

UNIVERSITI PUTRA MALAYSIA

PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERISATION OF SWEET POTATO FLOURS AND DOUGH

ABU BAKR MOHD HANIM

FK 2014 63

PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERISATION OF SWEET POTATO FLOURS AND DOUGH

By

ABU BAKR MOHD HANIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements of the Degree of Master of Science

February 2014

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERISATION OF SWEET POTATO FLOURS AND DOUGH By

ABU BAKR MOHD HANIM

February 2014

Chair: Chin Nyuk Ling, PhD

Faculty: Engineering

Physico-chemical and rheological characterisation of a new variety of sweet potato flour and dough, the VitAto, known for its high vitamin A contents, were compared with two other commercial sweet potato, the Bukit Naga and Okinawan available in Malaysia. The recoveries of each sweet potato from milling were not significantly different at about 20% but in proximate analysis, the VitAto presented the highest protein, 5.7% and dietary fiber, 14.8% contents with more energy 399.6 kcal/100g produced. The VitAto flour has average particle size of 132.04 µm. The pasting temperature of the VitAto flour was 65°C, with highest setback and trough viscosity values of 530.90 and 197.20 mPa.s, respectively. The flour is classified as easy flowing and stable powders. The rheological properties of sweet potato doughs at different mixing time were studied. In the large deformation extension test, extensibility parameters including dough length at fracture, measured and actual forces acting on dough strips were obtained for calculating the stress-strain data. For the small deformation test, both modulus of elasticity and viscosity (G) were studied. The extensibility of dough from sweet potato flour increased to its peak at 5 minutes mixing time before decreasing illustrating an optimum mixing time. The variety of VitAto which had a higher protein content of 5.7% has higher values of all the extensibility parameters when compared with the other varieties of sweet potato flours, Bukit Naga and Okinawan. The flow behavior index, *n* of sweet potato dough which were between 1.82 to 2.11 indicated that they were also of strain hardening nature similar to the wheat doughs but at a lower magnitude suggesting suitability in a wide range of application for the snack or confectionary industries. The small deformation tests were not able to identify the optimum mixing time although in general illustrated that sweet potato dough was essentially elastic or recoverable. The Pearson correlations of large and small deformation tests showed that the rheological parameters were positively correlated among themselves in the evaluation of the effect of mixing time to rheological properties of sweet potato dough.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai memenuhi keperluan untuk Ijazah Master Sains

FIZIKO-KIMIA DAN PENCIRIAN RHEOLOGI TEPUNG DAN DOH UBI KELEDEK

Oleh

ABU BAKR MOHD HANIM

February 2014

Pengerusi: Chin Nyuk Ling, PhD

Fakulti: Kejuruteraan

Fiziko-kimia dan pencirian reologi tepung dan doh ubi keledek baru, VitAto yang dikenalpasti tinggi kandungan vitamin A dibandingkan dengan dua ubi keledek komersial lain yang terdapat di Malaysia, Bukit Naga dan Okinawan. Dengan perolehan setiap ubi keledek dari pengisaran tidak berbeza secara ketara iaitu pada kira-kira 20%, VitAto mempunyai kandungan protein yang lebih tinggi, 5.7 % dan serat, 14.8% serta membekalkan lebih tenaga sebanyak 399.6 kcal/100g di dalam analisis proksimat. Tepung VitAto mempunyai purata saiz partikel sebesar 132.04 µm. Suhu pes tepung VitAto ialah 65°C, dengan nilai halangan dan nilai paluh yang tinggi iaitu masing-masing sebanyak 530.90 dan 197.20 mPa.s. Tepung tersebut adalah dikategorikan sebagai serbuk mengalir mudah dan stabil. Sifat-sifat reologi doh ubi keledek pada masa pengadunan yang berbeza telah dikaji. Dalam ujian ubah bentuk pemanjangan besar, parameter kebolehpanjangan merangkumi kepanjangan doh pada tahap kepatahan, daya ukur dan sebenar yang bertindak pada jalur doh

diperolehi untuk mengira data tegasan-terikan. Bagi ujian ubah bentuk kecil, keduadua modulus G kekenyalan dan kelikatan dikaji. Kebolehpanjangan doh tepung keledek yang meningkat sehingga kemuncaknya pada 5 minit masa pengadunan sebelum menurun ini menggambarkan masa pengadunan optimum. VitAto yang mempunyai kandungan protein yang lebih tinggi sebanyak 5.7% mempunyai nilainilai paramater kebolehpanjangan yang lebih tinggi apabila dibandingkan dengan tepung ubi keledek lain, Bukit Naga dan Okinawan. Indeks kelakuan aliran, *n* doh ubi keledek di antara 1.82-2.11 menunjukkan bahawa mereka mempunyai pengerasan terikan seperti doh tepung gandum tetapi dengan magnitud rendah menunjukkan kesesuaiannya dalam pelbagai aplikasi untuk makanan ringan atau industri konfeksionari. Ujian ubah bentuk kecil didapati tidak dapat menggambarkan bahawa doh ubi keledek bersifat elastik boleh kembali. Kolerasi Pearson untuk ujian ubah bentuk besar dan kecil menunjukkan parameter reologi secara positif dalam penilaian kesan masa pengadunan kepada sifat-sifat reologi doh ubi keledek.

