

UNIVERSITI PUTRA MALAYSIA

NUMERICAL STUDY OF TWO-DIMENSIONAL STEADY INCOMPRESSIBLE LAMINAR FLOW OVER A BACKWARD-FACING STEP AT MODERATE REYNOLDS NUMBER

YOGESWARAN A/L SINNASAMY

FK 2012 100

NUMERICAL STUDY OF TWO-DIMENSIONAL STEADY INCOMPRESSIBLE LAMINAR FLOW OVER A BACKWARD-FACING STEP AT MODERATE REYNOLDS NUMBER

By

YOGESWARAN A/L SINNASAMY

NUMERICAL STUDY OF TWO-DIMENSIONAL STEADY INCOMPRESSIBLE LAMINAR FLOW OVER A BACKWARD-FACING STEP AT MODERATE REYNOLDS NUMBER

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

NUMERICAL STUDY OF TWO-DIMENSIONAL STEADY INCOMPRESSIBLE LAMINAR FLOW OVER A BACKWARD-FACING STEP AT MODERATE REYNOLDS NUMBER

By

YOGESWARAN A/L SINNASAMY

May 2012

Chairman: Abdul Aziz bin Jaafar, PhD

Faculty:

Engineering

This thesis describes the application of computational techniques to numerically investigate the 2D steady incompressible laminar flow over a backward-facing step moderate range of Reynolds number. This study comprises two parts; the influence of under relaxation factors (URFs) on convergence characteristics of solution for the transport equation and velocities (*x*- and *z*- directions) for the URFs values between 0.05 and 1.0 was examined. In the first part of study, a model of sudden expansion channel was constructed and simulations were performed by using PHOENICS; a Computational Fluid Dynamics (CFD) software. The values of error percentage of pressure and velocities variables of 430 simulations have been tabulated. Based on these values, graphical technique was applied to determine the best combinations of URFs for momentum and pressure correction equations have been conducted by concentrating on convergence criteria less than 1 x 10⁻⁶ and the assessment of interpolation solution for convective and diffusive terms in the transport equation. We found that for u_p between 0.1 and 1.0, the best combined URFs for velocities is

between 0.1 to 0.5 to achieve lower err (p) within shorter time period. Meanwhile, to achieve lower err (w) during the computation, the URFs are between 0.6 and 0.8.We also found that the recommended values of u_p to achieve lower err (u) during the computation are between 0.6 and 1.0. In this second part of study, a model of sudden expansion channel based on Erturk (2008) has been constructed. The streamlinescontours of each simulation have been plotted and main recirculation complex have been identified. The locations of the separation and reattachment points in the main reattachment zone and other recirculation zones on the bottom and upper surfaces of the sudden expansion channel were quantitatively determined. For range of Reynolds numbers between 100 and 3000, HYBRID and UPWIND schemes have been used and 60 simulations were performed. At lower range of Reynolds number between 100 and 500, 12nonlinear schemes based on QUICK, FROMM and CUS scheme used to perform simulation and the streamlines of each simulation have been plotted and their main reattachment zone and other separation and reattachment zones were compared. The schemes used in this second part of study are SMART, HQUICK, UMIST, CHARM, VAN1, VAN2, OSPRE, VANALB, SUPBEE, MINMOD, KOREN and HCUS. It was found that the length of main reattachment zone is increasing when the Reynolds number is increased gradually from 100 to 1200. For beyond of Re = 1200, the flow exhibits more complex flow structure.

Abstraktesis yang dikemukakankepadaSenatUniversiti Putra Malaysia sebagaimemenuhisebahagiankeperluanuntukijazah Master Sains

KAJIAN BERANGKA PEMBELAJARAN KE ATAS ALIRAN DUA DIMENSI NYAH MAMPAT DAN MANTAP DALAM ALUR PENGEMBANGAN MENDADAK PADA JULAT NILAI NOMBOR REYNOLDS YANG SEDERHANA

Oleh

YOGESWARAN A/L SINNASAMY

Mei 2012

Pengerusi: Abdul Aziz Bin Jaafar, PhD

Kejuruteraan

Fakulti:

