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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 
the requirement for degree of Doctor of philosophy 

MODELING OF CLEAR-WATER CONTRACTION SCOUR FOR AN 
ABUTMENT BRIDGE IN A COMPOUND CHANNEL 

By 
 

PEZHMAN TAHEREI GHAZVINEI 

January 2014 

Chair: Prof. Thamer Ahmed Mohammad Ali, PhD 

Faculty: Engineering 

Bridge collapse has dramatic consequences in transportation system. Besides losing of 
life, disruption in service results tremendous effects on the economic growth of the 
countries. Contraction scour is a common and major cause of bridge failure. Designing 
the bridge foundation safely needs an accurate estimation of scour depth, underestimation 
may lead to bridge failure while over estimation will lead to excessive construction cost. 
Abutment bridges most commonly are used for bridges overcomparatively small 
channels. Reliability, strength and economy are the main reasons to increase concerning 
in Abutment Bridges. Commonly, in the compound channels, Abutment Bridgesare 
protrudedinto the main channel. Consequently, contraction scour expands in the main 
channel. Prior design approaches treated abutments as being solid structure locating in a 
floodplain or main channel, individually. The main deficiency of previous studies is that 
they do not accurately simulated the actual constriction features of Abutment Bridge in a 
compound channel with a complex geometries. Subsequently, the data and observations 
lead to unrealistically scour depth estimates.  

The main objective of the current research is to provide reliable prediction of geometrical 
characteristics for protruded abutment bridge in the compound channel on contraction 
scour depth and its’ location. The study required extensive experimentation conducted 
with laboratory flume, and abutments of realistic design that were subjected to the 
contraction scour for a range of channel constriction, channel geometries, and 
embankment protection layers. The experiments on clear-water conditions under steady 
flow at threshold velocity were conducted at an Abutment Bridge with approach 
embankment configured in a range of erodiblity conditions: fixed embankment on 
erodible and then far less-erodible floodplain; riprap, gabion-mattress, and non-erodible 
embankment on readily erodible floodplain. Flow depth was kept constant for all of the 
experiments with thecohesionless uniform sediment. 
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A methodology is developed to predict the maximum contraction scour depth and its’ 
location along the compound channel. Outcomes of verifying the method show that 
proposed method gives reasonable maximum contraction scour depth and location 
predictions. The results indicate that the contraction degree, abutments’ protrusionfrom 
floodplain into the main channel, soil, and protection layer properties really affect the 
final contraction scour depth and its’ location. Results allow promoting the Abutment 
Bridges’ design and consequentlyincreasingeconomical andpublic safety by decreasing 
the bridges’ construction cost, saving additional maintenance charges, increasing bridges’ 
stability, and preventing loss of lives.However, application of the currently developed 
methodology are limited to laboratory conditions. Site verifications are necessary in the 
future study. 
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Abstrak tesis dikemukakan kepada Senate Universiti Putra Malaysia sebagai memenuhi 
keperluan ijazah Doktor Falsafah 

