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Research interests on femtosecond solitons have increased along with upgrading in 

ultrafast optics. Moreover, all-optical devices have been developed based on 

ultrashort solitons.  

 

Despite the wide attraction of femtosecond solitons, which lies in providing high 

resolution, high intensity, and high bandwidth, attempt in this realm is associated 

with more complexity and more problems due to manifestation of higher order linear 

and nonlinear effects. To get around these obstacles, many researches have been 

conducted during the last decades in both, reducing the destructive effects on pulse 

propagation and developing optimal devices based on ultrashort solitons. 

 

This dissertation investigates the potential of overlapping 50 femtosecond soliton in 

improving the propagation characteristics as a low power ultrafast pulse over 

standard single-mode fiber (SSMF). Pulse stream propagation is also explored. 
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Moreover, realization of two all-optical devices, ultrafast wavelength conversion, 

and two-bit analog-to-digital conversion, are investigated for ultrashort solitons. 

 

First, improving the 50 femtosecond pulse propagation is realized by substituting 

input pulse with a reduced-order overlapping soliton pair. This approach decreases 

the pulse time delay compared to fundamental soliton and increases the pulse 

stability compared to reduced-order soliton. In the pulse stream, in addition to using 

overlapping soliton pair, perturbation is also applied to the fiber by step change in the 

second order dispersion to avoid pulses from collision.  

 

Second, survey on the realization of wavelength conversion, which is based on 

second-order 50 femtosecond dark solitons with hyperbolic secant pulse, is 

accomplished by introducing localized dispersion perturbation along the optical 

fiber. It is shown that the realization of 1×2 channel wavelength converter for 

femtosecond pulses is possible. 

 

Ultimately, realization of two-bit all-optical analog-to-digital conversion is explored 

for analog signal sampled by a 50 femtosecond soliton sequence. Two methods are 

exploited. The first one is based on filtering the broadened soliton spectrum after 

evolution over half of the soliton period. In the second one, pulse is temporally 

sampled at the specified times after propagating through one soliton period. The 

utilized methods in this research have fast response and relatively simple design in 

comparison to the existing solutions.  
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Consequently, the main contributions include research for improving femtosecond 

pulse and pulse stream propagation over short fiber lengths, realization of all-optical 

wavelength conversion for dark soliton with hyperbolic secant pulse, and two-bit all-

optical analog to digital conversion for femtosecond soliton.  
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Minat kajian pada soliton femto-saat telah berkembang bersama dengan penaikan 

taraf dalam optik ultra pantas. Tambahan pula, semua alat optik telah dibangunkan 

berasaskan soliton ultra pendek. 

 

Walaupun tarikan luas pada soliton femto-saat, yang merangkumi dalam 

menyediakan peleraian yang tinggi, kecerahan yang tinggi, dan lebar jalur tinggi, 

percubaan dalam alam ini dikaitkan dengan lebih banyak kerumitan dan lebih banyak 

masalah disebabkan manifestasi linear peringkat lebih tinggi dan kesan-kesan tak 

linear. Untuk membiasakan sekitar halangan-halangan ini, kebanyakan penyelidikan 

telah dijalankan semasa dekad terakhir dalam kedua-dua, mengurangkan kesan-kesan 

yang memusnahkan pada pembiakan denyut dan membangunkan alat-alat optimum 

berdasarkan kepada soliton ultra pantas. 
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Disertasi ini menyiasat potensi pertindihan bagi 50 femto-saat soliton dalam 

meningkatkan ciri-ciri pembiakan sebagai denyut ultra pantas kuasa rendah ke atas 

standard gentian mod tunggal (SSMF). Pembiakan aliran denyut juga telah dijelajahi. 

Tambahan pula, kesedaran bagi dua semua alat optik, penukaran panjang gelombang 

ultra pantas dan dua bit penukaran analog kepada digital, adalah disiasat untuk 

soliton ultra pantas. 

 

Pertama, meningkatkan 50 femto-saat pembiakan denyut disedari dengan 

menggantikan memasukkan denyut dengan satu perintah terkurang bertindih soliton 

sepasang. Pendekatan ini mengurangkan tunda masa denyut berbanding dengan 

soliton asas dan meningkatkan kestabilan denyut berbanding dengan soliton perintah 

terkurang. Dalam aliran denyut, tambahan kepada menggunakan soliton bertindih 

sepasang, usikan juga digunakan ke atas serat oleh tukar langkah dalam penyerakan 

peringkat kedua untuk mengelak dari pelanggaran denyut-denyut. 

