UNIVERSITI PUTRA MALAYSIA

IDENTIFICATION AND CHARACTERIZATION OF BIOFILM-PRODUCING CLINICAL ISOLATES OF Staphylococcus aureus

SALMAN SAHAB ATSHAN

FPSK(p) 2013 8
IDENTIFICATION AND CHARACTERIZATION OF BIOFILM-PRODUCING CLINICAL ISOLATES OF
Staphylococcus aureus

SALMAN SAHAB ATSHAN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
IDENTIFICATION AND CHARACTERIZATION OF BIOFILM-PRODUCING
CLINICAL ISOLATES OF Staphylococcus aureus

By

SALMAN SAHAB ATSHAN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in fulfilment of the requirements for the degree of Doctor of Philosophy

June 2013
DEDICATION

To my parents, daughter, son and my wife for invaluable support and extraordinary courage
IDENTIFICATION AND CHARACTERIZATION OF BIOFILM-PRODUCING CLINICAL ISOLATES OF Staphylococcus aureus

By

SALMAN SAHAB ATSHAN

June 2013

Chairman: Prof. Mariana Nor Shamsudin, PhD

Faculty: Medicine and Health Sciences

Staphylococcus aureus is considered the major etiological agent of human infections. It is a biofilm-forming bacterium, which embedded itself in a matrix of extracellular polysaccharide (slime), and facilitates the adherence of these microorganisms to biomedical surfaces causing many persistent infections. The main issue with biofilm has become a global public health problem that is impacted by the insufficient management of patients infected with biofilm growth as extremely adaptable to antibiotic pressure. The ability of S. aureus to form biofilm is a long-known fact but the problem involving the issue of biofilm identification has remained since the availability of the phenotypic approach of growth on highly selective or differential media can provide identification of biofilm formation but with a high margin of error through many false negative outcomes. In line with these shortcomings, the present study embarked on
several strategies to overcome the issue of inaccurate biofilm identification through the development of an improved method that can provide positive identification. In this study, it was found that our modified-Congo red agar was significantly different from published-CRA (P <0.05). The modified agar constituents provided not only stable 100% formation of black, also showed very high correlation with standard methods and with the presence of icaADBC biofilm genes. In the second part of the work, the ability to adhere and produce biofilms of genotypically different clones of S. aureus was characterised. The study found the isolates that belonging to similar spa, SCCmec and ST types have similar abilities to produce biofilms. Moreover, isolates that have different spa types showed high variation in their ability to produce biofilms. The results indicate that differences in biofilm production capacities are caused by the differences in surface protein A (spa) type and are not due to differences in MLST and SCCmec types. In the third part of the work, the prevalence and distribution of microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and biofilms genes in different clones of S. aureus were determined. The study found icaADBC, fnbA, eno, ebpS, clfA and clfB genes to be present with a high prevalence and were equally distributed between the various clone types of 60 MSSA and MRSA clinical isolates, while the prevalence of other MSCRAMM genes were found to be variable. In the fourth part of the work, the transcriptional profiles of specific staphylococcal genes encoding MSCRAMMS and icaADBC were determined during gradual changes in complexity of the biofilm production under different growth phases. The results indicate that the relative expression of MSCRAMMS and icaADBC genes in comparison with the phenotypic biofilm morphology can be utilized as a model to study the up- and down- regulation of such genes. Delayed expression of certain genes during stationary phase biofilms grown at significantly higher
levels are considered important for biofilm development and for the survival of composing cells in a nutrient-scarce niche. In the fifth part of this work, the extracellular 2DE protein profiles among genotypically different clone types and under different time-points of biofilm developed growth of *S. aureus* were characterized. The main results of 2DE studies showed a high degree of extracellular protein heterogeneity among the various clone types and under different time-points growth, indicating that different regulation modes of growth processes are operating under different clone types and under altered time conditions. In the sixth part of this work, the antimicrobial susceptibility patterns (glycopeptide, β-lactam, lipopeptide, oxazolidinones and glycylicycline) of different *S. aureus* clone types were determined. The results revealed that MICs and the bactericidal activities of these agents’ classes within the different *spa* types were largely different. However, the MIC and MBC among clones within the same *spa* and MLST type were slightly different. Moreover, the minimum biofilm reduction concentrations (MBRCs) of these agents in the prevention of biofilm formation *in vitro* were overall greater than the CLSI-defined planktonic MIC breakpoint for resistance and quite variable among different clone types. The diversity in the antibiotic susceptibilities of isolates within the various clone types emphasises the need for continuous monitoring for the clones and clinicians should consider a correct antibiotic rather than empirical treatment. In the last part of this study, the effect of sub-inhibitory concentrations of vancomycin and tigecycline on the steady-state mRNA transcription levels of MSCRAMM and the *icaADBC* target gene, as well as on secretion of exoproteins of different clone types of *S. aureus* isolates were studied. The results indicate that the effects of these antibiotics generally affecting all virulence factors of selected target genes and the secretion of exoproteins. Thus might enhance
the virulence of this bacterium, therefore using these antibiotics to treat *S. aureus* infections may contribute to unpredictable results.