PEMODELAN PENGUNCUPAN JELAS-AIR KEROKAN UNTUK PENAMPAN 
JAMBATAN DALAM RANGKAIAN KOMPAUN 

Oleh 

PEZHMAN TAHEREI GHAZVINEI 

Januari 2014 

Pengerusi: Prof. Thamer Ahmed Mohammad Ali, PhD 

Fakulti: Kejuruteraan 

Keruntuhan Jambatan mempunyai kesan dramatic dalam sistem pengangkutan. Selain 
kehilangan nyawa, gangguan perkhidmatan menyebabkan impak yang besar terhadap 
pertumbuhan ekonomi negara-negara. Kerukan pengecutan adalah penyebab umum dan 
penyebab utama kegagalan jambatan. Mereka bentuk asas jambatan dengan selamat 
memerlukan anggaran kedalaman kerukan yang tepat, anggaran yang kurang boleh 
membawa kepada kegagalan jambatan manakala terlebih anggaran akan membawa 
kepada kos pembinaan yang berlebihan. Jambatan-jambatan penampan lazimnya 
digunakan untuk jambatan yang merentasi saluran-saluran yang agak kecil. Keandalan, 
kekuatan dan ekonomi merupakan sebab-sebab utama yang perlu ditingkatkan bagi kes 
jambatan penampan. Dalam saluran majmuk, Jambatan Penampan lazimnya tersembul ke 
dalam saluran utama. Oleh yang demikian, kerukan pengecutan mengembang di dalam 
saluranutama. Pendekatan reka bentuk terdahulu menganggap penampan itu sendiri 
sebagai suatu struktur pepejal yang terletak di dalam dataran banjir atau saluran utama. 
Kekurangan utama kajian lepasa  dalah ianya tidak mensimulasikan dengan tepat ciri-ciri 
penyempitan sebenar Jambatan Penampan dalam saluran majmuk denga nciri-ciri 
geometri kompleks. Kemudiannya, data dan pemerhatian-pemerhatian membawake pada 
penganggaran kedalaman kerukan yang tidak relistik.  

Objektif utama kajian ini adalah untuk menyediakan ramalan yang boleh  dipercayai 
tentang ciri-ciri geometri bagi jambatan penampan yang tersembul ke dalam saluran 
majmuk, terhadap kedalaman kerukan pengecutan dan lokasinya. Kajian ini memerlukan 
eksperimen menyeluruh yang dijalankan dengan saluran di dalam makmal, dan 
penampan-penampan yang mempunyai reka bentuk realistic yang tertakluk kepada 
pengecutan kerukan bagi suatu julat penyempitan saluran, geometri-geometri saluran, dan 
apisan-lapisan perlindungan benteng. Eksperimen ke atas keadaan air jernih di bawah 
aliran mantap pada kelajuan ambang telah dijalankan pada satu Jambatan Penampan 
menggunakan pendekatan di mana benteng deselaraskan dalam pelbagai 
keadaankebolehhakisan: benteng di tetapkan ke atas dataran banjir yang boleh hakis dan 
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kemudiann yayang tidak mudah terhakis; batu lindung, kotak batu (gabion-mattress), dan 
benteng tidak-hakis ke atas dataran banjir yang mudah hakis. Kedalaman aliran telah 
dimalarkan bagi kesemua eksperimen tersebut bersama enapan seragam tak menjeleket. 

Satu kaedah telah dibangunkan untuk meramalkan kedalaman maksimum kerukan 
pengecutan dan lokasinya di sepanjang saluran majmuk tersebut. Dalam mengesahkan 
kaedahtersebut, didapati bahawa kaedah yang dicadangkan telah memberikan ramalan 
kedalaman maksimum kerukan pengecutan dan lokasi yang munasabah. Dap atan kajian 
menunjukkan bahawa darjah pengecutan, penonjolan penampan daripada dataran banjir 
ke dalam saluran utama, tanah, dan sifat-sifat lapisan perlindungan benar-benar 
mempengaruhi kedalaman akhir kerukan pengecutan dan lokasinya. Hasil kajian 
menunjukkan bahawa reka bentuk Jambatan Penampan berdaya maju untuk diguna pakai, 
seterusnya dapat meningkatkan ekonomidan keselamatan awam dengan mengurangkan 
kos pembinaan jambatan, menjimatkan caj-caj penyelenggaraan tambahan, meningkatkan 
kestabilan jambatan, dan mencegah kehilangan nyawa.Walau bagaimanapun, aplikasi 
kaedah yang sedang dibangunkan ini adalah terhad kepada persekitaran makmal. 
Pengesahan di tapak kajian adalah perlu dalam kajian di masa hadapan. 
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LIST OF NOTATIONS 