Thesis inimenerangkanaplikasitekniksimulasibagikajianberangka yang 2D melibatkanaliran nyahmampatdanmantapkeatastanggamenghadapkebelakangpadajulatnombor Reynolds sederhana.Kajianiniterbahagikepadaduabahagian, yang iaitupengaruhbawahfaktorpengendurankeatasciri-ciripenumpuanbagipersamaanpersamaan yang melibatkanhalajupadaarahxdanzbagijulatbawahfaktorpengenduran di 0.05 dan Dalambahagianpertamakajianini, antara 1.0. sebuahmodel alurpengembanganmendadakdiciptadansimulasidijalankandenganmenggunakanperisi anPHOENICS Computational Fluid Dynamics.Nilai-nilairalatbagitekanandanhalaju diperolehidaripadakesemua 430 simulasitelahdirekodkan. yang Berdasarkanpadagraf-graf yang dihasilkandenganmenggunakan data-data yang diperolehimelaluisimulasi-simulasiinibagipersamaan momentum dantekanantelahdikenalpastiyang mempunyaiciripenumpuan yang kurangdaripada

v

10⁻⁶danpenilaiankeataspenyelesaianfaktor-faktorkonveksidandifusi 1 di Х dalampersamaanpengangkutan. Dalambahagiankeduaini, model alurpengembanganmendadak yangdihasilkanolehErturk (2008)telahdijadikansebagaipanduanuntukmenghasilkan model dalambahagianini.Garisangarisan jet aliranbagisetiapsimulasitelahdiplotkandankawasanpusaranutamadikenalpastibagisetia plot yang dihasilkan. Kedudukanbagititikр titikperpisahandanpercantumansemuladalamkawasanpusaranutamadan lain-lain pusaranpadapermukaanbawahdanataspermukaanpermukaanalurpengembanganmendadakditentukan. Bagijulatnombor Reynolds yang 100 3000, di antara dan sebanyak 60 simulasitelahdijalankandenganmenggunakanskema-skema HYBRID dan UPWIND. Bagijulatnombor Reynolds yang di antara 100 dan 500, skema-skema yang berasaskan QUICK, FROMM dan CUS telahdigunakan. Untukjulatnombor Reynolds kecilini, sebanyak 12 yang bersifatbukanlinear telahdigunakan. yang Bagijulatnombor Reynolds yang keciliaitu di antara 100 dan 500, sebanyak 70 simulasitelahdijalankandenganmenggunakanskema-skema yang berikut; SMART, HQUICK, UMIST, CHARM, VAN1, VAN2, OSPRE, VANALB, SUPBEE, MINMOD. **KOREN** HCUS. dan Garisan-garisan iet aliranbagisetiapsimulasitelahdiplotkandankawasanpercantumanutamadankawasankawasanpusaran yang lain telahdibandingkan. Bagisetiappeningkatanbaginombor Reynolds bermuladaripada 100 sehingga 1200, didapatipanjangbagikawasanpusaranutamameningkat. Baginombor-nombor Reynolds yang lebihdaripada 1200, didapatikawasanpusarandangarisan-garisan jet aliranmenunjukkansuatusituasi yang kompleks.

vi

ACKNOWLEDGEMENTS

First and foremost, all praise and thanks giving to God, for gracing me with strength to complete my thesis.

I am greatly indebted to my supervisor Associate Professor Dr Abdul Aziz bin Jaafar for his guidance and friendship throughout my graduate work. He is very helpful and supportive and his continuous encouragement has made me work hard. Dr Abdul Aziz bin Jaafar has been a continual source of inspiration and helped me to make the thesis a reality.

I am forever in debt to my grandmother, Madam K. Rajahmah and my parents, Mr and Mrs. V. SinnasamyNeela for their dedication and continuous prayer throughout my whole life. Over the past years, their guidance, care and love has been undoubtedly indispensable. I would also like to acknowledge my beautiful wife A. Sridevi, my lovely daughter Raja Rajeshwari, my aunties and uncles, my parents-inlaw, my brothers and sisters, my cousins and friends for their love, smiles and encouragement. Word is not sufficed to express it. I would also like to express my appreciation towards my other family members, relatives and members at aerodynamics lab of Aerospace Engineering Department.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abdul Aziz Bin Jaafar, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

AzminShakrineBin MohdRafie, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

> **BUJANG BIN KIM HUAT, PhD** Professor and Dean School of Graduate Studies

Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously and currently is not submitted for any other degree at UniversitiPutra Malaysia or other institutions.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	L XV
LIST OF ABBREVIATIONS	xix