Conclusion: We conclude that a considerable difference exists among similar and various clone types of *S. aureus*. This variation could have contributed to the degree of virulence even within the same clone and enhanced heterogeneity in the infection potential. Thus, new genetic diversity suggests that the development of a rapid and precise identification profile for each clone type in human infections is very important to prescribe appropriate antibiotics and reduce the empirical treatment.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGENALPASTIAN DAN PENCIRIAN Staphylococcus aureus PENGHASIL BIOFILEM DARI ISOLAT KLINIKAL

Oleh

SALMAN SAHAB ATSHAN

Jun 2013

Pengerusi: Prof. Mariana Nor Shamsudin, PhD

Fakulti: Perubatan dan Sains Kesihatan

Staphylococcus aureus dianggap ejen etiological utama jangkitan manusia. Ia adalah bakteria biofilm-membentuk, yang tertanam sendiri dalam matriks polisakarida extracellular (lendir), dan memudahkan pematuhan ini mikroorganisma pada permukaan bioperubatan menyebabkan banyak jangkitan berterusan. Isu utama dengan lapisan yang telah menjadi satu masalah kesihatan awam global yang dipengaruhi oleh pengurusan yang tidak mencukupi pesakit yang dijangkiti dengan pertumbuhan biofilm sebagai sangat cepat menyesuaikan diri kepada tekanan antibiotik. Kebolehan S. aureus untuk menghasilkan biofilem telah lama diketahui namun masalah yang melibatkan penentuan biofilem masih wujud disebabkan kaedah penentuan berdasarkan fenotipik memerlukan medium yang sangat spesifik dan berbeza. Kaedah ini berupaya menentukan biofilem namun kadar kesalahan adalah tinggi disebabkan keputusan
yang salah-benar. Justeru, sejajar dengan keperluan yang sangat tinggi, kajian ini mengemukakan beberapa strategibagi mengatasi isu pengenalan biofilm tepat melalui pembangunan kaedah yang lebih baik yang boleh memberikan pengenalan positif. Keputusan yang didapati daripada CRA yang telah diubahsuai dalam kajian ini adalah berbeza secara signifikan daripada CRA yang telah diterbitkan (P<0.05). Kandungan agar yang diubahsuai bukan sekadar menghasilkan 100% pigmen hitam yang stabil malah menunjukkan hubungkait yang sangat tinggi dengan kaedah piawai dan kehadiran gen biofilem icaADBC. Bahagian kedua kajian, ini melibatkan pencirian kebolehan pelbagai klon S. aureus yang berbeza secara genotipik untuk melekat dan menghasilkan biofilm. Kajian ini telah menunjukkan bahawa pencilalan yang mempunyai jenis spa, SCCmec dan MLST yang sama mempunyai kebolehan yang sama untuk menghasilkan biofilm. Tambahan pula pencilalan yang mempunyai jenis spa yang berbeza menunjukkan variasi yang tinggi dalam kebolehan mereka untuk menghasilkan biofilm. Keputusan ini menunjukkan bahawa perbezaan kapasiti dalam penghasilan biofilm adalah disebabkan oleh perbezaan jenis protein permukaanA (spa) dan bukan disebabkan oleh perbezaan jenis MLST dan SCCmec. Pada bahagian ketiga kajian, kelaziman dan taburan molekul-molekul komponen matriks lekit permukaan mikrob (MSCRAMMs) dan gen-gen pada klon-klon berbeza S. aureus telah ditentukan. Kajian mendapat bahawa icaADBC, fnbA, eno, ebps, gen-gen clfA and clfB hadir dengan kelaziman yang tinggi dan sekata di antara berbagai-bagai klon jenis 60 MSSA and MRSA dari pencilalan klinikal, Kelaziman gen-gen MSCRAMM pula adalah pelbagai. Pada bahagian keempat kajian, profil transkripsi gen-gen khusus staphylococcal yang mengekod MSCRAMMS and icaADBC telah ditentukan semasa perubahan kompleksiti penghasilan biofilm yang konsisten pada masa pertumbuhan yang berbeza. Keputusan menunjukkan bahawa ekspresi relatif gen-gen MSCRAMMS dan icaADBC