The following symbols are used in this note:   = Channel width [L];   = Scour depth [L]; d = flow depth [L]; (d )  = scour depth obtained from experiments or laboratory observation (in statistical 
analaysis) [L]; (d )  = the corresponding predicted scour obtained from the application of the selected 
scour formulae (in statistical analaysis) [L];    =    ⁄ , nondimensional equilibrium scour depth [M L T ]; D= Diameter of smallest non-transportable particle in the bed material [L]; D = Diameter of smallest non-transportable particle present in bed material [L]; D = Effective mean diameter of the bed material in the bridge = 1.25     [L]; D  = 16% of the particles by weight are finer[L]; D   = Median particle diameter (50% of the particles by weight are finer) [L]; D  = 84% of the particles by weight are finer [L];   = Absolute errors (in statistical analaysis);    = The prediction (in statistical analaysis); Fr= Froud number (dimensionless); F = Froud number in the floodplain upstream of the end of the abutment 
(dimensioless); F = Critical Froud number for the initiation of bed material movement 
(dimensioless); F  = Densimetric particle Froude number (dimensionless); F =    (∆  ) . ⁄  =  excess abutment Froude number (dimensionless); g = Gravitaional acceleration force [LT  ]; ℎ , ℎ = Depth of the flow [L]; ℎ =  ℎ  ⁄ ; K= Constant coeficient (dimensionless); K  = Flow intensity factor; K = Flow depth factor; K  = Factor to account for the effect of channel curvature on the shear stress acting on 
the outside of the bend; K  = Factor of sediment nonuniformity; K  = Roughness height; 
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CHAPTER 1 
INTRODUCTION 

1.1 Background of the Study 
Abutments are located at the two ends of a bridge, that act double purposes of transferring 
the loads from the superstructure to the footing bed and giving support to the approach 
embankment. Bridges are characterized by how they support themselves. The simplest 
type of bridge is the beam bridge. This type of bridge has a single horizontal beam across 
two supports with articulated structures. A simple beam bridge main structures are shown 
in Figure 1.1. When it is needed to build a bridge across a wide space and don’t want to 
sink supports in the middle, thus hoping to build a beam bridge with one very long span. 
But, a long beam may sag too much in the middle. To avoid sagging, bridge is build with 
support at the two ends by using cross members to make the bridge stronger. These kinds 
of bridges without movement joints at the junction of  the deck on the abutments named 
abutment bridge (also  called Integral  abutment  bridges  or  joint  less  bridges). Figure 
1.2 shows contiguous abutment  bridge. Reliability, strength and economy are the main 
reasons to increase concerning in a bridge structure. Besides, abutment bridges have less 
initial cost in construction and long-term maintenance in comparison with simple beam 
bridges. Abutments acquit an extra function as a protector of the embankment against 
scour during stream in a abutment bridge constructed on a waterway.  

Figure 1.1. A Simple Beam Bridge (Taherei Ghazvinei et al., 2012). 

Figure 1.2. An Abutment Bridge (Taherei Ghazvinei et al., 2012). 

Deficiency of load capability and bridge scouring are the most reasons of bridge 
collapse. The erosive action of flowing water sources scour, which excavates and 
carries away materials from bank's bridge foundations and streambeds through the 
normal flood flowing or water. Scour is a natural occurrence caused by the flow of 
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water over an erodible boundary, whereas flowing water generates the shear stress that 
is the basic erosive stress on the streambed. The materials of the streambed provide 
the resisting stress against scouring. Scour reaches its equilibrium standing when 
these two stresses get balanced. Excessive scour can lead to the undermining of the 
bridge foundations. Different materials scour at different rates. Under constant flow 
conditions, scour will reach maximum depth in sand and gravel bed material in hours; 
cohesive bed material in days; glacial till, sandstones, and shale in months; limestone 
in years and dense granite in centuries. Under flow conditions typical of actual bridge 
crossings, several floods may be needed to attain maximum scour (Arneson et al., 
2012). 

Total scour is comprised of the three components: Aggradations or degradation, 
contraction scour and local scour. Aggradations or degradation is long-term 
streambed elevation changes due to natural or human-induced causes within the 
reach of the river on which the bridge is located. Contraction scour involves the 
removal of material from the bed and banks across all or most of the width of the 
channel. This scour can be resulted from the approach flow constricted by the 
embankments encroaching in the floodplain or into the main channel. Such an 
encroachment are due to the change in downstream control of the water surface 
elevation or from the location of the bridge in relation to a bend. In each case, scour 
is caused by an increase in transport of bed material in the bridge cross section.  