 

Kedua, meninjau pada kesedaran penukaran panjang gelombang, yang berdasarkan 

kepada 50 femto-saat peringkat kedua soliton gelap dengan denyut sekan 

hiperbolaan, dicapai dengan memperkenalkan usikan penyerakan setempat sepanjang 

gentian optik. Ia menunjukkan kesedaran bagi 1×2 saluran penukar panjang 

gelombang untuk denyut femto-saat adalah mungkin. 

 

Akhirnya, kesedaran dua bit sepenuh optik penukaran analog kepada digital 

dijelajahi untuk isyarat analog dirasai oleh jujukan soliton 50 femto-saat. Dua cara 

telah dieksploitasikan. Pertama adalah berdasarkan menapis spektrum soliton yang 

telah melebar selepas evolusi ke atas separuh daripada tempoh soliton. Yang kedua, 
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denyut bermasa menyampel di masa-masa yang ditetapkan selepas membiak melalui 

satu tempoh soliton. Kaedah-kaedah yang telah digunakan dalam penyelidikan ini 

mempunyai reaksi pantas dan reka bentuk yang agak mudah dalam perbandingan 

bagi penyelesaian sedia ada. 

 

Akibatnya, sumbangan-sumbangan utama termasuk penyelidikan untuk 

meningkatkan denyut femto-saat dan pembiakan aliran denyut ke atas panjang 

gentian pendek, kesedaran semua penukaran panjang gelombang optik untuk soliton 

gelap dengan denyut sekan hiperbolaan, dan dua bit sepenuh optik untuk penukaran 

analog kepada digital untuk soliton femto-saat. 
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CHAPTER 1 

1. INTRODUCTION 

 

1.1 Background 

 

In the last decades, numerous advances in ultrafast technologies have motivated 

many researchers to explore about optical femtosecond pulses due to their eminent 

characteristics.  

 

Ultrashort pulses have found substantial applications in diverse areas. There is a 

demand for shorter pulses in tracing chemical and physical phenomena because of 

providing high resolution. Ultrafast spectroscopy and femto-chemistry are through 

this purpose [1-3]. In addition, there is also a demand for short pulses in bioimaging. 

Moreover, the high intensity associated with ultrashort pulses has created some 

applications in surgery, x-ray generation, and particle acceleration in physics [4-7]. 

In addition to previous applications, ultrashort pulses have led to the development of 

wavelength division multiplexing (WDM) optical communications, as pulses with 

short duration occupy high bandwidth [8-9]. Accordingly, faster data transmission 

has been realized. Moreover, all-optical devices are being developed for ultrashort 

pulses toward becoming adapted to ultrafast communications. During the last few 

decades, various kinds of all-optical logic gates, switches, delay lines, multiplexers, 

wavelength converters, analog-to-digital converters (ADCs), digital-to-analog 

converters (DACs), and many other devices have been reported to be developed [10-

13]. 
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All these applications and prominent advantages do not fade the problems associated 

with employing femtosecond pulses. The higher intensity and peak power of 

ultrashort pulses may lead to pulse distortion along the fiber. This distortion, which 

sometimes limits the extension of applications, may include pulse deformation, time 

deviation, and pulse broadening. In addition to pulse distortion, the complexity of 

methods analysing the ultrashort pulses is another considerable issue, because, the 

higher order effects and asymmetric propagation of pulses should be considered in 

these approaches. 

 

Optical soliton is a kind of pulse envelope, which has been able to overcome some 

impairment. Soliton is formed due to the interplay between group-velocity dispersion 

(GVD) and self-phase modulation (SPM), both of them individually distort the 

optical pulse propagation. It is typically known by hyperbolic-secant pulse. However, 

other types of solitons including dark solitons, dispersion-managed solitons, and bi-

stable solitons have also been introduced.  

 

Soliton can propagate undistorted over long distances in a lossless fiber. This is the 

outstanding characteristic of soliton over square pulse. Therefore, hyperbolic secant 

pulse has extensively been substituted for conventional pulse in many applications. 

In particular, ultrashort solitons have been utilized in a wide range of applications in 

ultrafast optics. In spite of better characteristics of ultrashort soliton compared to 

ultrashort square pulse, there are still difficulties with higher order effects and other 

destructive effects. Therefore, systems operating based on femtosecond solitons are 

to confront with different problems, including timing jitter, soliton collision, noise, 

and pulse deformation. To deal with these impairments, various kinds of methods 
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provided by fibers or other devices have been reported [14-17]. For example, 

dispersion managed fibers (DMFs), dispersion compensating fibers (DCFs), fibers 

with different dispersion profiles, fiber gratings, nonlinear optical loop mirror 

(NOLM), liquid crystal modulators, dark solitons, and phase conjunction are 

proposed. However, there are still demands for methods to overcome destructive 

effects in the ultrafast field.  