kesimpulan: Kami menyimpulkan bahawa perbezaan yang besar wujud di kalangan jenis klon yang serupa dan pelbagai S. aureus. Perubahan ini boleh menyumbang kepada tahap kejahatan walaupun dalam genotip yang sama klon dan kepelbagaian dipertingkatkan dalam potensi jangkitan. Oleh itu kepelbagaian genetik baru menunjukkan bahawa pembangunan profil pengenalan pesat dan tepat bagi setiap jenis klon dalam jangkitan manusia adalah sangat penting untuk menetapkan antibiotik yang betul dan mengurangkan rawatan empirikal.
ACKNOWLEDGEMENTS

In the Name of Allah the Compassionate the Merciful

First of all I am thankful to Allah (S.W.T), the Allah Mighty, who blessed me strength and courage to complete this work and make this day possible.

I would like to thank my supervisor, Professor. Dr. Mariana Nor Shamsudin, for her guidance, advice and support throughout my work. She has helped me a lot from the beginning of my program at Universiti Putra Malaysia, I am really unable to find apt words of appreciation for the help she did, and I don’t intend to exaggerate with words. All I want to say is sincere and straight from my heart: ‘thank you’

I am also very grateful to my co-supervisor, Professor Dr. Zamberi Sekawi, Associate Professor Dr. Rukman Awang Hamat, Dr. Leslie Than Thian Lung and Associate Professor Chong Pei Pei for their help and constructive and criticism during my work.

I would like to thank all lecturers for their advice and their patience. Deep thanks to Encik Zainan Ahmed Ariffin, Encik yousef, and Encik Zainal for their guidance and help and also I am extremely grateful and appreciative of all staff members and postgraduate students in the Department of Medical Microbiology.

I would like to express my gratitude to my wife Salwa A. Abduljaleel for her affection and constant support. Deep thanks to my brother Dr. Saddam for his understanding, encouragement and open- mindedness.

Last but not least, my deep apologizes for my mistakes during this time period and deep apology to all the peoples that a name didn’t mentioned here.
I certify that a Thesis Examination Committee has met on 28.6.2013 to conduct the final examination of Salman Sahab Atshan on his thesis entitled “identification and characterization of biofilm-producing clinical isolates of Staphylococcus aureus” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Rozita bt Rosli, PhD
Professor
Institute Bioscience
Universiti Putra Malaysia
(Chairman)

Fatimah bt Abu Baker, PhD
Professor
Faculty of Science and Food Technology
Universiti Putra Malaysia
(Internal Examiner)

Raha bt Hj Abdul Rahim, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Floyd C Knoop, PhD
Professor
Department of Medical Microbiology and Immunology
Creighton University School of Medicine
Omaha NE 66178
USA
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mariana Nor Shamsudin, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Zamberi Sekawi, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Rukman Awang Hamat, Master
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Chong Pei Pei, Phd
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Leslie Than Thian Lung, Phd
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SALMAN SAHAB ATSHAN

Date: 28 June 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxxv</td>
</tr>
</tbody>
</table>