ACKNOWLEDGEMENT

"In the name of Allah S.W.T., the most Benevolent and Merciful"

First and foremost, I would like to express my utmost appreciation to the beloved chairperson of my supervisory committee, Associate Professor Ir. Dr. Chin Nyuk Ling for all the continuous guidance and support of my study. Her patience, friendly and kindness encouragement gave me the confidence to overcome all the problems in this research. Million thanks to the member of my supervisor committee, Associate Professor Dr. Yus Aniza Yusof for the idea and support to the completion of this research.

A special thanks to my institute, Malaysian Agriculture and Development Institute (MARDI) for giving me the opportunity to further my study and financing it with the scholarship. This opportunity gave me more knowledge and spirit to work harder for the institute and continue to give services to government and citizen of Malaysia. I am also very grateful to Universiti Putra Malaysia for accepting me as the post graduate student and providing all the facilities for this study. I would like to thank all the staff especially from Food and Process Engineering Department, Faculty of Engineering for their help and contributions.

For my beloved wife Norhasliza Hasan, thank you for all the endless supports and encouragement during these two years of study. Your loves give me strength and spirit to finish this study. Thank you very much for giving birth to our three beautiful daughters, Aneesa Basheera, Adeena Bareera and Ateera Baheera that bring the joy and happiness to our family.

Last but not least, my deepest gratitude to all my friends especially my lab mates Hanim, Nazrul, Azlin, Mei Ching, Siok Peng, Meei Chien and Ernest that are willing to share knowledge and lot of joy together as the student at Universiti Putra Malaysia. Our memories will remain forever.

I certify that a Thesis Examination Committee has met on 27 January 2014 to conduct the final examination of Abu Bakr Bin Mohd Hanim on his thesis entitled "Physico-chemical and Rheological Characterisation of Sweet Potato Flours and Dough" in accordance with the Universities and University Collages Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Farah Saleena binti Taip, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Rosnah binti Shamsudin, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Rosnita binti A. Talib, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Cheow Chong Seng, PhD

Associate Professor Universiti Teknologi MARA Malaysia (External Examiner)

NORITAH OMAR, PhD

Associate Professor and Deputy Dean School of Graduates Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of **Master of Science (Food Engineering)**. The members of the Supervisory Committee were as follows:

Chin Nyuk Ling, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Chairman)

Yus Aniza Binti Yusof, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduates Studies Universiti Putra Malaysia

Date:

DECLARATION FORM

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced; this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:

Date: 27 January 2014

Name and Matric No: Abu Bakr Bin Mohd Hanim (GS30000)

Declaration by Members of Supervisory Committee

This is to confirm that:

C

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Name of
Member of
Committee: Assoc. Prof. Dr. Yus Aniza
Yusof

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xvii
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	xxi

CHAPTER

	1	INT	RODUC	TION	1
2	2	LITI	ERATU	RE REVIEW	8
		2.0	Introdu	iction	8
		2.1	VitAto	and sweet potato in Malaysia	10
			Research on sweet potato flour		
			2.2.1	Flour development	13
			2.2.2	Proximate composition of sweet potato flour	14
			2.2.3	Functional properties of sweet potato flour	15
			2.2.4	Pasting properties of sweet potato flour	18
			2.2.5	Flowability of flour	19
			2.2.6	Rheological properties of sweet potato flour	21
		2.3	Rheolo	gical properties of dough	25
			2.3.1	Large deformation test of dough	25
			2.3.2	Small deformation of dough	27
			2.3.3	Effects of mixing to dough rheological properties	30
		2.4	Summa	ary	31
3		MET	THODO	LOGY	33
		3.0	Introdu	ection	33
		3.1	Produc	tion of flours	35

3.2 Color of flours

36

3.3	Proxin	nate composition of flour	37
	3.3.1	Moisture	37
	3.3.2	Protein	37
	3.3.3	Crude fat	38
	3.3.4	Dietary fiber	38
	3.3.5	Ash	39
3.4	Function	onal properties of flours	39
3.5	Pasting	g properties of flours	40
3.6	Flowat	bility analysis	41
	3.6.1	Cohesion test	43
	3.6.2	PFSD test	44
	3.6.3	Caking test	45
3.7	Dough	preparation	47
3.8	Scanni	ng Electron Microscope (SEM)	47
3.9	Large	deformation test	48
3.10	Small	deformation test	52
3.11	Statisti	cal analysis	54
4 RES	SULTS A	AND DISCUSSION	55
4.0	Introdu	iction	55
4.1	Yield o	of sweet potato flours	55
4.2	Color	of flours	55
4.3	Proxim	nate composition of flours	57
4.4	Function	onal properties of flours	59
4.5	Pasting	g properties of flours	63
4.6	Flowat	bility analysis of flours	66
4.7	Uniaxi	al extensibility	71
4.8	Oscilla	tory test	73
4.9	Effects	of mixing time on sweet potato dough formation	76
	4.9.1	Morphological changes during dough formation	76

		4.9.2	Rheological cha	racterization us	sing large and	77
			small deformati	on testing para	meter	
	4.10	Relation	ship between lar	ge and small do	ough	85
		rheologi	ical properties			
	4.11	Summar	ry			86
5	CON	CLUSIC	ONS AND RECO	OMMENDATI	ONS	87
	5.0	Conclus	sions			87
	5.1	Recomm	nendations for fu	ture research		88
REFEREN APPENDI BIODATA LIST OF I	NCES ICES A OF S PUBL	STUDEN	NT DNS			90 97 112 113

C