 

High resolution, fast sampling, and optical computing applications may deal with one 

important obstacle due to time delay and dispensable high power of ultrashort pulses. 

Solving this problem can lead to extension of related applications.  

 

Ultrashort solitons have contributed to realization of ultrafast optical devices. During 

the last decades, there has been an advanced development in optical devices design 

based on solitons. For example, ultrafast optical delay line based on soliton 

characteristics [12, 18], all-optical soliton switching [19-20], and all-optical analog-

to-digital converters [21-22] have been reported. Wavelength conversion has also 

attracted some researchers to study about [23-24]. Two all-optical devices, namely 

wavelength converter and ADC, are the focus of this dissertation. 

 

Wavelength converter, which changes the wavelength of the incoming signal, is a 

critical component in optical networks. It is used to adapt the input wavelength to the 

network bandwidth, to improve the utilization of wavelength within the network, or 

to adapt outcoming signal from one sub-network into a suitable one to be utilized in 

another sub-network. In order to realize optical wavelength conversion, different 

approaches involving optoelectronic, optical gating, wave-mixing, and 
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interferometric techniques have been reported [25-27]. All-optical techniques yield 

devices with less power consumption and faster response, although they are more 

complex compared to the electrical methods and they may confront problems such as 

transparency to different modulation formats and noise. In ultrafast applications, 

performance speed is an important factor. However, ultrafast wavelength conversions 

for femtosecond pulses have been rarely reported [11, 25, 28]. These few reports are 

commonly performed by using waveguides. Exploration towards finding economical 

and simple methods for realizing all-optical devices for femtosecond pulses is still 

one of the major challenges in ultrafast optics. 

 

Tremendous development in digital signal processing, despite analog nature of many 

signals, has been the motivation of vast research into the ADCs. ADC holds critical 

role in data acquisition and processing systems. In ultrafast optics, high-speed and 

high-resolution ADC is an essential component. All-optical design based on 

ultrashort pulses helps to the realization of such an ADC. Most proposed methods 

uses Mach-Zehnder interferometer (MZI) or nonlinear optical loop mirror (NOLM) 

[29-30]. On the other hand, some methods are limited to only two bits [21, 31-32]. 

Vast researches are still directed into realization of ultrafast ADC, because the 

current developments are not fast enough in compare to the huge progress in ultrafast 

communication. 

 

Consequently, the significant role of ultrashort solitons in ultrafast optics and 

insatiable demand for ultrafast devices in this field, are the motivation of this 

dissertation, which explores three issues that are based on femtosecond solitons. 

First, the possibility of reducing propagation time delay of low power ultrashort 
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pulse and pulse stream by using overlapping soliton pair is studied. Second, 

wavelength conversion with hyperbolic secant femtosecond pulse in normal 

dispersion regime is studied. Finally, realization of two-bit ADC by using two 

different methods in standard single-mode fiber (SSMF) is thoroughly explored. It is 

expected that the findings from our study will contribute towards progress in ultrafast 

optics research and industry. 

 

1.2 Problem statement 

 

Fundamental soliton has prominent characteristics compared to square pulse. 

However, in ultrafast applications where high resolution and/or ultrashort pulse 

width is important, such as optical computing and signal processing [33-34], high 

peak power of femtosecond soliton is power wasting and even destructive. Moreover, 

soliton with lower power rapidly disperses through the fiber. Although many 

solutions are reported to mitigate pulse destructions by using external devices, 

improving laser sources, and different kinds of fibers, to our knowledge the potential 

of inherent characteristics of pulse to show better performance in ultrafast low power 

applications are not considered.  

 

All-optical fast wavelength conversion has been an important issue for many 

researches. However, it is seldom reported for femtosecond pulses due to problems 

associated with ultrashort pulses [11, 25, 28, 35]. These few researches are reported 

at least for 300 fs pulse. Moreover, they have usually utilized waveguides, such as 

silicon-on-insulator (SOI) and LiNbO3, in addition to some external devices, such as 

filter and optical polarization controller. Exploring to find simple and economical 
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approaches continues. It is predicted that methods using a few devices are less 

imposed by noise and are more suitable for femtosecond based wavelength 

conversion. Lee et al. in [23] and [36], investigated the possibility of realizing 

wavelength conversion by using higher-order soliton broadened spectrum, which 

undergoes three different forms of localized channel perturbation. One of the utilized 

perturbations is step increase in dispersion. It is almost a simple method without 

using costly and complicated devices. This method has also been exploited by Ebnali 

et al. published in 2007 [24]. They have presented a multichannel wavelength 

conversion for higher order solitons. Both researches consider picosecond solitons 

without being affected by dominant higher order nonlinear effects, which is a serious 

ignorance for femtosecond solitons.  