CHAPTER

1 **GENERAL INTRODUCTION**
 1.1 Introduction 1
 1.2 Thesis Organisation 6

2 **LITERATURE REVIEW** 7
 2.1 General Characteristic of *Staphylococci* 7
 2.2 Epidemiology of *Staphylococcus aureus* 9
 2.2.1 Colonization 9
 2.2.2 Transmission 10
 2.3 Genetic Structure Of *Staphylococcus aureus* 10
 2.3.1 Core Genome 10
 2.3.2 Accessory Genome 12
 2.3.3 Staphylococcal Cassette Chromosome (SCC) 12
 2.4 Pathogenicity of *Staphylococcus aureus* 13
 2.4.1 Adherence Factors 15
 2.4.2 *S. aureus* Exoproteins 15
 2.4.3 *S. aureus* Virulence Factors Regulation 16
 2.4.4 *S. aureus* Infection and Resistance ToAntimicrobialTherapy 18
 2.4.5 Treatment Of *Staphylococcus aureus*Infection 22
 2.5 Identification of *S. aureus* 23
 2.5.1 Conventional Methods 23
 2.5.2 Species Specific and *mecA* Genes 24
 2.5.3 Molecular Typing Methods 25
 2.5.3.1 Pulsed Field Gel Electrophoresis 25
 2.5.3.2 Multilocus Sequence Typing 26
 2.5.3.3 *spa* Typing 26
2.5.3.4 SCCmec Typing

2.6 Prevalence of \(S. \text{ aureus} \) clone types

2.7 Role of Biofilm Formation In Infections

2.8 General Model and Structure of Biofilm formation
2.8.1 Role of polysaccharide in biofilm formation
2.8.2 Surface Proteins and Their Role in \(S. \text{ aureus} \) Biofilm Formation

2.9 Diversity and Resistance Of Biofilms

2.10 Regulation Of Biofilm Formation In \textit{Staphylococcus}

2.11 \textit{Staphylococcus aureus} Biofilm Associated Infection

2.12 Identification Methods of \(S. \text{ aureus} \) Biofilm Production
2.12.1 Biofilm Phenotypic Formation Assay
2.12.2 Genotypic Analysis
2.12.2.1 Single-Polymerase Chain Reaction (PCR)
2.12.2.2 Multiplex- PCR
2.12.2.3 Reverse Transcriptase –PCR (RT-PCR)
2.12.2.4 Real-Time quantitative PCR (RT-qPCR)
2.12.2.5 Proteomics and Protein Analysis

2.13 Biofilm-Antibiotic Susceptibility

3 EVALUATION OF PHENOTYPIC AND GENOTYPIC DETECTION METHODS FOR BIOFILM-FORMING METHICILLIN-SENSITIVE AND METHICILLIN-RESISTANT \textit{Staphylococcus aureus} CLINICAL ISOLATES

3.1 Introduction

3.2 Materials and Methods
3.2.1 Bacterial Strains
3.2.2 Bacterial Isolation
3.2.3 Confirmation Of Isolates By Conventional Techniques
3.2.3.1 Gram Stain
3.2.3.2 Catalase Test
3.2.3.3 Coagulase Test
3.2.4 Confirmation Of Identification by Using PCR-Targeting Selected Genes
3.2.4.1 Preparation Of The Bacterial Culture
3.2.4.2 Total Genomic DNA Extraction
3.2.4.3 Detecting DNA
3.2.4.3.1 Quantitation Of Genomic DNA
3.2.4.3.2 Agarose Gel Electrophoresis
3.2.4.4 Polymerase Chain Reaction Analyses
3.2.4.5 Detection Of Polymerase Chain Reaction Products

