BIS-4-(HYDROXY-3-METHOXY-BENZILIDINE)-CYCLOHEXANONE AND ITS POSSIBLE MECHANISM(S) OF ACTION

3.1 Introduction

3.2 Materials and Method

3.2.1 Synthesis of BHMC

3.2.2 Chemicals

3.2.3 Animals

3.2.4 Evaluation of antinociceptive property of BHMC

3.2.4.1 Acetic acid induced abdominal constriction test

3.2.4.2 Formalin-induced paw licking test

3.2.4.3 Hot-plate test

3.2.4.4 Rotarod test

3.2.5 Possible mechanism(s) of systemic analgesia of BHMC

3.2.5.1 Involvement of descending modulatory system

3.2.5.2 Involvement of the NO/cGMP/K<sub>ATP</sub> channel signaling pathway

3.2.6 Acute toxicity assessment

3.2.7 Statistical analysis

3.3 Results

3.3.1 Acetic acid induced abdominal constriction test

3.3.2 Formalin induced paw licking test

3.3.3 Hotplate test

3.3.4 Rotarod test

3.3.5 Possible mechanism(s) of systemic analgesia of BHMC

3.3.5.1 Involvement of descending modulatory system

3.3.5.2 Involvement of the NO/cGMP/K<sub>ATP</sub> channel signaling pathway

3.3.6 Acute toxicity assessment

3.4 Discussion

3.5 Conclusion

4 INHIBITORY EFFECT OF OF 2,6-BIS-4-(HYDROXY-3-METHOXY-BENZILIDINE)-CYCLOHEXANONE ON NEUROPATHIC PAIN-INDUCED HYPERALGESIA AND ITS POSSIBLE MECHANISM(S) OF ACTION

4.1 Introduction

4.2 Material and Methods

4.2.1 Synthesis of BHMC

4.2.2 Chemicals

4.2.3 Animals
4.2.4 Chronic constriction injury (CCI) surgical procedure  
4.2.5 CCI-induced mechanical hyperalgesia  
4.2.6 Involvement of opioid receptors  
4.2.7 Involvement of the NO/cGMP/K$_{ATP}$ channel signalling pathway  
4.2.8 Statistical analysis  
4.3 Results  
4.3.1 CCI-induced mechanical hyperalgesia  
4.3.2 Involvement of opioid receptors  
4.3.3 Involvement of NO/cGMP/K$_{ATP}$ channel signaling pathway  
4.4 Discussion  
4.5 Conclusion  

5 INVESTIGATION ON PERIPHERAL ANALGESIC EFFECT OF 2,6-BIS-4-(HYDROXY-3-METHOXY-BENZILIDINE)-CYCLOHEXANONE AND ITS POSSIBLE MECHANISM(S) OF ACTION  
5.1 Introduction  
5.2 Material and Methods  
5.2.1 Synthesis of BHMC  
5.2.2 Chemicals  
5.2.3 Animals  
5.2.4 Carrageenan-induced hyperalgesia test  
5.2.5 Pain mediators-induced hyperalgesia test  
5.2.6 Involvement of opioid receptors  
5.2.7 Involvement of the NO/cGMP/PKG pathway  
5.2.8 Involvement of K$^+$ channels  
5.2.9 Statistical analysis  
5.3 Results  
5.3.1 Carrageenan-induced hyperalgesia test  
5.3.2 Pain mediators-induced hyperalgesia test  
5.3.3 Involvement of opioid receptors  
5.3.4 Involvement of the NO/cGMP/PKG pathway  
5.3.5 Involvement of K$^+$ channels  
5.4 Discussion  
5.5 Conclusion  

6 INVESTIGATION ON SUPRASPINAL ANALGESIC EFFECT OF 2,6-BIS-4-(HYDROXY-3-METHOXY-BENZILIDINE)-CYCLOHEXANONE AND ITS POSSIBLE MECHANISM(S) OF ACTION  
6.1 Introduction  
6.2 Material and methods  
6.2.1 Synthesis of BHMC  
6.2.2 Chemicals  
6.2.3 Animals  

xiv