Local scour occurs around piers, abutments, spurs and embankments and is 
caused by the acceleration of the flow and the development of vortex systems 
induced by these obstructions to the flow (Li, 2005). Relevant with location in 
the main channel or floodplain of a river, abutments are susceptible to failure by 
scour.  

Abutment bridges most commonly are used over comparatively small channels. In 
these situations, abutments are very close and they may still be located at the banks of 
a main channel or may protruded to the main channel to reduce the cost of the bridge 
consrtuction. When a channel is constricted, the approach flow accelerates and causes 
an increase in the bed shear stress and related turbulence. The embankments and 
abutments shorten the necessary bridge span, but consequently contract the flow 
through the waterway. As the bed shear stress exceeds the critical shear stress of the 
bed material, contraction scour expands. That construction advantage, however, can 
lead to a potentially severe scour situation as a contraction scour at a site of the 
abutment bridge.  

The most common cause of bridge failures is attributed to scouring around 
foundations during floods. Study of 503 bridge structure's failures in the United States 
from 1989 to 2000 indicated that the main reasons for failure or damage of the bridges 
are those interconnected to scouring at the abutments and piers of the bridges 
(Wardhana and Hadipriono, 2003). Bridge collapse reasons were evaluated in 
Colombia based on the study of 63 real cases of reported failures since 1986. Through 
the analysis of each failure event, the main reasons of total or partial collapse of the 
bridge structures were recognized and studied. The 64% of the cases studied 
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corresponds to concrete bridges that collapsed mainly because of scour effect and 
overloads; and the remaining 36% corresponds to steel structures that failed mainly 
because of structural deficiencies (Diaz et al., 2009).  

In Malaysia, the use of abutment bridge has also dramatically increased in recent 
years. However, since the development of abutment bridge is still new in Malaysia, 
factors that caused bridge failure other than loading must be investigated. Flood is one 
of the recent interests in abutment bridge structure because it can cause scouring 
(Akib et al., 2011; Akib et al., 2008; Fayyadh et al., 2011). In Malaysia the main 
responcible governmental agency for bridges construction and mainenace is called 
Public Work Department or in local language in Malaysia, Jabatan Kerja Raya (JKR). 
There are about more than 7133 bridges in Malaysia. Table 1.1 shows a statistics of 
bridges in Malaysia.  

Table. 1.1 Statistics of Malaysia Bridges (Heng, 2008). 
Department Bridge (Nos) 
JKR Federal 7133 
JKR State 7000 
JKR Sabah 1730 

JKR Sarawak 1540 
Toll Concessionaires 560 

Malayan Railways Department (in 
local language in Malaysia; Keretapi 

Tanah Melayu, KTM)  
920 

Figure 1.3 displays the numbers of bridge constructed along the federal roads under 
JKR, based on the material type (Heng and Hamid, 2009; Nadzri, 2011). 
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Figure 1.3. Types of Bridges in Malaysia Along the Federal Routes (Heng and 

Hamid, 2009; Nadzri, 2011). 
As a country located in Southeast Asia, Malaysia is categorized as equatorial, being hot 
and humid throughout the year with annual rainfall exceeds 2000. 

Malaysia experiences very high rainfall intensity, especially during the Monsoon season 
from October to January. Flooding is very common during this period. Ng and Razak 
(1998) reported that bridge failure due to structure damage is very rare in Malaysia, while 
bridge failures are very often caused by scouring the footing structure during major 
floods. A governmental report presented JKR experiences in facing hydraulic problems in 
Malysia (Meng et al., 2000). Revetment of Pukin river bridge, Keratong river bridge and 
Plentong river bridge were cited as case history.  It is later learned that the Pukin River 
Bridge was badly scoured at both abutments during heavy flooding in December 2006 
(Heng, 2010). Scouring problems are the main, if not only cause of bridge damage in 
Malysia. The most scour hazards to the abutments of bridges in Malaysia are shown in 
Table 1.2. 