3.2.5 Biofilm Production
3.2.5.1 Biofilm Phenotypic Method
3.2.5.1.1 Tube Test Assay
3.2.5.1.2 Modified Congo Red Agar
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5.1.3</td>
<td>Microtiter Plate Assay</td>
<td>60</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Biofilm Genotypic Method</td>
<td>61</td>
</tr>
<tr>
<td>3.2.5.2.1</td>
<td>Single-PCR Assay</td>
<td>61</td>
</tr>
<tr>
<td>3.2.6</td>
<td>DNA Sequencing</td>
<td>63</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Statistical Analysis</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>Discussion</td>
<td>72</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Bacterial Isolation and Identification</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Total Genomic DNA Extraction</td>
<td>67</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Polymerase Chain Reaction Analyses</td>
<td>67</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Biofilm Phenotypic Method</td>
<td>69</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Biofilm Genotypic Method</td>
<td>71</td>
</tr>
<tr>
<td>3.3.6</td>
<td>DNA Sequencing</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Discussion</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>COMPARATIVE CHARACTERISATION OF GENOTYPICALLY DIFFERENT CLONES OF MSSA AND MRSA IN THE PRODUCTION OF BIOFILMS</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials and Methods</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Discussion</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>COMPARISON OF RNA EXTRACTION METHODS FROM BIOFILM SAMPLES OF Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>Materials and Methods</td>
<td>96</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Bacterial Strains</td>
<td>96</td>
</tr>
</tbody>
</table>
5.2.2 Growth Conditions 96
5.2.3 RNA Isolation 97
 5.2.3.1 Commercial RNA Extraction Kits 97
 5.2.3.2 Boiling Method 98
 5.2.3.3 Simple phenol Method 98
5.2.4 DNase Treatment 101
5.2.5 Verifying the Integrity of DNA Free RNA 101
5.3 Results 102
 5.3.1 Commercial Extraction Method 102
 5.3.2 Boiling Method 103
 5.3.3 Simple Phenol Method 104
 5.3.4 Verifying the Integrity of DNA Free RNA 105
5.4 Discussion 109

6 PREVALENCE OF ADHESION AND REGULATION OF BIOFILM-RELATED GENES IN DIFFERENT CLONES OF Staphylococcus aureus
 6.1 Introduction 112
 6.2 Materials and Methods 113
 6.2.1 Biofilm Genotypic Methods 114
 6.2.1.1 Total DNA extraction: 114
 6.2.1.2 Quantitation of Genomic DNA 114
 6.2.1.3 Agarose Gel Electrophoresis of DNA 114
 6.2.2 Simplex and Multiplex Polymerase Chain Reaction 115
 6.2.3 Total RNA Extraction 118
 6.2.3.1 RNA Quantity and Purity Checking 118
 6.2.3.2 RNA Quality Determination 118
 6.2.4 cDNA Synthesis 119
 6.2.5 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) Method 119
 6.2.6 Sequencing of Biofilm Genes 120
 6.3 Results 120
 6.3.1 DNA extraction 120
 6.3.2 Simplex and Multiplex –PCR 122
 6.3.3 RT-PCR 130
 6.3.4 Sequencing of Adhesion and Biofilm Genes 135
 6.4 Discussion 135

7 QUANTITATIVE PCR ANALYSIS OF GENES EXPRESSED DURING BIOFILM DEVELOPMENT OF METHICILLIN RESISTANT Staphylococcus aureu
 7.1 Introduction 139
 7.2 Materials and Methods 141
 7.2.1 Bacterial Strain and Culture Conditions 141
7.2.2 Quantification of MRSA Biofilms By Safranin Assay 141
7.2.3 Preparation of Biofilm Samples For Scanning electron Microscopy (SEM) 143
7.2.4 RNA isolation from biofilms 143
7.2.5 RNA Isolation 144
7.2.6 Primer Design and Their Specificity For RT-qPCR 145
7.2.7 Selection Of Endogenous Controls For Relative Quantitation 145
7.2.8 Real-time Quantitative-PCR (RT-qPCR) 147
7.2.9 Data Analysis Using Relative Standard Curve Method 147
7.2.10 Statistical Analysis 148
7.3 Results 148
7.3.1 Growth Conditions 148
7.3.2 Biofilm Quantitative Assay 148
7.3.3 Scanning Electron Microscopy (SEM) 149
7.3.4 Stability Of RNA, cDNA and Specificity Of primers for RT-qPCR 151
7.3.5 Stability Of Endogenous Controls For Relative Quantitation 160
7.3.6 Expression Levels Of Biofilm-associated Genes Quantified By RTqPCR 162
7.4 Discussion 168