 

Various methods for realization of fast optical ADCs have been developed in recent 

decades. Quantization is one important stage in ADCs. This is usually implemented 

based on Kerr effect which has ultrafast response. However, reported techniques 

suffer from many problems such as need for high-power femtosecond pulses to raise 

the nonlinear phenomena [37-38] or polarization sensitivity [39-40]. Moreover, to 

our knowledge, ultrafast ADCs are reported at least for 500 fs as published in [41]. 

Demand for ultrafast ADCs is increasing while complicated methods using many 

devices, impose noise and disallow use of sampled pulse with a few femtosecond 

pulse width. It is predicted that simple methods with limited devices can contribute 

to realization of ultrafast ADCs based on a few femtosecond sampled pulse. Oda in 

[21] has proposed a two-bit all-optical ADC, where analog pulse is sampled by a 

picosecond soliton sequence. His scheme is based on filtering symmetrically 

broadened and split spectrum induced by self-phase modulation (SPM) or soliton 
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effect. The output is a two-bit Gray code. This method is almost simple without 

using costly and complicated devices in comparison to other competing solutions.  

 

1.3 Objectives 

 

The objectives of this research are: 

 

1. To study the potential of overlapping soliton pair in improving the propagation 

characteristics over SSMF. 

 

2. To study the possibility of realizing all-optical wavelength conversion for 

femtosecond pulses. 

 

3. To study the possibility of realizing quantization in two-bit all-optical analog-

to-digital conversion for femtosecond solitons. 

 

1.4 Scope of work 

 

This research involves modelling work, mathematical analysis and simulations. The 

main focus is to study the propagation of overlapping femtosecond soliton pair over 

short SSMF. The same study will also be conducted by using the soliton stream. This 

thesis will also study the potential uses or applications of femtosecond soliton.  
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The overall stages are summarized in Figure  1.1. The scope of work for propagation 

characteristics of overlapping soliton pair, all-optical wavelength conversion, and 

quantization in ADC are shown in Figure  1.2 and Figure  1.3. 

 

 

Figure  1.1. Overall methodology  
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Overlapping soliton 
pair

Introducing overlapping soliton 
pair with different Ns and q0s, 

but with equal time duration as 
that of 50 fs fundamental soliton

Simulating overlapping 
soliton pair propagation 

through SSMF

Comparing with 
fundamental soliton

Comparing with 
reduced-order 
soliton with the 
same amplitude

Amplitude 
fall

Time delay

Amplitude 
fall

Comparing the 
overlapping soliton 

pairs in curves

Time delay

Amplitude 
fall

Simulating overlapping 
soliton pair stream 

through SSMF

Applying 
perturbation if 
pulses collide

Finding the best 
perturbation step 

for each soliton pair

Comparing pulse 
streams with different 
perturbation positions 
with 50 fs fundamental 

soliton stream

Amplitude 
fall

Time delay

Finding the best 
perturbation 

position

Comparing pulse 
streams under best 

perturbation with 50 fs 
fundamental soliton 

stream  

Figure  1.2. Methodology stages to achieve suitable low power ultrashort pulse 
by using overlapping soliton pair 
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Figure  1.3. Methodology stages to realize (a) optical wavelength conversion, (b) 
optical quantization for analog-to-digital conversion 



© C
OPYRIG

HT U
PM

11 

1.5 Thesis overview 

 

This thesis is organized in five chapters, which are commonly explained based on 

three objectives of this research, separately. The current chapter provided an 

introduction to the main issues dealing with this thesis. Problem statement and the 

main objectives are also clarified. 

 

Chapter 2 is devoted to literature review. In this chapter, the basic concepts of this 

research are explained. Moreover, different methods related to our dissertation are 

introduced and criticized in different sections. 

 

Chapter 3 explains the utilized methods. First, the methodologies, which are common 

through achieving different objectives, are introduced. Next, the methodology related 

to each objective is explained, separately. More details about utilized methods are 

clarified in Chapter 4 

 

Chapter 4 classifies the achieved results in three sections. First, characteristics of 

femtosecond pulse realized by using reduced-order overlapping soliton pair over 

short SSMF is explained for single pulse and pulse stream. Next, realization of all-

optical wavelength conversion for femtosecond secant hyperbolic pulse is elaborated. 

Finally, realization of two-bit all-optical analog-to-digital conversion for 

femtosecond soliton is discussed based on two different methods. 

 

Ultimately, Chapter 5 concludes this dissertation based on our three objectives and 

suggests possible areas on the future work. 
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