Table. 1.2 Malaysian Experience; Defect Due to Scour Hazard (Heng, 2008). 
No. Location of Bridge Date of 

Failure 
Problems 

1 Kota Tinggi, Johor 1989 Collaped due to scour at 
abutments after big flood 

2 Port Dickson, Negri 
Sembiln 

1995 Collaped due to scour at 
abutments after big flood 

3 Calvert bridge, Sungai 
Semiar, Jeneri, Pahang 

1996 Filled Embankement was 
washed away after big flood 

4 Sungai Batang Busu, 
Gombak, Selangor 

2003 Collaped due to scour at 
abutments after big flood 

5 Sungai Buaya, Selangor 2005 Collaped due to scour at 
abutments after big flood 

632

6322

172 7

Steel Concrete Masonry Timber
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Recent floods at past two years in Malaysia had serious damage and failure of bridges. 
For instance, heavy rain at 20 february 2012, that lasted six hours caused over topping the 
bridge of the Pari river. The water levels had risen to a dangerous level and the whole 
area had been flooded. At the same area, strong currents also caused the bridge at Wing 
Onn Garden to collapse. Figures 1.6 shows the overflow during the flooding for that area 
(Loh and Hew, 2012). 

  Figure 1.4. Flooding At Pari River On February 2012 (Loh and Hew, 2012).  

Figure 1.5. Pari River Bridge After The Recent Flood On Febuary 2012 (Loh and 
Hew, 2012). 
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Figure 1.6. Evacuation During Flooding Of Pari (Loh and Hew, 2012). 

Furthermore, as a latest abutment bridge collapsed on24 October 2013, due to abutment 
scour at Cameron Highlands (Figure 1.7). Also, 4 people have died after the flood 
surrounded the areas  (Today, 2013). 

Figure 1.7. View Of The Destroyed Bridge In Cameron Highlands (Today, 2013). 
 

1.2. Problem Statement 
Bridge collapse has dramatic consequences in transportation system. Besides loss of life, 
disruption in service results tremendous effects on the economic growth of the countries. 
In many developing countries, bridges are constructed with less quality control and limit 
adherence to the design code. Designing the bridge foundation safely needs an accurate 
estimation of structure footing depth. Therefore, engineers need reliable methods for 
predicting scour depth and location which, affect the bridge foundations. Such consistent 
methods can applied in estimating any damage or collapsed due to scouring for the 
bridges in design stage or constructed bridge to design erosion protection. 
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Underestimation may lead to bridge failure while overestimation will lead to excessive 
construction cost.  

Many abutment bridges are located on compound channels whose geometry and 
hydraulic characteristics are markedly site-specific. Moreover, the channel is formed of 
various types of soils occupying different locations within a bridge site. Sands or gravels 
may form the bed of main channel. Rocks and various types of concrete elements may 
have been placed as erosion protection for the abutments as well, along adjoining 
riverbanks. Scour at abutment bridges typically occurs at two-phase process, including 
hydraulic erosion of the main channel or floodplain and thereafter, a geotechnical slope 
stability failure of the river banks adjacent or earth-fill embankment. This two-phase 
process makes scour prediction more complicated in comparison with contraction scour 
in a simple rectangular channel. Prior studies treated abutments as being solid structure 
locating in a floodplain or main channel, individualy. Some studies, however, have 
illustrated some of the processes causing scour, remarkably scour referable to flow 
contraction through a bridge waterway. These studies have described certain parametric 
trends related with flow contraction and have developed tentative design relationships for 
estimating scour depth. In case of contraction scour, the relief bridges in flood valleys, 
with a small width, require a special procedure to evaluate the scour (Schreider et al., 
2001). According to the result of the perfect laboratory experiments which often applying 
simple rectangular channels and uniform sediment, it was concluded that the accuracy of 
scour depth estimate is less than the measured scour depth of the field or laboratory 
conditions (Hong, 2005). Recent research on the bridge scour has focused on local scour, 
such as scour around bridge piers or near abutments; by comparison, contraction scour at 
abutment bridges in compound channel has received much less attention. Most of the 
techniques and guidelines that are available for predicting contraction scour at abutment 
bridge have been developed from small scale hydraulic modelling conducted in 
laboratories (Azamathulla, 2012; Coleman et al., 2003; Dey et al., 2008; Ettema et al., 
2004; Husain et al., 1998; Kouchakzadeh and Townsend, 2000; Lim and Cheng, 1998; 
Martin-Vide, 2007; Mueller and Wagner, 2005; Yanmaz and Celebi, 2004). Limited 
amount of empirical data along with unreliable observations has been acquired from 
simulated real situations. However, few conditions of flow, boundary erosion and 
alluvial-sediment transport are more complex than those related with scour in compound 
channels at abutments bridge. Therefore, several essential aspects of scour at abutment 
bridge has remained little understood, the main deficiency of prior studies are: 