8 COMPARATIVE PROTEOMIC ANALYSIS OF DIFFERENTIALLY-EXPRESSED EXOPROTEINS IN VARIOUS CLONE TYPES OF Staphylococcus aureus AND DURING BIOFILM DEVELOPMENT GROWTH
8.1 Introduction 172
8.2 Materials and Methods 174
8.2.1 Tested Bacterial Strains 174
8.2.2 Bacterial Cell Protein Preparation 175
8.2.3 Determination Of Protein Concentration 176
8.2.4 SDS-PAGE 177
8.2.5 First-Dimensional Gel Electrophoresis 177
8.2.6 Second Dimension SDS-PAGE (2DE) 178
8.2.7 2DE Gel Staining Using BioSafe Coomassie 180
8.2.8 2DE Gel Staining Using Silver Stain Plus 180
8.2.9 Gel Imaging With The Densitometer GS-800 Mode Imager 181
8.2.10 Protein Analysis By PDQuest Software 181
8.2.11 In-gel Digestion and Protein Identification Through Liquid Chromatography-mass spectrometry (LC-MS) 182
8.3 Result 183
8.3.1 Protein Sample Preparation and SDS-PAGE Analyses 183
8.3.2 2DE Gel Analysis 184
8.3.3 Extracellular ProteinsAnalysis 185
8.3.4 Proteins Identified through Mass Spectrometry 196
8.4 Discussion 201
9

DIVERSITY IN THE ANTIMICROBIAL SUSCEPTIBILITY ACTIVITIES OF *Staphylococcus aureus* CLONE TYPES PREVALENT IN MALAYSIA

9.1 Introduction 205
9.2 Materials and Methods 206
 9.2.1 Planktonic Susceptibility Testing 207
 9.2.1.1 MICs Determination 207
 9.2.1.2 MBCs Determination 207
 9.2.1.3 Time-Kill Studies 208
 9.2.2 Biofilm Susceptibility Testing 209
9.3 Results 210
 9.3.1 Planktonic Susceptibility Testing 210
 9.3.1.1 MICs Determination 210
 9.3.1.2 Determination of MBCs 221
 9.3.1.3 Time-Kill Assays 228
 9.3.2 Biofilm Susceptibility Testing 231
9.1 Discussion 232

10

EFFECT OF ANTIBIOTICS ON *Staphylococcus aureus* EXOPROTEIN PRODUCTION AND BIOFILM GENES EXPRESSION

10.1 Introduction 237
10.2 Materials and Methods 239
 10.2.1 Bacterial Isolates and Preparation of Antibiotics 239
 10.2.2 MIC Determination 240
 10.2.3 Effects Of sub-MIC of Vancomycin and Tigecycline on Growth 241
 10.2.4 Adhesion and Biofilm GeneExpression In Cultures Exposed to Vancomycin for 12 hours 241
 10.2.5 Adhesion and Biofilm GeneExpression In Cultures Exposed to Tigecycline for 12 hours 242
 10.2.6 The Effect of sub-MIC of Vancomycin on Secreted Proteins 243
 10.2.6.1 Protein Preparation and SDS-PAGE Analyses 243
 10.2.6.2 Spot picking, Excision and Spot Handling Work Station 244
10.3 Results 244
 10.3.1 MIC Determination 244
 10.3.2 Effects Of sub-MIC of Vancomycin and Tigecycline on Growth 245
 10.3.3 Adhesion and Biofilm Genes Expression In Culture Exposed to Vancomycin for 12 hours 245
 10.3.4 Adhesion and Biofilm GeneExpression In Cultures Exposed to Tigecycline for 12 hours 253
 10.3.5 The Effect Of sub-MIC of Vancomycin on Secreted Extracellular Proteins 255
10.4 Discussion 262
11 CONCLUSIONS AND RECOMMENDATIONS

11.1 General Conclusions

FUTURE DIRECTION
BIBLIOGRAPHY
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS

267
270
271
297
333
334