CHAPTER

 \sim

1	INTR	INTRODUCTION			
	1.1	Introduction	1		
	1.2	Schematic Diagram of BFS Flow Structure	2		
	1.3	Problem Statement and Research Methodologies	3		
	1.4	Aim and Objective of the Study	4		
	1.5	Layout of the Thesis	4		
	1.6	Contribution of Work	5		
2	LITE	RATURE REVIEW			
	2.1	Introduction	8		
	2.2	Description on Experimental Techniques	9		
		2.2.1 Laser-Doppler Anemometer (LDA)	9		
		2.2.2 Multi-element Hot-film Sensor (MHFS)	11		
		2.2.3 Electro-diffusion Principle Technique	12		
		2.2.4 Laser-Doppler Velocimeter (LDV)	13		
		2.2.5 Particle Image Velocimetry (PIV)	14		
	2.3	Numerical Investigations of BFS Flow	15		
		2.3.1 Numerical Investigations Based on BFS	15		
		Models with ER Value Between 1.0 and			
		1.5			
		2.3.2 Numerical Investigations Based on BFS	20		
		Models with <i>ER</i> Value Between 1.94			
		and 2.0	•		
		2.3.3 Numerical Investigations Based on BFS	30		
		Models with <i>ER</i> Value Between 2.02 and 3.0			
	2.4	The Influence of Under Relaxation Factors on	34		

Convergence Behavior

3.	RESEARCH METHODOLOGY			
	3.1	Introduction 64		
	3.2	BFS Flo	ow Model	65
		3.2.1	BFS With $ER = 4.0$	65
		3.2.2	BFS With $ER = 2.0$	66
	3.3	Numeri	cal Methods	66
		3.3.1	Governing Equations of Motion	66
		3.3.2	Solution Procedure of the SIMPLE Algorithm	72
		333	Boundary Conditions	76
		3.3.4	Computational Grid	76
	3.4	Data Or	ganization and Analysis	77
		3.4.1	Test Cases	77
		3.4.2	Schemes for Convection Discretization in PHOENICS	79
		3.4.3	Convergence History	79
		3.4.4	Grid Independent Study	79
		3.4.5	Manipulation of Under-relaxation	80
			Factors	
	3.5	Summa	ry	81
4	DECU		DISCUSSION	
4.	KESUI	LIS AN	DISCUSSION	01
	4.1	Volidati	ion of the Computational	91
	4.2	Approx	ab	91
	13	Approa	cil	02
	4.5 Assessment on Error Fercentage of Fressure and Velocities		92	
		1 3 1	The Effect of u on the Trending of	0/
		4.3.1	err (n)	24
		132	The Effect of u on the Trending of	05
		4.3.2	err (u)))
		133	The Effect of u on the Trending of	96
		ч.э.э	err (w)	70
	44	Numeri	cal Schemes	97
		4.4.1	Linear Higher-Order Schemes	97
		4.4.2	Non-linear Schemes Based on OUICK	98
		4.4.3	Non-linear Schemes Based on FROMM	99
		4.4.4	Non-linear Schemes Based on CUS	99
	4.5	Reattac	hment Length (RL)	100
		4.5.1	RL Obtained in Our Study Based on	101
			HY and UP Schemes for $100 \le \text{Re} \le 3000$	
		4.5.2	RL Obtained in Our Study on Non- linear Schemes Based on QUICK for $100 \le \text{Re} \le 500$	103
		4.5.3	RL Obtained in Our Study on Non- linear Schemes Based on FROMM for $100 \le \text{Re} \le 500$	103

 \bigcirc

	4.5.4 RL Obtained in Our Study on Non-	104
	linear Schemes Based on CUS for $100 \leq$	
	$\text{Re} \leq 500$	
4.6	Comparison between Our Data of RL Based on	104
	HY Scheme with Experimental Data Available	
	in the Literature	
	4.6.1 Denham and Patrick	104
	4.6.2 Armaly	105
4.7	Comparison between Our Data of RL Based on	106
	HY Scheme with Computational Data Available	
	in the Literature	
	4.7.1 Lee and Mateescu	106
	4.7.2 Erturk	107
CON	NCLUSION AND RECOMMENDATIONS	
5.1	Introduction	125
5.2	Conclusion	125
5.3	Recommendation for future works	127
REF	TERENCES	129
APP	PENDICES	132
BIO	DATA OF THE STUDENT	154

5.

G