1. They do not consider contraction scour development at abutments bridges in a 
compound channel. Most of the abutments are located in the bank line or protruded 
into the main channel in a compound river. However, the existing contraction scour 
equations focused on setback abutments. 

2. Guidelines and available relationships to predict contraction scour do not adequately 
take into account the complexities of the channel geometry and bed materials. Most of 
the contraction scour studies conducted in a simple rectangular channel, while most 
river morphologies are compound. 

3. Abutment bridges, are found to be a primarily concern for bridges over smaller 
waterways than the large rivers. The applicability of the previous contraction scour 
equations are in the long contraction, while bridges typically causes short contraction.  
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4. Previous studies are commonly dedicated to determine maximum scour depth around 
bridge foundations. Besides, most of the studies are conducted in clear water 
conditions that are generally based on the prediction the equilibrium scour depth at 
bridge abutments. Not only application degree of the scour countermeasures materials 
is determined by the maximum depth of scour but also by the characteristics of 
volume and surface area of the scour hole around such foundations (Yanmaz and 
Kose, 2007).  

It has been recognized that along with new prediction of the maximum contraction scour 
depth and location concepts, current design and construction guidelines need to be 
developed to protect bridge abutments and approach embankments from scour damage 
and to reduce the depths to which expensive deep foundations may have to be placed. 
That is why bridge engineer designers are interested in scouring which affect the 
abutments and alongside the contracted section. Therefore, it is not surprising that several 
aspects of scour related with abutments remain to be resolved. Requirement to more 
research on scaled most in used abutment bridge in Malaysia within a compound channel, 
led us to conduct a new series of experiments.  

The major concentrations of the current study will be the clarification of scour processes 
at contracted section of the abutment bridges and improvement of relationship for 
estimating contraction scour depth and location in clear-water conditions in a compound 
channel using empirical methods. These improvements are based on formulation 
supported by laboratory experiments. Credible predictions of contraction scour depths can 
assist the design engineers to promote the bridges’ design, monitor and correct the scour 
problem before any bridge failure, and decreasing the bridges’ cost in construction and 
maintenance processes. 

1.3 Scope and Objectives 
Natural contraction caused by abutment bridge in a compound channel with complex 
geometry is more multifaceted. There are many issues of scours in contracted channel 
from the practical point of view that were not clarified in previous studies. Briefly, there 
are four relatively pronounced weakness in previous studies on scour in contracted 
channels: 

1. For the small rivers, abutments encroach on the main channel banks, the 
floodplains portion of the contracted section no longer exist. Abutments being 
sited in the bank line or protruded in to the main channel in a compound river. 
However, the existing contraction scour methods focused on setback abutments 
or bank line abutments in a compound channels. Further study on scour at 
abutment sited in the main channel of a compound river is necessary. 

2. Local and contraction scour equations were typically developed in uniform 
sands. However, what would be the behavior in armored layers which protect the 
bridge structures? 
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3. Most of the available equations are limited to predict the uniform scour depth in 
a long contraction channel. But the knowledge on how the scour distributes, 
location and depth of the maximum contraction scour are more critical in scour 
evaluations at short contraction caused by abutment bridges. 

4. Bridge typically impose short, abrupt contraction. The applicability of the long 
rectangular contraction solution is uncertain for this case. Further study on 
influence of contraction degree and bridge openning width is necessary for a 
comprehensive understanding of the bridge scour in contracted channel. 

The main cause of bridge failures built across small rivers is attributed to the problem of 
scour around bridge abutments. In this experimental study, contraction scour at abutment 
bridges is investigated in detail to achieve the main objective. In order to generalize the 
final results to other similar cases, it is needed to select an abutment bridge for scaling 
down in a laboratory model, as a representative prototype in footing and structure with 
the most in used abutment bridges in Malaysia and other countries. Besides, compound 
channel geometry within a abutment bridge model need to be scaled down hydraulically 
and geometrically to generalize the outcomes of the study to similar rivers and bridges 
bathymetries in and out of  the Malaysia. Within scope, the study set out to produce 
practical guidelines for accurate contraction scour estimation by civil engineers. The main 
goal of this study is to develop a methodology for predicting contraction scour depth and 
location within full scaled abutments model of the most in used abutment bridge specially 
in Malaysia. The outcomes of the study will promote bridge design method in river 
environments by increasing estimation accuracy of maximum contraction scour depth 
which affect the final abutment footing depth and consequently bridge constraction cost. 
This goal will be achieved by encounter the following set of specific objectives: 

1. To simulate contraction scour for abutment bridge in a compound channel. 
2. To quantify the contraction scour depth and location produced by individual 

components of the contraction degree, floodplain erodibility and slope protection 
resistance with propose of correction coeficients in improved proposed method. 

3. To evaluate the existing methodologies by concentrating on the ability of the 
methodologies to be used as design equations for predicting contraction scour depth 
with complex geometries. 

4. Evaluting the accuracy of proposed theory to determine the contraction scour hole 
geometry under clear-water conditions due to variations in the compound channel 
with complex geometries. 

For the objectives, a semi-emperical approach to determine clear water contraction scour 
depth at abutment bridges is presented. 

1.4 Thesis Organization 
Based on the results of preliminary work done in getting underway with the study, there 
are some important keys in understanding scour at abutment bridge and developing useful 
relationships to predict depths of the contraction scour. Previous researcher were 
concentrated only on long contraction scour.  
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1. Are the common types of abutment configuration, and thereby scour conditions, of 
essential and practical importance? 

2. How do floodplain and main-channel flows combine and contribute to scour at 
abutments located in compound channels formed of floodplain beside a main 
channel? 

3. Why scour-prediction relationships developed from laboratory flumes seems to 
predict larger scour-depths than the depths observed at actual bridge abutments?  

In the current study, laboratory experiments were conducted using common model of the 
selected abutment bridge in Malaysia in the compound channel. The time history of the 
scour and the velocity in the bridge section were measured. For this case, comparisons 
were made among flume measurements of scour depth (experimental results), and 
predicted contraction scour depth using existing formulas and proposed equation for 
scour-prediction. The experimental results were used to assess the relative contribution of 
contraction scour at abutment bridge to the final design of the bridge foundation depth. 

The background of scour related to bridge abutments will be explained in details in 
chapter 2. It will include several sections, bridge structure, abutment characteristics, 
bridge scour and it's fundamental. In addition, several approaches to study the bridge 
abutment scour depth will be reviewed. Analytical methods are discussed for obtaining 
both the equilibrium contraction scour depth and its’ location. The experimental studies 
based on dimensional analysis are presented to explain the effects of several parameters. 
Also, a review of physical model studies are undertaken and at least scour component 
method performance are discussed. 

Chapter 3 focuses on the location and bed elevations for selected bridge sites. Moreover, 
the instrumentation which will be used in measuring the flow characteristics, the type of 
sensors being used to monitor the abutment bridge scour and how the data are collected 
and recorded are explained. Physical modeling and experimental procedures for this study 
are given in this chapter.  

In Chapter 4 the results which are derived from experimental tests including the scour 
contours at abutment bridge are investigated. The data of the maximum contraction scour 
at abutment bridge have been collected. The effect of channel contraction degree, the 
effect of abutment aspect ratio, the effect of abutment protection materials, and the effect 
of the compound channel configuration are taken into account. The final chapter provides 
conclusions and recommendations for future study. 
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